-
1
-
-
84893395842
-
Dancing rhinos in stilettos: the amazing saga of the genomic and nongenomic actions of STAT3 in the heart
-
24069556
-
Zouein FA, Kurdi M, Booz GW. Dancing rhinos in stilettos: the amazing saga of the genomic and nongenomic actions of STAT3 in the heart. JAKSTAT (2013) 2:e24352.10.4161/jkst.2435224069556
-
(2013)
JAKSTAT
, vol.2
, pp. e24352
-
-
Zouein, F.A.1
Kurdi, M.2
Booz, G.W.3
-
2
-
-
70350440089
-
JAK redux: a second look at the regulation and role of JAKs in the heart
-
19717737
-
Kurdi M, Booz GW. JAK redux: a second look at the regulation and role of JAKs in the heart. Am J Physiol Heart Circ Physiol (2009) 297:H1545–56.10.1152/ajpheart.00032.200919717737
-
(2009)
Am J Physiol Heart Circ Physiol
, vol.297
, pp. H1545-H1556
-
-
Kurdi, M.1
Booz, G.W.2
-
3
-
-
34547951341
-
Can the protective actions of JAK-STAT in the heart be exploited therapeutically? Parsing the regulation of interleukin-6-type cytokine signaling
-
17703129
-
Kurdi M, Booz GW. Can the protective actions of JAK-STAT in the heart be exploited therapeutically? Parsing the regulation of interleukin-6-type cytokine signaling. J Cardiovasc Pharmacol (2007) 50:126–41.10.1097/FJC.0b013e318068dd4917703129
-
(2007)
J Cardiovasc Pharmacol
, vol.50
, pp. 126-141
-
-
Kurdi, M.1
Booz, G.W.2
-
4
-
-
84864315728
-
Multi-tasking: nuclear transcription factors with novel roles in the mitochondria
-
22705015
-
Szczepanek K, Lesnefsky EJ, Larner AC. Multi-tasking: nuclear transcription factors with novel roles in the mitochondria. Trends Cell Biol (2012) 22:429–37.10.1016/j.tcb.2012.05.00122705015
-
(2012)
Trends Cell Biol
, vol.22
, pp. 429-437
-
-
Szczepanek, K.1
Lesnefsky, E.J.2
Larner, A.C.3
-
5
-
-
84858007745
-
Cytoprotection by the modulation of mitochondrial electron transport chain: the emerging role of mitochondrial STAT3
-
21930250
-
Szczepanek K, Chen Q, Larner AC, Lesnefsky EJ. Cytoprotection by the modulation of mitochondrial electron transport chain: the emerging role of mitochondrial STAT3. Mitochondrion (2012) 12:180–9.10.1016/j.mito.2011.08.01121930250
-
(2012)
Mitochondrion
, vol.12
, pp. 180-189
-
-
Szczepanek, K.1
Chen, Q.2
Larner, A.C.3
Lesnefsky, E.J.4
-
6
-
-
84928623386
-
Inhibition of mammalian target of rapamycin protects against reperfusion injury in diabetic heart through STAT3 signaling
-
25911189
-
Das A, Salloum FN, Filippone SM, Durrant DE, Rokosh G, Bolli R, et al. Inhibition of mammalian target of rapamycin protects against reperfusion injury in diabetic heart through STAT3 signaling. Basic Res Cardiol (2015) 110:31.10.1007/s00395-015-0486-525911189
-
(2015)
Basic Res Cardiol
, vol.110
, pp. 31
-
-
Das, A.1
Salloum, F.N.2
Filippone, S.M.3
Durrant, D.E.4
Rokosh, G.5
Bolli, R.6
-
7
-
-
79958108043
-
Diabetes blockade of sevoflurane postconditioning is not restored by insulin in the rat heart: phosphorylated signal transducer and activator of transcription 3- and phosphatidylinositol 3-kinase-mediated inhibition
-
21368653
-
Drenger B, Ostrovsky IA, Barak M, Nechemia-Arbely Y, Ziv E, Axelrod JH. Diabetes blockade of sevoflurane postconditioning is not restored by insulin in the rat heart: phosphorylated signal transducer and activator of transcription 3- and phosphatidylinositol 3-kinase-mediated inhibition. Anesthesiology (2011) 114:1364–72.10.1097/ALN.0b013e31820efafd21368653
-
(2011)
Anesthesiology
, vol.114
, pp. 1364-1372
-
-
Drenger, B.1
Ostrovsky, I.A.2
Barak, M.3
Nechemia-Arbely, Y.4
Ziv, E.5
Axelrod, J.H.6
-
8
-
-
37849023059
-
Cardioprotection by ischemic postconditioning is lost in aged and STAT3-deficient mice
-
17967780
-
Boengler K, Buechert A, Heinen Y, Roeskes C, Hilfiker-Kleiner D, Heusch G, et al. Cardioprotection by ischemic postconditioning is lost in aged and STAT3-deficient mice. Circ Res (2008) 102:131–5.10.1161/CIRCRESAHA.107.16469917967780
-
(2008)
Circ Res
, vol.102
, pp. 131-135
-
-
Boengler, K.1
Buechert, A.2
Heinen, Y.3
Roeskes, C.4
Hilfiker-Kleiner, D.5
Heusch, G.6
-
9
-
-
53749100817
-
The myocardial JAK/STAT pathway: from protection to failure
-
18786563
-
Boengler K, Hilfiker-Kleiner D, Drexler H, Heusch G, Schulz R. The myocardial JAK/STAT pathway: from protection to failure. Pharmacol Ther (2008) 120:172–85.10.1016/j.pharmthera.2008.08.00218786563
-
(2008)
Pharmacol Ther
, vol.120
, pp. 172-185
-
-
Boengler, K.1
Hilfiker-Kleiner, D.2
Drexler, H.3
Heusch, G.4
Schulz, R.5
-
10
-
-
0037448803
-
Alterations in Janus kinase (JAK)-signal transducers and activators of transcription (STAT) signaling in patients with end-stage dilated cardiomyopathy
-
12591746
-
Podewski EK, Hilfiker-Kleiner D, Hilfiker A, Morawietz H, Lichtenberg A, Wollert KC, et al. Alterations in Janus kinase (JAK)-signal transducers and activators of transcription (STAT) signaling in patients with end-stage dilated cardiomyopathy. Circulation (2003) 107:798–802.10.1161/01.CIR.0000057545.82749.FF12591746
-
(2003)
Circulation
, vol.107
, pp. 798-802
-
-
Podewski, E.K.1
Hilfiker-Kleiner, D.2
Hilfiker, A.3
Morawietz, H.4
Lichtenberg, A.5
Wollert, K.C.6
-
11
-
-
84864704976
-
Impaired JAK2-induced activation of STAT3 in failing human myocytes
-
22735740
-
Cambi GE, Lucchese G, Djeokeng MM, Modesti A, Fiaschi T, Faggian G, et al. Impaired JAK2-induced activation of STAT3 in failing human myocytes. Mol Biosyst (2012) 8:2351–9.10.1039/c2mb25120e22735740
-
(2012)
Mol Biosyst
, vol.8
, pp. 2351-2359
-
-
Cambi, G.E.1
Lucchese, G.2
Djeokeng, M.M.3
Modesti, A.4
Fiaschi, T.5
Faggian, G.6
-
12
-
-
84858224724
-
1a-adrenergic receptor differentially regulates STAT3 phosphorylation through PKCЄ and PKCδ in myocytes
-
1a-adrenergic receptor differentially regulates STAT3 phosphorylation through PKCЄ and PKCδ in myocytes. J Recept Signal Transduct Res (2012) 32:76–86.10.3109/10799893.2011.647353
-
(2012)
J Recept Signal Transduct Res
, vol.32
, pp. 76-86
-
-
Shi, T.1
Papay, R.S.2
Perez, D.M.3
-
13
-
-
46849087232
-
STAT3 activation in pressure-overloaded feline myocardium: role for integrins and the tyrosine kinase BMX
-
18612371
-
Willey CD, Palanisamy AP, Johnston RK, Mani SK, Shiraishi H, Tuxworth WJ, et al. STAT3 activation in pressure-overloaded feline myocardium: role for integrins and the tyrosine kinase BMX. Int J Biol Sci (2008) 4:184–99.10.7150/ijbs.4.18418612371
-
(2008)
Int J Biol Sci
, vol.4
, pp. 184-199
-
-
Willey, C.D.1
Palanisamy, A.P.2
Johnston, R.K.3
Mani, S.K.4
Shiraishi, H.5
Tuxworth, W.J.6
-
14
-
-
67349278378
-
Native and reconstituted HDL activate Stat3 in ventricular cardiomyocytes via ERK1/2: role of sphingosine-1-phosphate
-
19151362
-
Frias MA, James RW, Gerber-Wicht C, Lang U. Native and reconstituted HDL activate Stat3 in ventricular cardiomyocytes via ERK1/2: role of sphingosine-1-phosphate. Cardiovasc Res (2009) 82:313–23.10.1093/cvr/cvp02419151362
-
(2009)
Cardiovasc Res
, vol.82
, pp. 313-323
-
-
Frias, M.A.1
James, R.W.2
Gerber-Wicht, C.3
Lang, U.4
-
15
-
-
84938903813
-
SH2B1 is critical for the regulation of cardiac remodelling in response to pressure overload
-
26077624
-
Wu G, Liu Y, Huang H, Tang Y, Liu W, Mei Y, et al. SH2B1 is critical for the regulation of cardiac remodelling in response to pressure overload. Cardiovasc Res (2015) 107:203–15.10.1093/cvr/cvv17026077624
-
(2015)
Cardiovasc Res
, vol.107
, pp. 203-215
-
-
Wu, G.1
Liu, Y.2
Huang, H.3
Tang, Y.4
Liu, W.5
Mei, Y.6
-
16
-
-
84871598386
-
Pressure mediated hypertrophy and mechanical stretch up-regulate expression of the long form of leptin receptor (ob-Rb) in rat cardiac myocytes
-
23270329
-
Matsui H, Yokoyama T, Tanaka C, Sunaga H, Koitabashi N, Takizawa T, et al. Pressure mediated hypertrophy and mechanical stretch up-regulate expression of the long form of leptin receptor (ob-Rb) in rat cardiac myocytes. BMC Cell Biol (2012) 13:37.10.1186/1471-2121-13-3723270329
-
(2012)
BMC Cell Biol
, vol.13
, pp. 37
-
-
Matsui, H.1
Yokoyama, T.2
Tanaka, C.3
Sunaga, H.4
Koitabashi, N.5
Takizawa, T.6
-
17
-
-
79961031623
-
H11 kinase/heat shock protein 22 deletion impairs both nuclear and mitochondrial functions of STAT3 and accelerates the transition into heart failure on cardiac overload
-
21747053
-
Qiu H, Lizano P, Laure L, Sui X, Rashed E, Park JY, et al. H11 kinase/heat shock protein 22 deletion impairs both nuclear and mitochondrial functions of STAT3 and accelerates the transition into heart failure on cardiac overload. Circulation (2011) 124:406–15.10.1161/CIRCULATIONAHA.110.01384721747053
-
(2011)
Circulation
, vol.124
, pp. 406-415
-
-
Qiu, H.1
Lizano, P.2
Laure, L.3
Sui, X.4
Rashed, E.5
Park, J.Y.6
-
18
-
-
4544384693
-
Activation of distinct signal transduction pathways in hypertrophied hearts by pressure and volume overload
-
15309410
-
Miyamoto T, Takeishi Y, Takahashi H, Shishido T, Arimoto T, Tomoike H, et al. Activation of distinct signal transduction pathways in hypertrophied hearts by pressure and volume overload. Basic Res Cardiol (2004) 99:328–37.10.1007/s00395-004-0482-715309410
-
(2004)
Basic Res Cardiol
, vol.99
, pp. 328-337
-
-
Miyamoto, T.1
Takeishi, Y.2
Takahashi, H.3
Shishido, T.4
Arimoto, T.5
Tomoike, H.6
-
19
-
-
0035933775
-
gp130 plays a critical role in pressure overload-induced cardiac hypertrophy
-
11262406
-
Uozumi H, Hiroi Y, Zou Y, Takimoto E, Toko H, Niu P, et al. gp130 plays a critical role in pressure overload-induced cardiac hypertrophy. J Biol Chem (2001) 276:23115–9.10.1074/jbc.M10081420011262406
-
(2001)
J Biol Chem
, vol.276
, pp. 23115-23119
-
-
Uozumi, H.1
Hiroi, Y.2
Zou, Y.3
Takimoto, E.4
Toko, H.5
Niu, P.6
-
20
-
-
13044255533
-
Involvement of gp130-mediated signaling in pressure overload-induced activation of the JAK/STAT pathway in rodent heart
-
10442402
-
Pan J, Fukuda K, Kodama H, Sano M, Takahashi T, Makino S, et al. Involvement of gp130-mediated signaling in pressure overload-induced activation of the JAK/STAT pathway in rodent heart. Heart Vessels (1998) 13:199–208.10.1007/BF0174504510442402
-
(1998)
Heart Vessels
, vol.13
, pp. 199-208
-
-
Pan, J.1
Fukuda, K.2
Kodama, H.3
Sano, M.4
Takahashi, T.5
Makino, S.6
-
21
-
-
0033612183
-
Mechanical stretch activates the JAK/STAT pathway in rat cardiomyocytes
-
10347087
-
Pan J, Fukuda K, Saito M, Matsuzaki J, Kodama H, Sano M, et al. Mechanical stretch activates the JAK/STAT pathway in rat cardiomyocytes. Circ Res (1999) 84:1127–36.10.1161/01.RES.84.10.112710347087
-
(1999)
Circ Res
, vol.84
, pp. 1127-1136
-
-
Pan, J.1
Fukuda, K.2
Saito, M.3
Matsuzaki, J.4
Kodama, H.5
Sano, M.6
-
22
-
-
0030765570
-
Role of angiotensin II in activation of the JAK/STAT pathway induced by acute pressure overload in the rat heart
-
9314843
-
Pan J, Fukuda K, Kodama H, Makino S, Takahashi T, Sano M, et al. Role of angiotensin II in activation of the JAK/STAT pathway induced by acute pressure overload in the rat heart. Circ Res (1997) 81:611–7.10.1161/01.RES.81.4.6119314843
-
(1997)
Circ Res
, vol.81
, pp. 611-617
-
-
Pan, J.1
Fukuda, K.2
Kodama, H.3
Makino, S.4
Takahashi, T.5
Sano, M.6
-
23
-
-
0036852779
-
Interplay between the cardiac renin angiotensin system and JAK-STAT signaling: role in cardiac hypertrophy, ischemia/reperfusion dysfunction, and heart failure
-
12431443
-
Booz GW, Day JN, Baker KM. Interplay between the cardiac renin angiotensin system and JAK-STAT signaling: role in cardiac hypertrophy, ischemia/reperfusion dysfunction, and heart failure. J Mol Cell Cardiol (2002) 34:1443–53.10.1006/jmcc.2002.207612431443
-
(2002)
J Mol Cell Cardiol
, vol.34
, pp. 1443-1453
-
-
Booz, G.W.1
Day, J.N.2
Baker, K.M.3
-
24
-
-
0034703035
-
Interleukin-6 family of cytokines mediate angiotensin II-induced cardiac hypertrophy in rodent cardiomyocytes
-
10843995
-
Sano M, Fukuda K, Kodama H, Pan J, Saito M, Matsuzaki J, et al. Interleukin-6 family of cytokines mediate angiotensin II-induced cardiac hypertrophy in rodent cardiomyocytes. J Biol Chem (2000) 275:29717–23.10.1074/jbc.M00312820010843995
-
(2000)
J Biol Chem
, vol.275
, pp. 29717-29723
-
-
Sano, M.1
Fukuda, K.2
Kodama, H.3
Pan, J.4
Saito, M.5
Matsuzaki, J.6
-
25
-
-
38349138319
-
Angiotensin II activates signal transducer and activators of transcription 3 via Rac1 in atrial myocytes and fibroblasts: implication for the therapeutic effect of statin in atrial structural remodeling
-
18172037
-
Tsai CT, Lai LP, Kuo KT, Hwang JJ, Hsieh CS, Hsu KL, et al. Angiotensin II activates signal transducer and activators of transcription 3 via Rac1 in atrial myocytes and fibroblasts: implication for the therapeutic effect of statin in atrial structural remodeling. Circulation (2008) 117:344–55.10.1161/CIRCULATIONAHA.107.69534618172037
-
(2008)
Circulation
, vol.117
, pp. 344-355
-
-
Tsai, C.T.1
Lai, L.P.2
Kuo, K.T.3
Hwang, J.J.4
Hsieh, C.S.5
Hsu, K.L.6
-
26
-
-
84878911382
-
Role of STAT3 in angiotensin II-induced hypertension and cardiac remodeling revealed by mice lacking STAT3 serine 727 phosphorylation
-
23364341
-
Zouein FA, Zgheib C, Hamza S, Fuseler JW, Hall JE, Soljancic A, et al. Role of STAT3 in angiotensin II-induced hypertension and cardiac remodeling revealed by mice lacking STAT3 serine 727 phosphorylation. Hypertens Res (2013) 36:496–503.10.1038/hr.2012.22323364341
-
(2013)
Hypertens Res
, vol.36
, pp. 496-503
-
-
Zouein, F.A.1
Zgheib, C.2
Hamza, S.3
Fuseler, J.W.4
Hall, J.E.5
Soljancic, A.6
-
27
-
-
77958471611
-
Disruption of protein arginine N-methyltransferase 2 regulates leptin signaling and produces leanness in vivo through loss of STAT3 methylation
-
20798359
-
Iwasaki H, Kovacic JC, Olive M, Beers JK, Yoshimoto T, Crook MF, et al. Disruption of protein arginine N-methyltransferase 2 regulates leptin signaling and produces leanness in vivo through loss of STAT3 methylation. Circ Res (2010) 107:992–1001.10.1161/CIRCRESAHA.110.22532620798359
-
(2010)
Circ Res
, vol.107
, pp. 992-1001
-
-
Iwasaki, H.1
Kovacic, J.C.2
Olive, M.3
Beers, J.K.4
Yoshimoto, T.5
Crook, M.F.6
-
28
-
-
84961290058
-
STAT3-driven transcription depends upon the dimethylation of K49 by EZH2
-
25767098
-
Dasgupta M, Dermawan JK, Willard B, Stark GR. STAT3-driven transcription depends upon the dimethylation of K49 by EZH2. Proc Natl Acad Sci U S A (2015) 112:3985–90.10.1073/pnas.150315211225767098
-
(2015)
Proc Natl Acad Sci U S A
, vol.112
, pp. 3985-3990
-
-
Dasgupta, M.1
Dermawan, J.K.2
Willard, B.3
Stark, G.R.4
-
29
-
-
27744499936
-
2-terminal acetylation is activated by the hepatic acute-phase response and required for IL-6 induction of angiotensinogen
-
16285960
-
2-terminal acetylation is activated by the hepatic acute-phase response and required for IL-6 induction of angiotensinogen. Gastroenterology (2005) 129:1616–32.10.1053/j.gastro.2005.07.05516285960
-
(2005)
Gastroenterology
, vol.129
, pp. 1616-1632
-
-
Ray, S.1
Boldogh, I.2
Brasier, A.R.3
-
30
-
-
57649155188
-
2-terminal domain stabilizes enhanceosome assembly by interacting with the p300 bromodomain
-
18782771
-
2-terminal domain stabilizes enhanceosome assembly by interacting with the p300 bromodomain. J Biol Chem (2008) 283:30725–34.10.1074/jbc.M80594120018782771
-
(2008)
J Biol Chem
, vol.283
, pp. 30725-30734
-
-
Hou, T.1
Ray, S.2
Lee, C.3
Brasier, A.R.4
-
31
-
-
48349105443
-
Requirement of histone deacetylase1 (HDAC1) in signal transducer and activator of transcription 3 (STAT3) nucleocytoplasmic distribution
-
18611949
-
Ray S, Lee C, Hou T, Boldogh I, Brasier AR. Requirement of histone deacetylase1 (HDAC1) in signal transducer and activator of transcription 3 (STAT3) nucleocytoplasmic distribution. Nucleic Acids Res (2008) 36:4510–20.10.1093/nar/gkn41918611949
-
(2008)
Nucleic Acids Res
, vol.36
, pp. 4510-4520
-
-
Ray, S.1
Lee, C.2
Hou, T.3
Boldogh, I.4
Brasier, A.R.5
-
32
-
-
84864327504
-
The Sin3a repressor complex is a master regulator of STAT transcriptional activity
-
22783022
-
Icardi L, Mori R, Gesellchen V, Eyckerman S, De Cauwer L, Verhelst J, et al. The Sin3a repressor complex is a master regulator of STAT transcriptional activity. Proc Natl Acad Sci U S A (2012) 109:12058–63.10.1073/pnas.120645810922783022
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 12058-12063
-
-
Icardi, L.1
Mori, R.2
Gesellchen, V.3
Eyckerman, S.4
De Cauwer, L.5
Verhelst, J.6
-
34
-
-
78650717706
-
Reversible methylation of promoter-bound STAT3 by histone-modifying enzymes
-
21098664
-
Yang J, Huang J, Dasgupta M, Sears N, Miyagi M, Wang B, et al. Reversible methylation of promoter-bound STAT3 by histone-modifying enzymes. Proc Natl Acad Sci U S A (2010) 107:21499–504.10.1073/pnas.101614710721098664
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 21499-21504
-
-
Yang, J.1
Huang, J.2
Dasgupta, M.3
Sears, N.4
Miyagi, M.5
Wang, B.6
-
35
-
-
84879000598
-
Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells
-
23684459
-
Kim E, Kim M, Woo DH, Shin Y, Shin J, Chang N, et al. Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. Cancer Cell (2013) 23:839–52.10.1016/j.ccr.2013.04.00823684459
-
(2013)
Cancer Cell
, vol.23
, pp. 839-852
-
-
Kim, E.1
Kim, M.2
Woo, D.H.3
Shin, Y.4
Shin, J.5
Chang, N.6
-
36
-
-
84900403543
-
STAT3 regulation by S-nitrosylation: implication for inflammatory disease
-
24063605
-
Kim J, Won JS, Singh AK, Sharma AK, Singh I. STAT3 regulation by S-nitrosylation: implication for inflammatory disease. Antioxid Redox Signal (2014) 20:2514–27.10.1089/ars.2013.522324063605
-
(2014)
Antioxid Redox Signal
, vol.20
, pp. 2514-2527
-
-
Kim, J.1
Won, J.S.2
Singh, A.K.3
Sharma, A.K.4
Singh, I.5
-
37
-
-
64049109876
-
STAT3 inhibition of gluconeogenesis is downregulated by SirT1
-
19295512
-
Nie Y, Erion DM, Yuan Z, Dietrich M, Shulman GI, Horvath TL, et al. STAT3 inhibition of gluconeogenesis is downregulated by SirT1. Nat Cell Biol (2009) 11:492–500.10.1038/ncb185719295512
-
(2009)
Nat Cell Biol
, vol.11
, pp. 492-500
-
-
Nie, Y.1
Erion, D.M.2
Yuan, Z.3
Dietrich, M.4
Shulman, G.I.5
Horvath, T.L.6
-
38
-
-
0036217995
-
Angiotensinogen gene expression is dependent on signal transducer and activator of transcription 3-mediated p300/cAMP response element binding protein-binding protein coactivator recruitment and histone acetyltransferase activity
-
11923478
-
Ray S, Sherman CT, Lu M, Brasier AR. Angiotensinogen gene expression is dependent on signal transducer and activator of transcription 3-mediated p300/cAMP response element binding protein-binding protein coactivator recruitment and histone acetyltransferase activity. Mol Endocrinol (2002) 16:824–36.10.1210/mend.16.4.081111923478
-
(2002)
Mol Endocrinol
, vol.16
, pp. 824-836
-
-
Ray, S.1
Sherman, C.T.2
Lu, M.3
Brasier, A.R.4
-
39
-
-
15744385061
-
Activation of Stat3 sequence-specific DNA binding and transcription by p300/CREB-binding protein-mediated acetylation
-
15649887
-
Wang R, Cherukuri P, Luo J. Activation of Stat3 sequence-specific DNA binding and transcription by p300/CREB-binding protein-mediated acetylation. J Biol Chem (2005) 280:11528–34.10.1074/jbc.M41393020015649887
-
(2005)
J Biol Chem
, vol.280
, pp. 11528-11534
-
-
Wang, R.1
Cherukuri, P.2
Luo, J.3
-
40
-
-
84861215508
-
Acetylated STAT3 is crucial for methylation of tumor-suppressor gene promoters and inhibition by resveratrol results in demethylation
-
22547799
-
Lee H, Zhang P, Herrmann A, Yang C, Xin H, Wang Z, et al. Acetylated STAT3 is crucial for methylation of tumor-suppressor gene promoters and inhibition by resveratrol results in demethylation. Proc Natl Acad Sci U S A (2012) 109:7765–9.10.1073/pnas.120513210922547799
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 7765-7769
-
-
Lee, H.1
Zhang, P.2
Herrmann, A.3
Yang, C.4
Xin, H.5
Wang, Z.6
-
41
-
-
84908364682
-
The STAT3-DNMT1 connection
-
24058781
-
Thomas NS. The STAT3-DNMT1 connection. JAKSTAT (2012) 1:257–60.10.4161/jkst.2243624058781
-
(2012)
JAKSTAT
, vol.1
, pp. 257-260
-
-
Thomas, N.S.1
-
42
-
-
84908577138
-
Critical role for lysine 685 in gene expression mediated by transcription factor unphosphorylated STAT3
-
25217633
-
Dasgupta M, Unal H, Willard B, Yang J, Karnik SS, Stark GR. Critical role for lysine 685 in gene expression mediated by transcription factor unphosphorylated STAT3. J Biol Chem (2014) 289:30763–71.10.1074/jbc.M114.60389425217633
-
(2014)
J Biol Chem
, vol.289
, pp. 30763-30771
-
-
Dasgupta, M.1
Unal, H.2
Willard, B.3
Yang, J.4
Karnik, S.S.5
Stark, G.R.6
-
43
-
-
84899151739
-
Signal integration and gene induction by a functionally distinct STAT3 phosphoform
-
24615012
-
Waitkus MS, Chandrasekharan UM, Willard B, Tee TL, Hsieh JK, Przybycin CG, et al. Signal integration and gene induction by a functionally distinct STAT3 phosphoform. Mol Cell Biol (2014) 34:1800–11.10.1128/MCB.00034-1424615012
-
(2014)
Mol Cell Biol
, vol.34
, pp. 1800-1811
-
-
Waitkus, M.S.1
Chandrasekharan, U.M.2
Willard, B.3
Tee, T.L.4
Hsieh, J.K.5
Przybycin, C.G.6
-
44
-
-
0035917876
-
Ser727-dependent transcriptional activation by association of p300 with STAT3 upon IL-6 stimulation
-
11322950
-
Schuringa JJ, Schepers H, Vellenga E, Kruijer W. Ser727-dependent transcriptional activation by association of p300 with STAT3 upon IL-6 stimulation. FEBS Lett (2001) 495:71–6.10.1016/S0014-5793(01)02354-711322950
-
(2001)
FEBS Lett
, vol.495
, pp. 71-76
-
-
Schuringa, J.J.1
Schepers, H.2
Vellenga, E.3
Kruijer, W.4
-
45
-
-
84874066734
-
The import of the transcription factor STAT3 into mitochondria depends on GRIM-19, a component of the electron transport chain
-
23271731
-
Tammineni P, Anugula C, Mohammed F, Anjaneyulu M, Larner AC, Sepuri NB. The import of the transcription factor STAT3 into mitochondria depends on GRIM-19, a component of the electron transport chain. J Biol Chem (2013) 288:4723–32.10.1074/jbc.M112.37898423271731
-
(2013)
J Biol Chem
, vol.288
, pp. 4723-4732
-
-
Tammineni, P.1
Anugula, C.2
Mohammed, F.3
Anjaneyulu, M.4
Larner, A.C.5
Sepuri, N.B.6
-
46
-
-
59849101586
-
Function of mitochondrial Stat3 in cellular respiration
-
Wegrzyn J, Potla R, Chwae YJ, Sepuri NB, Zhang Q, Koeck T, et al. Function of mitochondrial Stat3 in cellular respiration. Science (2009) 323:793–7.10.1126/science.1164551
-
(2009)
Science
, vol.323
, pp. 793-797
-
-
Wegrzyn, J.1
Potla, R.2
Chwae, Y.J.3
Sepuri, N.B.4
Zhang, Q.5
Koeck, T.6
-
47
-
-
84896691813
-
The MEK-ERK pathway is necessary for serine phosphorylation of mitochondrial STAT3 and Ras-mediated transformation
-
24312439
-
Gough DJ, Koetz L, Levy DE. The MEK-ERK pathway is necessary for serine phosphorylation of mitochondrial STAT3 and Ras-mediated transformation. PLoS One (2013) 8:e83395.10.1371/journal.pone.008339524312439
-
(2013)
PLoS One
, vol.8
, pp. e83395
-
-
Gough, D.J.1
Koetz, L.2
Levy, D.E.3
-
48
-
-
84886678359
-
Mitochondrial localized Stat3 promotes breast cancer growth via phosphorylation of serine 727
-
24019511
-
Zhang Q, Raje V, Yakovlev VA, Yacoub A, Szczepanek K, Meier J, et al. Mitochondrial localized Stat3 promotes breast cancer growth via phosphorylation of serine 727. J Biol Chem (2013) 288:31280–8.10.1074/jbc.M113.50505724019511
-
(2013)
J Biol Chem
, vol.288
, pp. 31280-31288
-
-
Zhang, Q.1
Raje, V.2
Yakovlev, V.A.3
Yacoub, A.4
Szczepanek, K.5
Meier, J.6
-
49
-
-
0037258756
-
Angiotensin II effects on STAT3 phosphorylation in cardiomyocytes: evidence for Erk-dependent Tyr705 dephosphorylation
-
12494267
-
Booz GW, Day JN, Baker KM. Angiotensin II effects on STAT3 phosphorylation in cardiomyocytes: evidence for Erk-dependent Tyr705 dephosphorylation. Basic Res Cardiol (2003) 98:33–8.10.1007/s00395-003-0387-x12494267
-
(2003)
Basic Res Cardiol
, vol.98
, pp. 33-38
-
-
Booz, G.W.1
Day, J.N.2
Baker, K.M.3
-
50
-
-
84906316130
-
Cytokine-induced slowing of STAT3 nuclear import; faster basal trafficking of the STAT3β isoform
-
24903907
-
Ng IH, Bogoyevitch MA, Jans DA. Cytokine-induced slowing of STAT3 nuclear import; faster basal trafficking of the STAT3β isoform. Traffic (2014) 15:946–60.10.1111/tra.1218124903907
-
(2014)
Traffic
, vol.15
, pp. 946-960
-
-
Ng, I.H.1
Bogoyevitch, M.A.2
Jans, D.A.3
-
51
-
-
0042925385
-
The cell death regulator GRIM-19 is an inhibitor of signal transducer and activator of transcription 3
-
12867595
-
Zhang J, Yang J, Roy SK, Tininini S, Hu J, Bromberg JF, et al. The cell death regulator GRIM-19 is an inhibitor of signal transducer and activator of transcription 3. Proc Natl Acad Sci U S A (2003) 100:9342–7.10.1073/pnas.163351610012867595
-
(2003)
Proc Natl Acad Sci U S A
, vol.100
, pp. 9342-9347
-
-
Zhang, J.1
Yang, J.2
Roy, S.K.3
Tininini, S.4
Hu, J.5
Bromberg, J.F.6
-
52
-
-
13744255376
-
Cell signaling. Stat acetylation – a key facet of cytokine signaling?
-
O’Shea JJ, Kanno Y, Chen X, Levy DE. Cell signaling. Stat acetylation – a key facet of cytokine signaling? Science (2005) 307:217–8.10.1126/science.1108164
-
(2005)
Science
, vol.307
, pp. 217-218
-
-
O’Shea, J.J.1
Kanno, Y.2
Chen, X.3
Levy, D.E.4
-
53
-
-
79952538100
-
Lysine methylation of promoter-bound transcription factors and relevance to cancer
-
21151202
-
Stark GR, Wang Y, Lu T. Lysine methylation of promoter-bound transcription factors and relevance to cancer. Cell Res (2011) 21:375–80.10.1038/cr.2010.17421151202
-
(2011)
Cell Res
, vol.21
, pp. 375-380
-
-
Stark, G.R.1
Wang, Y.2
Lu, T.3
-
54
-
-
20644451194
-
Are STATS arginine-methylated?
-
15826948
-
Komyod W, Bauer UM, Heinrich PC, Haan S, Behrmann I. Are STATS arginine-methylated? J Biol Chem (2005) 280:21700–5.10.1074/jbc.C40060620015826948
-
(2005)
J Biol Chem
, vol.280
, pp. 21700-21705
-
-
Komyod, W.1
Bauer, U.M.2
Heinrich, P.C.3
Haan, S.4
Behrmann, I.5
-
55
-
-
67649886861
-
S-glutathionylation impairs signal transducer and activator of transcription 3 activation and signaling
-
18988672
-
Xie Y, Kole S, Precht P, Pazin MJ, Bernier M. S-glutathionylation impairs signal transducer and activator of transcription 3 activation and signaling. Endocrinology (2009) 150:1122–31.10.1210/en.2008-124118988672
-
(2009)
Endocrinology
, vol.150
, pp. 1122-1131
-
-
Xie, Y.1
Kole, S.2
Precht, P.3
Pazin, M.J.4
Bernier, M.5
-
56
-
-
84906214869
-
S-Glutathionylation at Cys328 and Cys542 impairs STAT3 phosphorylation
-
24941337
-
Butturini E, Darra E, Chiavegato G, Cellini B, Cozzolino F, Monti M, et al. S-Glutathionylation at Cys328 and Cys542 impairs STAT3 phosphorylation. ACS Chem Biol (2014) 9:1885–93.10.1021/cb500407d24941337
-
(2014)
ACS Chem Biol
, vol.9
, pp. 1885-1893
-
-
Butturini, E.1
Darra, E.2
Chiavegato, G.3
Cellini, B.4
Cozzolino, F.5
Monti, M.6
-
57
-
-
4444375662
-
A STAT3 dimer formed by inter-chain disulphide bridging during oxidative stress
-
15336564
-
Li L, Shaw PE. A STAT3 dimer formed by inter-chain disulphide bridging during oxidative stress. Biochem Biophys Res Commun (2004) 322:1005–11.10.1016/j.bbrc.2004.08.01415336564
-
(2004)
Biochem Biophys Res Commun
, vol.322
, pp. 1005-1011
-
-
Li, L.1
Shaw, P.E.2
-
59
-
-
78049300452
-
Modulation of gene expression and tumor cell growth by redox modification of STAT3
-
20807804
-
Li L, Cheung SH, Evans EL, Shaw PE. Modulation of gene expression and tumor cell growth by redox modification of STAT3. Cancer Res (2010) 70:8222–32.10.1158/0008-5472.CAN-10-089420807804
-
(2010)
Cancer Res
, vol.70
, pp. 8222-8232
-
-
Li, L.1
Cheung, S.H.2
Evans, E.L.3
Shaw, P.E.4
-
60
-
-
84866522166
-
Depletion of cellular glutathione modulates LIF-induced JAK1-STAT3 signaling in cardiac myocytes
-
22939972
-
Kurdi M, Sivakumaran V, Duhe RJ, Aon MA, Paolocci N, Booz GW. Depletion of cellular glutathione modulates LIF-induced JAK1-STAT3 signaling in cardiac myocytes. Int J Biochem Cell Biol (2012) 44:2106–15.10.1016/j.biocel.2012.08.01622939972
-
(2012)
Int J Biochem Cell Biol
, vol.44
, pp. 2106-2115
-
-
Kurdi, M.1
Sivakumaran, V.2
Duhe, R.J.3
Aon, M.A.4
Paolocci, N.5
Booz, G.W.6
-
61
-
-
84865053350
-
Acyloxy nitroso compounds inhibit LIF signaling in endothelial cells and cardiac myocytes: evidence that STAT3 signaling is redox-sensitive
-
22905257
-
Zgheib C, Kurdi M, Zouein FA, Gunter BW, Stanley BA, Zgheib J, et al. Acyloxy nitroso compounds inhibit LIF signaling in endothelial cells and cardiac myocytes: evidence that STAT3 signaling is redox-sensitive. PLoS One (2012) 7:e43313.10.1371/journal.pone.004331322905257
-
(2012)
PLoS One
, vol.7
, pp. e43313
-
-
Zgheib, C.1
Kurdi, M.2
Zouein, F.A.3
Gunter, B.W.4
Stanley, B.A.5
Zgheib, J.6
-
62
-
-
84878075520
-
LIF and the heart: just another brick in the wall?
-
23661360
-
Zouein FA, Kurdi M, Booz GW. LIF and the heart: just another brick in the wall? Eur Cytokine Netw (2013) 24:11–9.10.1684/ecn.2013.033523661360
-
(2013)
Eur Cytokine Netw
, vol.24
, pp. 11-19
-
-
Zouein, F.A.1
Kurdi, M.2
Booz, G.W.3
-
63
-
-
4043082106
-
Genetic depletion of cardiac myocyte STAT-3 abolishes classical preconditioning
-
15306216
-
Smith RM, Suleman N, Lacerda L, Opie LH, Akira S, Chien KR, et al. Genetic depletion of cardiac myocyte STAT-3 abolishes classical preconditioning. Cardiovasc Res (2004) 63:611–6.10.1016/j.cardiores.2004.06.01915306216
-
(2004)
Cardiovasc Res
, vol.63
, pp. 611-616
-
-
Smith, R.M.1
Suleman, N.2
Lacerda, L.3
Opie, L.H.4
Akira, S.5
Chien, K.R.6
-
64
-
-
3342889421
-
Signal transducer and activator of transcription 3 is required for myocardial capillary growth, control of interstitial matrix deposition, and heart protection from ischemic injury
-
15192020
-
Hilfiker-Kleiner D, Hilfiker A, Fuchs M, Kaminski K, Schaefer A, Schieffer B, et al. Signal transducer and activator of transcription 3 is required for myocardial capillary growth, control of interstitial matrix deposition, and heart protection from ischemic injury. Circ Res (2004) 95:187–95.10.1161/01.RES.0000134921.50377.6115192020
-
(2004)
Circ Res
, vol.95
, pp. 187-195
-
-
Hilfiker-Kleiner, D.1
Hilfiker, A.2
Fuchs, M.3
Kaminski, K.4
Schaefer, A.5
Schieffer, B.6
-
65
-
-
23744438811
-
STAT3-mediated activation of myocardial capillary growth
-
16099380
-
Hilfiker-Kleiner D, Limbourg A, Drexler H. STAT3-mediated activation of myocardial capillary growth. Trends Cardiovasc Med (2005) 15:152–7.10.1016/j.tcm.2005.05.00216099380
-
(2005)
Trends Cardiovasc Med
, vol.15
, pp. 152-157
-
-
Hilfiker-Kleiner, D.1
Limbourg, A.2
Drexler, H.3
-
66
-
-
0037155205
-
Cardiac-specific activation of signal transducer and activator of transcription 3 promotes vascular formation in the heart
-
11744720
-
Osugi T, Oshima Y, Fujio Y, Funamoto M, Yamashita A, Negoro S, et al. Cardiac-specific activation of signal transducer and activator of transcription 3 promotes vascular formation in the heart. J Biol Chem (2002) 277:6676–81.10.1074/jbc.M10824620011744720
-
(2002)
J Biol Chem
, vol.277
, pp. 6676-6681
-
-
Osugi, T.1
Oshima, Y.2
Fujio, Y.3
Funamoto, M.4
Yamashita, A.5
Negoro, S.6
-
67
-
-
0034616028
-
Signal transducer and activator of transcription 3 is required for glycoprotein 130-mediated induction of vascular endothelial growth factor in cardiac myocytes
-
10744750
-
Funamoto M, Fujio Y, Kunisada K, Negoro S, Tone E, Osugi T, et al. Signal transducer and activator of transcription 3 is required for glycoprotein 130-mediated induction of vascular endothelial growth factor in cardiac myocytes. J Biol Chem (2000) 275:10561–6.10.1074/jbc.275.14.1056110744750
-
(2000)
J Biol Chem
, vol.275
, pp. 10561-10566
-
-
Funamoto, M.1
Fujio, Y.2
Kunisada, K.3
Negoro, S.4
Tone, E.5
Osugi, T.6
-
68
-
-
0035964305
-
Activation of signal transducer and activator of transcription 3 protects cardiomyocytes from hypoxia/reoxygenation-induced oxidative stress through the upregulation of manganese superoxide dismutase
-
11524388
-
Negoro S, Kunisada K, Fujio Y, Funamoto M, Darville MI, Eizirik DL, et al. Activation of signal transducer and activator of transcription 3 protects cardiomyocytes from hypoxia/reoxygenation-induced oxidative stress through the upregulation of manganese superoxide dismutase. Circulation (2001) 104:979–81.10.1161/hc3401.09594711524388
-
(2001)
Circulation
, vol.104
, pp. 979-981
-
-
Negoro, S.1
Kunisada, K.2
Fujio, Y.3
Funamoto, M.4
Darville, M.I.5
Eizirik, D.L.6
-
69
-
-
79952070542
-
A murine model of inducible, cardiac-specific deletion of STAT3: its use to determine the role of STAT3 in the upregulation of cardioprotective proteins by ischemic preconditioning
-
21223971
-
Bolli R, Stein AB, Guo Y, Wang OL, Rokosh G, Dawn B, et al. A murine model of inducible, cardiac-specific deletion of STAT3: its use to determine the role of STAT3 in the upregulation of cardioprotective proteins by ischemic preconditioning. J Mol Cell Cardiol (2011) 50:589–97.10.1016/j.yjmcc.2011.01.00221223971
-
(2011)
J Mol Cell Cardiol
, vol.50
, pp. 589-597
-
-
Bolli, R.1
Stein, A.B.2
Guo, Y.3
Wang, O.L.4
Rokosh, G.5
Dawn, B.6
-
70
-
-
84938564607
-
Cardiac-specific ablation of the STAT3 gene in the subacute phase of myocardial infarction exacerbated cardiac remodeling
-
26055795
-
Enomoto D, Obana M, Miyawaki A, Maeda M, Nakayama H, Fujio Y. Cardiac-specific ablation of the STAT3 gene in the subacute phase of myocardial infarction exacerbated cardiac remodeling. Am J Physiol Heart Circ Physiol (2015) 309:H471–80.10.1152/ajpheart.00730.201426055795
-
(2015)
Am J Physiol Heart Circ Physiol
, vol.309
, pp. H471-H480
-
-
Enomoto, D.1
Obana, M.2
Miyawaki, A.3
Maeda, M.4
Nakayama, H.5
Fujio, Y.6
-
71
-
-
67949100572
-
Avoidance of transient cardiomyopathy in cardiomyocyte-targeted tamoxifen-induced MerCreMer gene deletion models
-
19520971
-
Koitabashi N, Bedja D, Zaiman AL, Pinto YM, Zhang M, Gabrielson KL, et al. Avoidance of transient cardiomyopathy in cardiomyocyte-targeted tamoxifen-induced MerCreMer gene deletion models. Circ Res (2009) 105:12–5.10.1161/CIRCRESAHA.109.19841619520971
-
(2009)
Circ Res
, vol.105
, pp. 12-15
-
-
Koitabashi, N.1
Bedja, D.2
Zaiman, A.L.3
Pinto, Y.M.4
Zhang, M.5
Gabrielson, K.L.6
-
72
-
-
84857341993
-
Cardiac-specific deletion of SOCS-3 prevents development of left ventricular remodeling after acute myocardial infarction
-
22361405
-
Oba T, Yasukawa H, Hoshijima M, Sasaki K, Futamata N, Fukui D, et al. Cardiac-specific deletion of SOCS-3 prevents development of left ventricular remodeling after acute myocardial infarction. J Am Coll Cardiol (2012) 59:838–52.10.1016/j.jacc.2011.10.88722361405
-
(2012)
J Am Coll Cardiol
, vol.59
, pp. 838-852
-
-
Oba, T.1
Yasukawa, H.2
Hoshijima, M.3
Sasaki, K.4
Futamata, N.5
Fukui, D.6
-
73
-
-
84930226410
-
Cardiac-specific SOCS3 deletion prevents in vivo myocardial ischemia reperfusion injury through sustained activation of cardioprotective signaling molecules
-
26010537
-
Nagata T, Yasukawa H, Kyogoku S, Oba T, Takahashi J, Nohara S, et al. Cardiac-specific SOCS3 deletion prevents in vivo myocardial ischemia reperfusion injury through sustained activation of cardioprotective signaling molecules. PLoS One (2015) 10:e0127942.10.1371/journal.pone.012794226010537
-
(2015)
PLoS One
, vol.10
, pp. e0127942
-
-
Nagata, T.1
Yasukawa, H.2
Kyogoku, S.3
Oba, T.4
Takahashi, J.5
Nohara, S.6
-
74
-
-
77954762928
-
Continuous glycoprotein-130-mediated signal transducer and activator of transcription-3 activation promotes inflammation, left ventricular rupture, and adverse outcome in subacute myocardial infarction
-
20585009
-
Hilfiker-Kleiner D, Shukla P, Klein G, Schaefer A, Stapel B, Hoch M, et al. Continuous glycoprotein-130-mediated signal transducer and activator of transcription-3 activation promotes inflammation, left ventricular rupture, and adverse outcome in subacute myocardial infarction. Circulation (2010) 122:145–55.10.1161/CIRCULATIONAHA.109.93312720585009
-
(2010)
Circulation
, vol.122
, pp. 145-155
-
-
Hilfiker-Kleiner, D.1
Shukla, P.2
Klein, G.3
Schaefer, A.4
Stapel, B.5
Hoch, M.6
-
75
-
-
84869083970
-
Differential STAT3 signaling in the heart: impact of concurrent signals and oxidative stress
-
23904970
-
Zgheib C, Zouein FA, Kurdi M, Booz GW. Differential STAT3 signaling in the heart: impact of concurrent signals and oxidative stress. JAKSTAT (2012) 1:101–10.10.4161/jkst.1977623904970
-
(2012)
JAKSTAT
, vol.1
, pp. 101-110
-
-
Zgheib, C.1
Zouein, F.A.2
Kurdi, M.3
Booz, G.W.4
-
76
-
-
84924123511
-
Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning
-
25677517
-
Heusch G. Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res (2015) 116:674–99.10.1161/CIRCRESAHA.116.30534825677517
-
(2015)
Circ Res
, vol.116
, pp. 674-699
-
-
Heusch, G.1
-
78
-
-
50249152907
-
Signal transducer and activator of transcription 3 is involved in the cardioprotective signalling pathway activated by insulin therapy at reperfusion
-
18500485
-
Fuglesteg BN, Suleman N, Tiron C, Kanhema T, Lacerda L, Andreasen TV, et al. Signal transducer and activator of transcription 3 is involved in the cardioprotective signalling pathway activated by insulin therapy at reperfusion. Basic Res Cardiol (2008) 103:444–53.10.1007/s00395-008-0728-x18500485
-
(2008)
Basic Res Cardiol
, vol.103
, pp. 444-453
-
-
Fuglesteg, B.N.1
Suleman, N.2
Tiron, C.3
Kanhema, T.4
Lacerda, L.5
Andreasen, T.V.6
-
79
-
-
84937562950
-
Across-species transfer of protection by remote ischemic preconditioning with species-specific myocardial signal transduction by reperfusion injury salvage kinase and survival activating factor enhancement pathways
-
26058828
-
Skyschally A, Gent S, Amanakis G, Schulte C, Kleinbongard P, Heusch G. Across-species transfer of protection by remote ischemic preconditioning with species-specific myocardial signal transduction by reperfusion injury salvage kinase and survival activating factor enhancement pathways. Circ Res (2015) 117:279–88.10.1161/CIRCRESAHA.117.30687826058828
-
(2015)
Circ Res
, vol.117
, pp. 279-288
-
-
Skyschally, A.1
Gent, S.2
Amanakis, G.3
Schulte, C.4
Kleinbongard, P.5
Heusch, G.6
-
80
-
-
84855341208
-
STAT5 activation and cardioprotection by remote ischemic preconditioning in humans: short communication
-
22116817
-
Heusch G, Musiolik J, Kottenberg E, Peters J, Jakob H, Thielmann M. STAT5 activation and cardioprotection by remote ischemic preconditioning in humans: short communication. Circ Res (2012) 110:111–5.10.1161/CIRCRESAHA.111.25955622116817
-
(2012)
Circ Res
, vol.110
, pp. 111-115
-
-
Heusch, G.1
Musiolik, J.2
Kottenberg, E.3
Peters, J.4
Jakob, H.5
Thielmann, M.6
-
81
-
-
84864465355
-
Interplay between SAFE and RISK pathways in sphingosine-1-phosphate-induced cardioprotection
-
22392184
-
Somers SJ, Frias M, Lacerda L, Opie LH, Lecour S. Interplay between SAFE and RISK pathways in sphingosine-1-phosphate-induced cardioprotection. Cardiovasc Drugs Ther (2012) 26:227–37.10.1007/s10557-012-6376-222392184
-
(2012)
Cardiovasc Drugs Ther
, vol.26
, pp. 227-237
-
-
Somers, S.J.1
Frias, M.2
Lacerda, L.3
Opie, L.H.4
Lecour, S.5
-
82
-
-
84862768130
-
Remote ischemic preconditioning confers late protection against myocardial ischemia-reperfusion injury in mice by upregulating interleukin-10
-
22752341
-
Cai ZP, Parajuli N, Zheng X, Becker L. Remote ischemic preconditioning confers late protection against myocardial ischemia-reperfusion injury in mice by upregulating interleukin-10. Basic Res Cardiol (2012) 107:277.10.1007/s00395-012-0277-122752341
-
(2012)
Basic Res Cardiol
, vol.107
, pp. 277
-
-
Cai, Z.P.1
Parajuli, N.2
Zheng, X.3
Becker, L.4
-
83
-
-
84938082304
-
CXCR4 attenuates cardiomyocytes mitochondrial dysfunction to resist ischaemia-reperfusion injury
-
25824297
-
Cai WF, Kang K, Huang W, Liang JL, Feng YL, Liu GS, et al. CXCR4 attenuates cardiomyocytes mitochondrial dysfunction to resist ischaemia-reperfusion injury. J Cell Mol Med (2015) 19:1825–35.10.1111/jcmm.1255425824297
-
(2015)
J Cell Mol Med
, vol.19
, pp. 1825-1835
-
-
Cai, W.F.1
Kang, K.2
Huang, W.3
Liang, J.L.4
Feng, Y.L.5
Liu, G.S.6
-
84
-
-
34249681852
-
An RNA-binding protein αCP-1 is involved in the STAT3-mediated suppression of NF-κB transcriptional activity
-
Nishinakamura H, Minoda Y, Saeki K, Koga K, Takaesu G, Onodera M, et al. An RNA-binding protein αCP-1 is involved in the STAT3-mediated suppression of NF-κB transcriptional activity. Int Immunol (2007) 19:609–19.10.1093/intimm/dxm026
-
(2007)
Int Immunol
, vol.19
, pp. 609-619
-
-
Nishinakamura, H.1
Minoda, Y.2
Saeki, K.3
Koga, K.4
Takaesu, G.5
Onodera, M.6
-
85
-
-
33644876126
-
Pharmacological preconditioning with tumor necrosis factor-alpha activates signal transducer and activator of transcription-3 at reperfusion without involving classic prosurvival kinases (Akt and extracellular signal-regulated kinase)
-
16344382
-
Lecour S, Suleman N, Deuchar GA, Somers S, Lacerda L, Huisamen B, et al. Pharmacological preconditioning with tumor necrosis factor-alpha activates signal transducer and activator of transcription-3 at reperfusion without involving classic prosurvival kinases (Akt and extracellular signal-regulated kinase). Circulation (2005) 112:3911–8.10.1161/CIRCULATIONAHA.105.58105816344382
-
(2005)
Circulation
, vol.112
, pp. 3911-3918
-
-
Lecour, S.1
Suleman, N.2
Deuchar, G.A.3
Somers, S.4
Lacerda, L.5
Huisamen, B.6
-
86
-
-
84860134497
-
The mPTP and its regulatory proteins: final common targets of signalling pathways for protection against necrosis
-
22072634
-
Miura T, Tanno M. The mPTP and its regulatory proteins: final common targets of signalling pathways for protection against necrosis. Cardiovasc Res (2012) 94:181–9.10.1093/cvr/cvr30222072634
-
(2012)
Cardiovasc Res
, vol.94
, pp. 181-189
-
-
Miura, T.1
Tanno, M.2
-
87
-
-
78649324875
-
Inhibition of permeability transition pore opening by mitochondrial STAT3 and its role in myocardial ischemia/reperfusion
-
20960209
-
Boengler K, Hilfiker-Kleiner D, Heusch G, Schulz R. Inhibition of permeability transition pore opening by mitochondrial STAT3 and its role in myocardial ischemia/reperfusion. Basic Res Cardiol (2010) 105:771–85.10.1007/s00395-010-0124-120960209
-
(2010)
Basic Res Cardiol
, vol.105
, pp. 771-785
-
-
Boengler, K.1
Hilfiker-Kleiner, D.2
Heusch, G.3
Schulz, R.4
-
88
-
-
80051943914
-
Mitochondrial-targeted signal transducer and activator of transcription 3 (STAT3) protects against ischemia-induced changes in the electron transport chain and the generation of reactive oxygen species
-
21715323
-
Szczepanek K, Chen Q, Derecka M, Salloum FN, Zhang Q, Szelag M, et al. Mitochondrial-targeted signal transducer and activator of transcription 3 (STAT3) protects against ischemia-induced changes in the electron transport chain and the generation of reactive oxygen species. J Biol Chem (2011) 286:29610–20.10.1074/jbc.M111.22620921715323
-
(2011)
J Biol Chem
, vol.286
, pp. 29610-29620
-
-
Szczepanek, K.1
Chen, Q.2
Derecka, M.3
Salloum, F.N.4
Zhang, Q.5
Szelag, M.6
-
89
-
-
81355146580
-
Mitochondrial STAT3 activation and cardioprotection by ischemic postconditioning in pigs with regional myocardial ischemia/reperfusion
-
21980124
-
Heusch G, Musiolik J, Gedik N, Skyschally A. Mitochondrial STAT3 activation and cardioprotection by ischemic postconditioning in pigs with regional myocardial ischemia/reperfusion. Circ Res (2011) 109:1302–8.10.1161/CIRCRESAHA.111.25560421980124
-
(2011)
Circ Res
, vol.109
, pp. 1302-1308
-
-
Heusch, G.1
Musiolik, J.2
Gedik, N.3
Skyschally, A.4
-
90
-
-
84861469940
-
Cardiac vulnerability to ischemia/reperfusion injury drastically increases in late pregnancy
-
22648276
-
Li J, Umar S, Iorga A, Youn JY, Wang Y, Regitz-Zagrosek V, et al. Cardiac vulnerability to ischemia/reperfusion injury drastically increases in late pregnancy. Basic Res Cardiol (2012) 107:271.10.1007/s00395-012-0271-722648276
-
(2012)
Basic Res Cardiol
, vol.107
, pp. 271
-
-
Li, J.1
Umar, S.2
Iorga, A.3
Youn, J.Y.4
Wang, Y.5
Regitz-Zagrosek, V.6
-
91
-
-
33846815521
-
A cathepsin D-cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy
-
17289576
-
Hilfiker-Kleiner D, Kaminski K, Podewski E, Bonda T, Schaefer A, Sliwa K, et al. A cathepsin D-cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy. Cell (2007) 128:589–600.10.1016/j.cell.2006.12.03617289576
-
(2007)
Cell
, vol.128
, pp. 589-600
-
-
Hilfiker-Kleiner, D.1
Kaminski, K.2
Podewski, E.3
Bonda, T.4
Schaefer, A.5
Sliwa, K.6
-
92
-
-
84901485282
-
Opposing roles of Akt and STAT3 in the protection of the maternal heart from peripartum stress
-
24448315
-
Ricke-Hoch M, Bultmann I, Stapel B, Condorelli G, Rinas U, Sliwa K, et al. Opposing roles of Akt and STAT3 in the protection of the maternal heart from peripartum stress. Cardiovasc Res (2014) 101:587–96.10.1093/cvr/cvu01024448315
-
(2014)
Cardiovasc Res
, vol.101
, pp. 587-596
-
-
Ricke-Hoch, M.1
Bultmann, I.2
Stapel, B.3
Condorelli, G.4
Rinas, U.5
Sliwa, K.6
-
93
-
-
84906047643
-
Titin gene mutations are common in families with both peripartum cardiomyopathy and dilated cardiomyopathy
-
24558114
-
van Spaendonck-Zwarts KY, Posafalvi A, van den Berg MP, Hilfiker-Kleiner D, Bollen IA, Sliwa K, et al. Titin gene mutations are common in families with both peripartum cardiomyopathy and dilated cardiomyopathy. Eur Heart J (2014) 35:2165–73.10.1093/eurheartj/ehu05024558114
-
(2014)
Eur Heart J
, vol.35
, pp. 2165-2173
-
-
van Spaendonck-Zwarts, K.Y.1
Posafalvi, A.2
van den Berg, M.P.3
Hilfiker-Kleiner, D.4
Bollen, I.A.5
Sliwa, K.6
-
94
-
-
79957523514
-
Signal transducer and activator of transcription 3-mediated regulation of miR-199a-5p links cardiomyocyte and endothelial cell function in the heart: a key role for ubiquitin-conjugating enzymes
-
20965886
-
Haghikia A, Missol-Kolka E, Tsikas D, Venturini L, Brundiers S, Castoldi M, et al. Signal transducer and activator of transcription 3-mediated regulation of miR-199a-5p links cardiomyocyte and endothelial cell function in the heart: a key role for ubiquitin-conjugating enzymes. Eur Heart J (2011) 32:1287–97.10.1093/eurheartj/ehq36920965886
-
(2011)
Eur Heart J
, vol.32
, pp. 1287-1297
-
-
Haghikia, A.1
Missol-Kolka, E.2
Tsikas, D.3
Venturini, L.4
Brundiers, S.5
Castoldi, M.6
-
95
-
-
84864277489
-
Interleukin-10 treatment attenuates pressure overload-induced hypertrophic remodeling and improves heart function via signal transducers and activators of transcription 3-dependent inhibition of nuclear factor-κB
-
22705886
-
Verma SK, Krishnamurthy P, Barefield D, Singh N, Gupta R, Lambers E, et al. Interleukin-10 treatment attenuates pressure overload-induced hypertrophic remodeling and improves heart function via signal transducers and activators of transcription 3-dependent inhibition of nuclear factor-κB. Circulation (2012) 126:418–29.10.1161/CIRCULATIONAHA.112.11218522705886
-
(2012)
Circulation
, vol.126
, pp. 418-429
-
-
Verma, S.K.1
Krishnamurthy, P.2
Barefield, D.3
Singh, N.4
Gupta, R.5
Lambers, E.6
-
96
-
-
78651481470
-
The functions of signal transducers and activators of transcriptions 1 and 3 as cytokine-inducible proteins
-
21166594
-
Cheon H, Yang J, Stark GR. The functions of signal transducers and activators of transcriptions 1 and 3 as cytokine-inducible proteins. J Interferon Cytokine Res (2011) 31:33–40.10.1089/jir.2010.010021166594
-
(2011)
J Interferon Cytokine Res
, vol.31
, pp. 33-40
-
-
Cheon, H.1
Yang, J.2
Stark, G.R.3
-
97
-
-
72049117143
-
Role of nuclear unphosphorylated STAT3 in angiotensin II type 1 receptor-induced cardiac hypertrophy
-
19696070
-
Yue H, Li W, Desnoyer R, Karnik SS. Role of nuclear unphosphorylated STAT3 in angiotensin II type 1 receptor-induced cardiac hypertrophy. Cardiovasc Res (2010) 85:90–9.10.1093/cvr/cvp28519696070
-
(2010)
Cardiovasc Res
, vol.85
, pp. 90-99
-
-
Yue, H.1
Li, W.2
Desnoyer, R.3
Karnik, S.S.4
-
98
-
-
34249868449
-
Unphosphorylated STAT3 accumulates in response to IL-6 and activates transcription by binding to NFκB
-
Yang J, Liao X, Agarwal MK, Barnes L, Auron PE, Stark GR. Unphosphorylated STAT3 accumulates in response to IL-6 and activates transcription by binding to NFκB. Genes Dev (2007) 21:1396–408.10.1101/gad.1553707
-
(2007)
Genes Dev
, vol.21
, pp. 1396-1408
-
-
Yang, J.1
Liao, X.2
Agarwal, M.K.3
Barnes, L.4
Auron, P.E.5
Stark, G.R.6
-
99
-
-
85027947959
-
New take on the role of angiotensin II in cardiac hypertrophy and fibrosis
-
Kurdi M, Booz GW. New take on the role of angiotensin II in cardiac hypertrophy and fibrosis. Hypertension (2011) 57:1034–8.10.1161/HYPERTENSIONAHA.111.172700
-
(2011)
Hypertension
, vol.57
, pp. 1034-1038
-
-
Kurdi, M.1
Booz, G.W.2
-
100
-
-
84860014863
-
Mechanisms of unphosphorylated STAT3 transcription factor binding to DNA
-
22378781
-
Timofeeva OA, Chasovskikh S, Lonskaya I, Tarasova NI, Khavrutskii L, Tarasov SG, et al. Mechanisms of unphosphorylated STAT3 transcription factor binding to DNA. J Biol Chem (2012) 287:14192–200.10.1074/jbc.M111.32389922378781
-
(2012)
J Biol Chem
, vol.287
, pp. 14192-14200
-
-
Timofeeva, O.A.1
Chasovskikh, S.2
Lonskaya, I.3
Tarasova, N.I.4
Khavrutskii, L.5
Tarasov, S.G.6
-
101
-
-
79251540845
-
Unphosphorylated STAT and heterochromatin protect genome stability
-
20847228
-
Yan SJ, Lim SJ, Shi S, Dutta P, Li WX. Unphosphorylated STAT and heterochromatin protect genome stability. FASEB J (2011) 25:232–41.10.1096/fj.10-16936720847228
-
(2011)
FASEB J
, vol.25
, pp. 232-241
-
-
Yan, S.J.1
Lim, S.J.2
Shi, S.3
Dutta, P.4
Li, W.X.5
-
102
-
-
43149084600
-
Drosophila STAT is required for directly maintaining HP1 localization and heterochromatin stability
-
18344984
-
Shi S, Larson K, Guo D, Lim SJ, Dutta P, Yan SJ, et al. Drosophila STAT is required for directly maintaining HP1 localization and heterochromatin stability. Nat Cell Biol (2008) 10:489–96.10.1038/ncb171318344984
-
(2008)
Nat Cell Biol
, vol.10
, pp. 489-496
-
-
Shi, S.1
Larson, K.2
Guo, D.3
Lim, S.J.4
Dutta, P.5
Yan, S.J.6
-
103
-
-
84904769747
-
Drosophila linker histone H1 coordinates STAT-dependent organization of heterochromatin and suppresses tumorigenesis caused by hyperactive JAK-STAT signaling
-
25177369
-
Xu N, Emelyanov AV, Fyodorov DV, Skoultchi AI. Drosophila linker histone H1 coordinates STAT-dependent organization of heterochromatin and suppresses tumorigenesis caused by hyperactive JAK-STAT signaling. Epigenetics Chromatin (2014) 7:16.10.1186/1756-8935-7-1625177369
-
(2014)
Epigenetics Chromatin
, vol.7
, pp. 16
-
-
Xu, N.1
Emelyanov, A.V.2
Fyodorov, D.V.3
Skoultchi, A.I.4
-
104
-
-
84879292795
-
Unphosphorylated STAT5A stabilizes heterochromatin and suppresses tumor growth
-
23733954
-
Hu X, Dutta P, Tsurumi A, Li J, Wang J, Land H, et al. Unphosphorylated STAT5A stabilizes heterochromatin and suppresses tumor growth. Proc Natl Acad Sci U S A (2013) 110:10213–8.10.1073/pnas.122124311023733954
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 10213-10218
-
-
Hu, X.1
Dutta, P.2
Tsurumi, A.3
Li, J.4
Wang, J.5
Land, H.6
-
105
-
-
0036055754
-
Cell type-specific and tyrosine phosphorylation-independent nuclear presence of STAT1 and STAT3
-
11740864
-
Meyer T, Gavenis K, Vinkemeier U. Cell type-specific and tyrosine phosphorylation-independent nuclear presence of STAT1 and STAT3. Exp Cell Res (2002) 272:45–55.10.1006/excr.2001.540511740864
-
(2002)
Exp Cell Res
, vol.272
, pp. 45-55
-
-
Meyer, T.1
Gavenis, K.2
Vinkemeier, U.3
-
106
-
-
20444400857
-
STAT3 nuclear import is independent of tyrosine phosphorylation and mediated by importin-α3
-
Liu L, McBride KM, Reich NC. STAT3 nuclear import is independent of tyrosine phosphorylation and mediated by importin-α3. Proc Natl Acad Sci U S A (2005) 102:8150–5.10.1073/pnas.0501643102
-
(2005)
Proc Natl Acad Sci U S A
, vol.102
, pp. 8150-8155
-
-
Liu, L.1
McBride, K.M.2
Reich, N.C.3
-
107
-
-
79956285590
-
Dynamics of the STAT3 transcription factor: nuclear import dependent on Ran and importin-β1
-
21625522
-
Cimica V, Chen HC, Iyer JK, Reich NC. Dynamics of the STAT3 transcription factor: nuclear import dependent on Ran and importin-β1. PLoS One (2011) 6:e20188.10.1371/journal.pone.002018821625522
-
(2011)
PLoS One
, vol.6
, pp. e20188
-
-
Cimica, V.1
Chen, H.C.2
Iyer, J.K.3
Reich, N.C.4
-
108
-
-
84902589832
-
STATs get their move on
-
24470978
-
Reich NC. STATs get their move on. JAKSTAT (2013) 2:e27080.10.4161/jkst.2708024470978
-
(2013)
JAKSTAT
, vol.2
, pp. e27080
-
-
Reich, N.C.1
-
109
-
-
41849116690
-
Roles of unphosphorylated STATs in signaling
-
18364677
-
Yang J, Stark GR. Roles of unphosphorylated STATs in signaling. Cell Res (2008) 18:443–51.10.1038/cr.2008.4118364677
-
(2008)
Cell Res
, vol.18
, pp. 443-451
-
-
Yang, J.1
Stark, G.R.2
-
110
-
-
16244363060
-
Extracellular signal-dependent nuclear import of STAT3 is mediated by various importin alphas
-
15809078
-
Ushijima R, Sakaguchi N, Kano A, Maruyama A, Miyamoto Y, Sekimoto T, et al. Extracellular signal-dependent nuclear import of STAT3 is mediated by various importin alphas. Biochem Biophys Res Commun (2005) 330:880–6.10.1016/j.bbrc.2005.03.06315809078
-
(2005)
Biochem Biophys Res Commun
, vol.330
, pp. 880-886
-
-
Ushijima, R.1
Sakaguchi, N.2
Kano, A.3
Maruyama, A.4
Miyamoto, Y.5
Sekimoto, T.6
-
111
-
-
33646365075
-
Regulation of Stat3 nuclear import by importin α5 and importin α7 via two different functional sequence elements
-
Ma J, Cao X. Regulation of Stat3 nuclear import by importin α5 and importin α7 via two different functional sequence elements. Cell Signal (2006) 18:1117–26.10.1016/j.cellsig.2005.06.016
-
(2006)
Cell Signal
, vol.18
, pp. 1117-1126
-
-
Ma, J.1
Cao, X.2
-
112
-
-
0042206459
-
A novel sequence in the coiled-coil domain of Stat3 essential for its nuclear translocation
-
12746441
-
Ma J, Zhang T, Novotny-Diermayr V, Tan AL, Cao X. A novel sequence in the coiled-coil domain of Stat3 essential for its nuclear translocation. J Biol Chem (2003) 278:29252–60.10.1074/jbc.M30419620012746441
-
(2003)
J Biol Chem
, vol.278
, pp. 29252-29260
-
-
Ma, J.1
Zhang, T.2
Novotny-Diermayr, V.3
Tan, A.L.4
Cao, X.5
-
113
-
-
79952777363
-
The role of the N-terminal domain in dimerization and nucleocytoplasmic shuttling of latent STAT3
-
21325026
-
Vogt M, Domoszlai T, Kleshchanok D, Lehmann S, Schmitt A, Poli V, et al. The role of the N-terminal domain in dimerization and nucleocytoplasmic shuttling of latent STAT3. J Cell Sci (2011) 124:900–9.10.1242/jcs.07252021325026
-
(2011)
J Cell Sci
, vol.124
, pp. 900-909
-
-
Vogt, M.1
Domoszlai, T.2
Kleshchanok, D.3
Lehmann, S.4
Schmitt, A.5
Poli, V.6
-
114
-
-
24644512928
-
Nuclear retention of STAT3 through the coiled-coil domain regulates its activity
-
16140268
-
Sato N, Tsuruma R, Imoto S, Sekine Y, Muromoto R, Sugiyama K, et al. Nuclear retention of STAT3 through the coiled-coil domain regulates its activity. Biochem Biophys Res Commun (2005) 336:617–24.10.1016/j.bbrc.2005.08.14516140268
-
(2005)
Biochem Biophys Res Commun
, vol.336
, pp. 617-624
-
-
Sato, N.1
Tsuruma, R.2
Imoto, S.3
Sekine, Y.4
Muromoto, R.5
Sugiyama, K.6
-
115
-
-
0037327154
-
Regulation of Stat3 nuclear export
-
12588893
-
Bhattacharya S, Schindler C. Regulation of Stat3 nuclear export. J Clin Invest (2003) 111:553–9.10.1172/JCI1537212588893
-
(2003)
J Clin Invest
, vol.111
, pp. 553-559
-
-
Bhattacharya, S.1
Schindler, C.2
-
116
-
-
84906245589
-
Regulation and function of signal transducer and activator of transcription 3
-
24921012
-
Qi QR, Yang ZM. Regulation and function of signal transducer and activator of transcription 3. World J Biol Chem (2014) 5:231–9.10.4331/wjbc.v5.i2.23124921012
-
(2014)
World J Biol Chem
, vol.5
, pp. 231-239
-
-
Qi, Q.R.1
Yang, Z.M.2
-
117
-
-
33646591224
-
Stat3 activation of NF-κB p100 processing involves CBP/p300-mediated acetylation
-
Nadiminty N, Lou W, Lee SO, Lin X, Trump DL, Gao AC. Stat3 activation of NF-κB p100 processing involves CBP/p300-mediated acetylation. Proc Natl Acad Sci U S A (2006) 103:7264–9.10.1073/pnas.0509808103
-
(2006)
Proc Natl Acad Sci U S A
, vol.103
, pp. 7264-7269
-
-
Nadiminty, N.1
Lou, W.2
Lee, S.O.3
Lin, X.4
Trump, D.L.5
Gao, A.C.6
-
118
-
-
63249092765
-
Persistently activated Stat3 maintains constitutive NF-κB activity in tumors
-
Lee H, Herrmann A, Deng JH, Kujawski M, Niu G, Li Z, et al. Persistently activated Stat3 maintains constitutive NF-κB activity in tumors. Cancer Cell (2009) 15:283–93.10.1016/j.ccr.2009.02.015
-
(2009)
Cancer Cell
, vol.15
, pp. 283-293
-
-
Lee, H.1
Herrmann, A.2
Deng, J.H.3
Kujawski, M.4
Niu, G.5
Li, Z.6
-
119
-
-
0035380308
-
Pro- versus anti-inflammatory cytokines: myth or reality
-
11502077
-
Cavaillon JM. Pro- versus anti-inflammatory cytokines: myth or reality. Cell Mol Biol (Noisy-le-grand) (2001) 47:695–702.11502077
-
(2001)
Cell Mol Biol (Noisy-le-grand)
, vol.47
, pp. 695-702
-
-
Cavaillon, J.M.1
-
120
-
-
67649988989
-
Mitochondrial STAT3 supports Ras-dependent oncogenic transformation
-
19556508
-
Gough DJ, Corlett A, Schlessinger K, Wegrzyn J, Larner AC, Levy DE. Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. Science (2009) 324:1713–6.10.1126/science.117172119556508
-
(2009)
Science
, vol.324
, pp. 1713-1716
-
-
Gough, D.J.1
Corlett, A.2
Schlessinger, K.3
Wegrzyn, J.4
Larner, A.C.5
Levy, D.E.6
-
121
-
-
84907684949
-
STAT3 supports experimental K-RasG12D-induced murine myeloproliferative neoplasms dependent on serine phosphorylation
-
25150294
-
Gough DJ, Marie IJ, Lobry C, Aifantis I, Levy DE. STAT3 supports experimental K-RasG12D-induced murine myeloproliferative neoplasms dependent on serine phosphorylation. Blood (2014) 124:2252–61.10.1182/blood-2013-02-48419625150294
-
(2014)
Blood
, vol.124
, pp. 2252-2261
-
-
Gough, D.J.1
Marie, I.J.2
Lobry, C.3
Aifantis, I.4
Levy, D.E.5
-
122
-
-
84938598880
-
Mitochondrial STAT3 contributes to transformation of Barrett’s epithelial cells that express oncogenic Ras in a p53-independent fashion
-
26045618
-
Yu C, Huo X, Agoston AT, Zhang X, Theiss AL, Cheng E, et al. Mitochondrial STAT3 contributes to transformation of Barrett’s epithelial cells that express oncogenic Ras in a p53-independent fashion. Am J Physiol Gastrointest Liver Physiol (2015) 309:G146–61.10.1152/ajpgi.00462.201426045618
-
(2015)
Am J Physiol Gastrointest Liver Physiol
, vol.309
, pp. G146-G161
-
-
Yu, C.1
Huo, X.2
Agoston, A.T.3
Zhang, X.4
Theiss, A.L.5
Cheng, E.6
-
123
-
-
77954927294
-
Stoichiometry of STAT3 and mitochondrial proteins: implications for the regulation of oxidative phosphorylation by protein-protein interactions
-
20558729
-
Phillips D, Reilley MJ, Aponte AM, Wang G, Boja E, Gucek M, et al. Stoichiometry of STAT3 and mitochondrial proteins: implications for the regulation of oxidative phosphorylation by protein-protein interactions. J Biol Chem (2010) 285:23532–6.10.1074/jbc.C110.15265220558729
-
(2010)
J Biol Chem
, vol.285
, pp. 23532-23536
-
-
Phillips, D.1
Reilley, M.J.2
Aponte, A.M.3
Wang, G.4
Boja, E.5
Gucek, M.6
-
124
-
-
33846335174
-
Modulation of electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion
-
16971498
-
Chen Q, Camara AK, Stowe DF, Hoppel CL, Lesnefsky EJ. Modulation of electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion. Am J Physiol Cell Physiol (2007) 292:C137–47.10.1152/ajpcell.00270.200616971498
-
(2007)
Am J Physiol Cell Physiol
, vol.292
, pp. C137-C147
-
-
Chen, Q.1
Camara, A.K.2
Stowe, D.F.3
Hoppel, C.L.4
Lesnefsky, E.J.5
-
125
-
-
29244441132
-
Blockade of electron transport before cardiac ischemia with the reversible inhibitor amobarbital protects rat heart mitochondria
-
16174799
-
Chen Q, Hoppel CL, Lesnefsky EJ. Blockade of electron transport before cardiac ischemia with the reversible inhibitor amobarbital protects rat heart mitochondria. J Pharmacol Exp Ther (2006) 316:200–7.10.1124/jpet.105.09170216174799
-
(2006)
J Pharmacol Exp Ther
, vol.316
, pp. 200-207
-
-
Chen, Q.1
Hoppel, C.L.2
Lesnefsky, E.J.3
-
126
-
-
84892880554
-
The breathing heart – mitochondrial respiratory chain dysfunction in cardiac disease
-
24377708
-
Schwarz K, Siddiqi N, Singh S, Neil CJ, Dawson DK, Frenneaux MP. The breathing heart – mitochondrial respiratory chain dysfunction in cardiac disease. Int J Cardiol (2014) 171:134–43.10.1016/j.ijcard.2013.12.01424377708
-
(2014)
Int J Cardiol
, vol.171
, pp. 134-143
-
-
Schwarz, K.1
Siddiqi, N.2
Singh, S.3
Neil, C.J.4
Dawson, D.K.5
Frenneaux, M.P.6
-
127
-
-
84883562084
-
Cardiac metabolism in heart failure: implications beyond ATP production
-
23989714
-
Doenst T, Nguyen TD, Abel ED. Cardiac metabolism in heart failure: implications beyond ATP production. Circ Res (2013) 113:709–24.10.1161/CIRCRESAHA.113.30037623989714
-
(2013)
Circ Res
, vol.113
, pp. 709-724
-
-
Doenst, T.1
Nguyen, T.D.2
Abel, E.D.3
-
128
-
-
84872676487
-
Mitochondria in cardiac hypertrophy and heart failure
-
Rosca MG, Tandler B, Hoppel CL. Mitochondria in cardiac hypertrophy and heart failure. J Mol Cell Cardiol (2013) 55:31–41.10.1016/j.yjmcc.2012.09.002
-
(2013)
J Mol Cell Cardiol
, vol.55
, pp. 31-41
-
-
Rosca, M.G.1
Tandler, B.2
Hoppel, C.L.3
-
129
-
-
84885331404
-
Alterations in mitochondrial function in cardiac hypertrophy and heart failure
-
22968404
-
Osterholt M, Nguyen TD, Schwarzer M, Doenst T. Alterations in mitochondrial function in cardiac hypertrophy and heart failure. Heart Fail Rev (2013) 18:645–56.10.1007/s10741-012-9346-722968404
-
(2013)
Heart Fail Rev
, vol.18
, pp. 645-656
-
-
Osterholt, M.1
Nguyen, T.D.2
Schwarzer, M.3
Doenst, T.4
-
130
-
-
0033385980
-
Progress on the mitochondrial permeability transition pore: regulation by complex I and ubiquinone analogs
-
10665524
-
Fontaine E, Bernardi P. Progress on the mitochondrial permeability transition pore: regulation by complex I and ubiquinone analogs. J Bioenerg Biomembr (1999) 31:335–45.10.1023/A:100547580235010665524
-
(1999)
J Bioenerg Biomembr
, vol.31
, pp. 335-345
-
-
Fontaine, E.1
Bernardi, P.2
-
131
-
-
77951953060
-
Mammalian mitochondrial complex I: biogenesis, regulation, and reactive oxygen species generation
-
19803744
-
Koopman WJ, Nijtmans LG, Dieteren CE, Roestenberg P, Valsecchi F, Smeitink JA, et al. Mammalian mitochondrial complex I: biogenesis, regulation, and reactive oxygen species generation. Antioxid Redox Signal (2010) 12:1431–70.10.1089/ars.2009.274319803744
-
(2010)
Antioxid Redox Signal
, vol.12
, pp. 1431-1470
-
-
Koopman, W.J.1
Nijtmans, L.G.2
Dieteren, C.E.3
Roestenberg, P.4
Valsecchi, F.5
Smeitink, J.A.6
-
133
-
-
84881348520
-
Mitochondrial complex I deficiency increases protein acetylation and accelerates heart failure
-
23931755
-
Karamanlidis G, Lee CF, Garcia-Menendez L, Kolwicz SC, Jr Suthammarak W, Gong G, et al. Mitochondrial complex I deficiency increases protein acetylation and accelerates heart failure. Cell Metab (2013) 18:239–50.10.1016/j.cmet.2013.07.00223931755
-
(2013)
Cell Metab
, vol.18
, pp. 239-250
-
-
Karamanlidis, G.1
Lee, C.F.2
Garcia-Menendez, L.3
Kolwicz, S.C.4
Suthammarak, W.5
Gong, G.6
-
134
-
-
77449120223
-
Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway
-
19940131
-
Pillai VB, Sundaresan NR, Kim G, Gupta M, Rajamohan SB, Pillai JB, et al. Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. J Biol Chem (2010) 285:3133–44.10.1074/jbc.M109.07727119940131
-
(2010)
J Biol Chem
, vol.285
, pp. 3133-3144
-
-
Pillai, V.B.1
Sundaresan, N.R.2
Kim, G.3
Gupta, M.4
Rajamohan, S.B.5
Pillai, J.B.6
-
135
-
-
55749084738
-
A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis
-
18794531
-
Ahn BH, Kim HS, Song S, Lee IH, Liu J, Vassilopoulos A, et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci U S A (2008) 105:14447–52.10.1073/pnas.080379010518794531
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 14447-14452
-
-
Ahn, B.H.1
Kim, H.S.2
Song, S.3
Lee, I.H.4
Liu, J.5
Vassilopoulos, A.6
-
136
-
-
50149103440
-
Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5
-
18680753
-
Schlicker C, Gertz M, Papatheodorou P, Kachholz B, Becker CF, Steegborn C. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J Mol Biol (2008) 382:790–801.10.1016/j.jmb.2008.07.04818680753
-
(2008)
J Mol Biol
, vol.382
, pp. 790-801
-
-
Schlicker, C.1
Gertz, M.2
Papatheodorou, P.3
Kachholz, B.4
Becker, C.F.5
Steegborn, C.6
-
137
-
-
79957979314
-
Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS
-
21566644
-
Chen Y, Zhang J, Lin Y, Lei Q, Guan KL, Zhao S, et al. Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS. EMBO Rep (2011) 12:534–41.10.1038/embor.2011.6521566644
-
(2011)
EMBO Rep
, vol.12
, pp. 534-541
-
-
Chen, Y.1
Zhang, J.2
Lin, Y.3
Lei, Q.4
Guan, K.L.5
Zhao, S.6
-
138
-
-
84859951790
-
SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status
-
22416140
-
Yu W, Dittenhafer-Reed KE, Denu JM. SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status. J Biol Chem (2012) 287:14078–86.10.1074/jbc.M112.35520622416140
-
(2012)
J Biol Chem
, vol.287
, pp. 14078-14086
-
-
Yu, W.1
Dittenhafer-Reed, K.E.2
Denu, J.M.3
-
139
-
-
84929011194
-
High-fat diet induces cardiac remodelling and dysfunction: assessment of the role played by SIRT3 loss
-
25782072
-
Zeng H, Vaka VR, He X, Booz GW, Chen JX. High-fat diet induces cardiac remodelling and dysfunction: assessment of the role played by SIRT3 loss. J Cell Mol Med (2015) 19:1847–56.10.1111/jcmm.1255625782072
-
(2015)
J Cell Mol Med
, vol.19
, pp. 1847-1856
-
-
Zeng, H.1
Vaka, V.R.2
He, X.3
Booz, G.W.4
Chen, J.X.5
-
140
-
-
79952266729
-
Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy
-
21212461
-
Hafner AV, Dai J, Gomes AP, Xiao CY, Palmeira CM, Rosenzweig A, et al. Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging (Albany NY) (2010) 2:914–23.21212461
-
(2010)
Aging (Albany NY)
, vol.2
, pp. 914-923
-
-
Hafner, A.V.1
Dai, J.2
Gomes, A.P.3
Xiao, C.Y.4
Palmeira, C.M.5
Rosenzweig, A.6
-
141
-
-
84902687763
-
SIRT3 deficiency exacerbates ischemia-reperfusion injury: implication for aged hearts
-
24748594
-
Porter GA, Urciuoli WR, Brookes PS, Nadtochiy SM. SIRT3 deficiency exacerbates ischemia-reperfusion injury: implication for aged hearts. Am J Physiol Heart Circ Physiol (2014) 306:H1602–9.10.1152/ajpheart.00027.201424748594
-
(2014)
Am J Physiol Heart Circ Physiol
, vol.306
, pp. H1602-H1609
-
-
Porter, G.A.1
Urciuoli, W.R.2
Brookes, P.S.3
Nadtochiy, S.M.4
-
142
-
-
84861415338
-
Direct renin inhibition exerts an anti-hypertrophic effect associated with improved mitochondrial function in post-infarction heart failure in diabetic rats
-
22613984
-
Parodi-Rullan R, Barreto-Torres G, Ruiz L, Casasnovas J, Javadov S. Direct renin inhibition exerts an anti-hypertrophic effect associated with improved mitochondrial function in post-infarction heart failure in diabetic rats. Cell Physiol Biochem (2012) 29:841–50.10.1159/00017852622613984
-
(2012)
Cell Physiol Biochem
, vol.29
, pp. 841-850
-
-
Parodi-Rullan, R.1
Barreto-Torres, G.2
Ruiz, L.3
Casasnovas, J.4
Javadov, S.5
-
143
-
-
84858057118
-
Mitochondrial complex I plays an essential role in human respirasome assembly
-
22342700
-
Moreno-Lastres D, Fontanesi F, Garcia-Consuegra I, Martin MA, Arenas J, Barrientos A, et al. Mitochondrial complex I plays an essential role in human respirasome assembly. Cell Metab (2012) 15:324–35.10.1016/j.cmet.2012.01.01522342700
-
(2012)
Cell Metab
, vol.15
, pp. 324-335
-
-
Moreno-Lastres, D.1
Fontanesi, F.2
Garcia-Consuegra, I.3
Martin, M.A.4
Arenas, J.5
Barrientos, A.6
-
144
-
-
51749113618
-
Cardiac mitochondria in heart failure: decrease in respirasomes and oxidative phosphorylation
-
18710878
-
Rosca MG, Vazquez EJ, Kerner J, Parland W, Chandler MP, Stanley W, et al. Cardiac mitochondria in heart failure: decrease in respirasomes and oxidative phosphorylation. Cardiovasc Res (2008) 80:30–9.10.1093/cvr/cvn18418710878
-
(2008)
Cardiovasc Res
, vol.80
, pp. 30-39
-
-
Rosca, M.G.1
Vazquez, E.J.2
Kerner, J.3
Parland, W.4
Chandler, M.P.5
Stanley, W.6
-
145
-
-
77956586695
-
Mitochondria in heart failure
-
Rosca MG, Hoppel CL. Mitochondria in heart failure. Cardiovasc Res (2010) 88:40–50.10.1093/cvr/cvq240
-
(2010)
Cardiovasc Res
, vol.88
, pp. 40-50
-
-
Rosca, M.G.1
Hoppel, C.L.2
-
146
-
-
84900447983
-
Low abundance of the matrix arm of complex I in mitochondria predicts longevity in mice
-
24815183
-
Miwa S, Jow H, Baty K, Johnson A, Czapiewski R, Saretzki G, et al. Low abundance of the matrix arm of complex I in mitochondria predicts longevity in mice. Nat Commun (2014) 5:3837.10.1038/ncomms483724815183
-
(2014)
Nat Commun
, vol.5
, pp. 3837
-
-
Miwa, S.1
Jow, H.2
Baty, K.3
Johnson, A.4
Czapiewski, R.5
Saretzki, G.6
-
147
-
-
84940722200
-
Cell death disguised: the mitochondrial permeability transition pore as the c-subunit of the F1FO ATP synthase
-
25956324
-
Jonas EA, Porter GA, Jr Beutner G, Mnatsakanyan N, Alavian KN. Cell death disguised: the mitochondrial permeability transition pore as the c-subunit of the F1FO ATP synthase. Pharmacol Res (2015) 99:382–92.10.1016/j.phrs.2015.04.01325956324
-
(2015)
Pharmacol Res
, vol.99
, pp. 382-392
-
-
Jonas, E.A.1
Porter, G.A.2
Beutner, G.3
Mnatsakanyan, N.4
Alavian, K.N.5
-
148
-
-
0038771142
-
The nuclear encoded subunits of complex I from bovine heart mitochondria
-
12837546
-
Hirst J, Carroll J, Fearnley IM, Shannon RJ, Walker JE. The nuclear encoded subunits of complex I from bovine heart mitochondria. Biochim Biophys Acta (2003) 1604:135–50.10.1016/S0005-2728(03)00059-812837546
-
(2003)
Biochim Biophys Acta
, vol.1604
, pp. 135-150
-
-
Hirst, J.1
Carroll, J.2
Fearnley, I.M.3
Shannon, R.J.4
Walker, J.E.5
-
149
-
-
0038160473
-
Analysis of the subunit composition of complex I from bovine heart mitochondria
-
12644575
-
Carroll J, Fearnley IM, Shannon RJ, Hirst J, Walker JE. Analysis of the subunit composition of complex I from bovine heart mitochondria. Mol Cell Proteomics (2003) 2:117–26.10.1074/mcp.M300014-MCP20012644575
-
(2003)
Mol Cell Proteomics
, vol.2
, pp. 117-126
-
-
Carroll, J.1
Fearnley, I.M.2
Shannon, R.J.3
Hirst, J.4
Walker, J.E.5
-
150
-
-
84915761829
-
Architecture of mammalian respiratory complex I
-
25209663
-
Vinothkumar KR, Zhu J, Hirst J. Architecture of mammalian respiratory complex I. Nature (2014) 515:80–4.10.1038/nature1368625209663
-
(2014)
Nature
, vol.515
, pp. 80-84
-
-
Vinothkumar, K.R.1
Zhu, J.2
Hirst, J.3
-
151
-
-
85079112769
-
-
Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Ph.D
-
Lu H. The Study of GRIM-19 Function in Mitochondria. Ph.D., Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore (2007).
-
(2007)
The Study of GRIM-19 Function in Mitochondria
-
-
Lu, H.1
-
152
-
-
84897352802
-
ND3, ND1 and 39kDa subunits are more exposed in the de-active form of bovine mitochondrial complex I
-
24560811
-
Babot M, Labarbuta P, Birch A, Kee S, Fuszard M, Botting CH, et al. ND3, ND1 and 39kDa subunits are more exposed in the de-active form of bovine mitochondrial complex I. Biochim Biophys Acta (2014) 1837:929–39.10.1016/j.bbabio.2014.02.01324560811
-
(2014)
Biochim Biophys Acta
, vol.1837
, pp. 929-939
-
-
Babot, M.1
Labarbuta, P.2
Birch, A.3
Kee, S.4
Fuszard, M.5
Botting, C.H.6
-
153
-
-
78149471573
-
Quinone binding and reduction by respiratory complex I
-
20493164
-
Tocilescu MA, Zickermann V, Zwicker K, Brandt U. Quinone binding and reduction by respiratory complex I. Biochim Biophys Acta (2010) 1797:1883–90.10.1016/j.bbabio.2010.05.00920493164
-
(2010)
Biochim Biophys Acta
, vol.1797
, pp. 1883-1890
-
-
Tocilescu, M.A.1
Zickermann, V.2
Zwicker, K.3
Brandt, U.4
-
154
-
-
84874352529
-
Crystal structure of the entire respiratory complex I
-
23417064
-
Baradaran R, Berrisford JM, Minhas GS, Sazanov LA. Crystal structure of the entire respiratory complex I. Nature (2013) 494:443–8.10.1038/nature1187123417064
-
(2013)
Nature
, vol.494
, pp. 443-448
-
-
Baradaran, R.1
Berrisford, J.M.2
Minhas, G.S.3
Sazanov, L.A.4
-
155
-
-
77952979824
-
The architecture of respiratory complex I
-
20505720
-
Efremov RG, Baradaran R, Sazanov LA. The architecture of respiratory complex I. Nature (2010) 465:441–5.10.1038/nature0906620505720
-
(2010)
Nature
, vol.465
, pp. 441-445
-
-
Efremov, R.G.1
Baradaran, R.2
Sazanov, L.A.3
-
156
-
-
84864705249
-
Tracing the tail of ubiquinone in mitochondrial complex I
-
22484275
-
Angerer H, Nasiri HR, Niedergesass V, Kerscher S, Schwalbe H, Brandt U. Tracing the tail of ubiquinone in mitochondrial complex I. Biochim Biophys Acta (2012) 1817:1776–84.10.1016/j.bbabio.2012.03.02122484275
-
(2012)
Biochim Biophys Acta
, vol.1817
, pp. 1776-1784
-
-
Angerer, H.1
Nasiri, H.R.2
Niedergesass, V.3
Kerscher, S.4
Schwalbe, H.5
Brandt, U.6
-
157
-
-
84894165975
-
Cardiac mitochondria and reactive oxygen species generation
-
24481843
-
Chen YR, Zweier JL. Cardiac mitochondria and reactive oxygen species generation. Circ Res (2014) 114:524–37.10.1161/CIRCRESAHA.114.30055924481843
-
(2014)
Circ Res
, vol.114
, pp. 524-537
-
-
Chen, Y.R.1
Zweier, J.L.2
-
158
-
-
39549102405
-
Ischemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria
-
18077608
-
Chen Q, Moghaddas S, Hoppel CL, Lesnefsky EJ. Ischemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria. Am J Physiol Cell Physiol (2008) 294:C460–6.10.1152/ajpcell.00211.200718077608
-
(2008)
Am J Physiol Cell Physiol
, vol.294
, pp. C460-C466
-
-
Chen, Q.1
Moghaddas, S.2
Hoppel, C.L.3
Lesnefsky, E.J.4
-
159
-
-
48249132021
-
GRIM-19 is essential for maintenance of mitochondrial membrane potential
-
18287540
-
Lu H, Cao X. GRIM-19 is essential for maintenance of mitochondrial membrane potential. Mol Biol Cell (2008) 19:1893–902.10.1091/mbc.E07-07-068318287540
-
(2008)
Mol Biol Cell
, vol.19
, pp. 1893-1902
-
-
Lu, H.1
Cao, X.2
-
160
-
-
4544276735
-
GRIM-19, a cell death regulatory protein, is essential for assembly and function of mitochondrial complex I
-
15367666
-
Huang G, Lu H, Hao A, Ng DC, Ponniah S, Guo K, et al. GRIM-19, a cell death regulatory protein, is essential for assembly and function of mitochondrial complex I. Mol Cell Biol (2004) 24:8447–56.10.1128/MCB.24.19.8447-8456.200415367666
-
(2004)
Mol Cell Biol
, vol.24
, pp. 8447-8456
-
-
Huang, G.1
Lu, H.2
Hao, A.3
Ng, D.C.4
Ponniah, S.5
Guo, K.6
-
161
-
-
34249736347
-
The phosphorylation pattern of bovine heart complex I subunits
-
17443843
-
Palmisano G, Sardanelli AM, Signorile A, Papa S, Larsen MR. The phosphorylation pattern of bovine heart complex I subunits. Proteomics (2007) 7:1575–83.10.1002/pmic.20060080117443843
-
(2007)
Proteomics
, vol.7
, pp. 1575-1583
-
-
Palmisano, G.1
Sardanelli, A.M.2
Signorile, A.3
Papa, S.4
Larsen, M.R.5
-
162
-
-
84898023373
-
PINK1 loss-of-function mutations affect mitochondrial complex I activity via NdufA10 ubiquinone uncoupling
-
24652937
-
Morais VA, Haddad D, Craessaerts K, De Bock PJ, Swerts J, Vilain S, et al. PINK1 loss-of-function mutations affect mitochondrial complex I activity via NdufA10 ubiquinone uncoupling. Science (2014) 344:203–7.10.1126/science.124916124652937
-
(2014)
Science
, vol.344
, pp. 203-207
-
-
Morais, V.A.1
Haddad, D.2
Craessaerts, K.3
De Bock, P.J.4
Swerts, J.5
Vilain, S.6
-
163
-
-
84902242573
-
Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation
-
24561273
-
Drose S, Brandt U, Wittig I. Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation. Biochim Biophys Acta (2014) 1844:1344–54.10.1016/j.bbapap.2014.02.00624561273
-
(2014)
Biochim Biophys Acta
, vol.1844
, pp. 1344-1354
-
-
Drose, S.1
Brandt, U.2
Wittig, I.3
-
164
-
-
84884665651
-
Molecular mechanism and physiological role of active-deactive transition of mitochondrial complex I
-
24059527
-
Babot M, Galkin A. Molecular mechanism and physiological role of active-deactive transition of mitochondrial complex I. Biochem Soc Trans (2013) 41:1325–30.10.1042/BST2013008824059527
-
(2013)
Biochem Soc Trans
, vol.41
, pp. 1325-1330
-
-
Babot, M.1
Galkin, A.2
-
165
-
-
84901841671
-
Characterisation of the active/de-active transition of mitochondrial complex I
-
24569053
-
Babot M, Birch A, Labarbuta P, Galkin A. Characterisation of the active/de-active transition of mitochondrial complex I. Biochim Biophys Acta (2014) 1837:1083–92.10.1016/j.bbabio.2014.02.01824569053
-
(2014)
Biochim Biophys Acta
, vol.1837
, pp. 1083-1092
-
-
Babot, M.1
Birch, A.2
Labarbuta, P.3
Galkin, A.4
-
166
-
-
84875388964
-
Conformation-specific crosslinking of mitochondrial complex I
-
23454639
-
Ciano M, Fuszard M, Heide H, Botting CH, Galkin A. Conformation-specific crosslinking of mitochondrial complex I. FEBS Lett (2013) 587:867–72.10.1016/j.febslet.2013.02.03923454639
-
(2013)
FEBS Lett
, vol.587
, pp. 867-872
-
-
Ciano, M.1
Fuszard, M.2
Heide, H.3
Botting, C.H.4
Galkin, A.5
-
167
-
-
38049136885
-
S-nitrosation of mitochondrial complex I depends on its structural conformation
-
17956863
-
Galkin A, Moncada S. S-nitrosation of mitochondrial complex I depends on its structural conformation. J Biol Chem (2007) 282:37448–53.10.1074/jbc.M70754320017956863
-
(2007)
J Biol Chem
, vol.282
, pp. 37448-37453
-
-
Galkin, A.1
Moncada, S.2
-
168
-
-
84880253528
-
Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I
-
23708290
-
Chouchani ET, Methner C, Nadtochiy SM, Logan A, Pell VR, Ding S, et al. Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat Med (2013) 19:753–9.10.1038/nm.321223708290
-
(2013)
Nat Med
, vol.19
, pp. 753-759
-
-
Chouchani, E.T.1
Methner, C.2
Nadtochiy, S.M.3
Logan, A.4
Pell, V.R.5
Ding, S.6
-
169
-
-
84884623857
-
Conformational change of mitochondrial complex I increases ROS sensitivity during ischemia
-
23419200
-
Gorenkova N, Robinson E, Grieve DJ, Galkin A. Conformational change of mitochondrial complex I increases ROS sensitivity during ischemia. Antioxid Redox Signal (2013) 19:1459–68.10.1089/ars.2012.469823419200
-
(2013)
Antioxid Redox Signal
, vol.19
, pp. 1459-1468
-
-
Gorenkova, N.1
Robinson, E.2
Grieve, D.J.3
Galkin, A.4
-
170
-
-
84904468117
-
Prohibitin 1 modulates mitochondrial function of Stat3
-
24975845
-
Han J, Yu C, Souza RF, Theiss AL. Prohibitin 1 modulates mitochondrial function of Stat3. Cell Signal (2014) 26:2086–95.10.1016/j.cellsig.2014.06.00624975845
-
(2014)
Cell Signal
, vol.26
, pp. 2086-2095
-
-
Han, J.1
Yu, C.2
Souza, R.F.3
Theiss, A.L.4
-
171
-
-
84930633201
-
2+ and membrane potential, an alternative pathway for Interleukin 6 to regulate CD4 cell effector function
-
2+ and membrane potential, an alternative pathway for Interleukin 6 to regulate CD4 cell effector function. Elife (2015) 4:e06376.10.7554/eLife.06376
-
(2015)
Elife
, vol.4
, pp. e06376
-
-
Yang, R.1
Lirussi, D.2
Thornton, T.M.3
Jelley-Gibbs, D.M.4
Diehl, S.A.5
Case, L.K.6
|