메뉴 건너뛰기




Volumn 22, Issue 8, 2012, Pages 429-437

Multi-tasking: Nuclear transcription factors with novel roles in the mitochondria

Author keywords

Apoptosis; Mitochondrial function; Nuclear transcription factors; STAT3

Indexed keywords

1 METHYL 4 PHENYLPYRIDINIUM; CYCLIC AMP RESPONSIVE ELEMENT BINDING PROTEIN; HORMONE RECEPTOR; IMMUNOGLOBULIN ENHANCER BINDING PROTEIN; INTERFERON REGULATORY FACTOR 3; MYOCYTE ENHANCER FACTOR 2; PROTEIN MDM2; PROTEIN P53; ROTENONE; STAT1 PROTEIN; STAT3 PROTEIN; TRANSCRIPTION FACTOR;

EID: 84864315728     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2012.05.001     Document Type: Review
Times cited : (97)

References (71)
  • 1
    • 0035877820 scopus 로고    scopus 로고
    • Ikappa B-alpha, the NF-kappa B inhibitory subunit, interacts with ANT, the mitochondrial ATP/ADP translocator
    • Bottero V., et al. Ikappa B-alpha, the NF-kappa B inhibitory subunit, interacts with ANT, the mitochondrial ATP/ADP translocator. J. Biol. Chem. 2001, 276:21317-21324.
    • (2001) J. Biol. Chem. , vol.276 , pp. 21317-21324
    • Bottero, V.1
  • 2
    • 0037474269 scopus 로고    scopus 로고
    • NF-kappa B and I kappa B alpha are found in the mitochondria. Evidence for regulation of mitochondrial gene expression by NF-kappa B
    • Cogswell P.C., et al. NF-kappa B and I kappa B alpha are found in the mitochondria. Evidence for regulation of mitochondrial gene expression by NF-kappa B. J. Biol. Chem. 2003, 278:2963-2968.
    • (2003) J. Biol. Chem. , vol.278 , pp. 2963-2968
    • Cogswell, P.C.1
  • 3
    • 67649988989 scopus 로고    scopus 로고
    • Mitochondrial Stat3 supports Ras-dependent cellular transformation
    • PMCID 148639
    • Gough D.J., et al. Mitochondrial Stat3 supports Ras-dependent cellular transformation. Science 2009, 324:1713-1716. PMCID 148639.
    • (2009) Science , vol.324 , pp. 1713-1716
    • Gough, D.J.1
  • 4
    • 39449118563 scopus 로고    scopus 로고
    • Thyroid effects on mitochondrial energetics
    • Harper M.E., Seifert E.L. Thyroid effects on mitochondrial energetics. Thyroid 2008, 18:145-156.
    • (2008) Thyroid , vol.18 , pp. 145-156
    • Harper, M.E.1    Seifert, E.L.2
  • 5
    • 80051677812 scopus 로고    scopus 로고
    • P53-dependent regulation of mitochondrial energy production by the RelA subunit of NF-kappaB
    • Johnson R.F., et al. p53-dependent regulation of mitochondrial energy production by the RelA subunit of NF-kappaB. Cancer Res. 2011, 71:5588-5597.
    • (2011) Cancer Res. , vol.71 , pp. 5588-5597
    • Johnson, R.F.1
  • 6
    • 57349115353 scopus 로고    scopus 로고
    • Estrogenic control of mitochondrial function and biogenesis
    • Klinge C.M. Estrogenic control of mitochondrial function and biogenesis. J. Cell. Biochem. 2008, 105:1342-1351.
    • (2008) J. Cell. Biochem. , vol.105 , pp. 1342-1351
    • Klinge, C.M.1
  • 7
    • 28844499005 scopus 로고    scopus 로고
    • Mitochondrial cyclic AMP response element-binding protein (CREB) mediates mitochondrial gene expression and neuronal survival
    • Lee J., et al. Mitochondrial cyclic AMP response element-binding protein (CREB) mediates mitochondrial gene expression and neuronal survival. J. Biol. Chem. 2005, 280:40398-40401.
    • (2005) J. Biol. Chem. , vol.280 , pp. 40398-40401
    • Lee, J.1
  • 8
    • 79952205241 scopus 로고    scopus 로고
    • Direct regulation of complex I by mitochondrial MEF2D is disrupted in a mouse model of Parkinson disease and in human patients
    • She H., et al. Direct regulation of complex I by mitochondrial MEF2D is disrupted in a mouse model of Parkinson disease and in human patients. J. Clin. Invest. 2011, 121:930-940.
    • (2011) J. Clin. Invest. , vol.121 , pp. 930-940
    • She, H.1
  • 9
    • 59849101586 scopus 로고    scopus 로고
    • Function of mitochondrial Stat3 in cellular respiration
    • Wegrzyn J., et al. Function of mitochondrial Stat3 in cellular respiration. Science 2009, 323:793-797.
    • (2009) Science , vol.323 , pp. 793-797
    • Wegrzyn, J.1
  • 10
    • 66749128074 scopus 로고    scopus 로고
    • The transcription-independent mitochondrial p53 program is a major contributor to nutlin-induced apoptosis in tumor cells
    • Vaseva A.V., et al. The transcription-independent mitochondrial p53 program is a major contributor to nutlin-induced apoptosis in tumor cells. Cell Cycle 2009, 8:1711-1719.
    • (2009) Cell Cycle , vol.8 , pp. 1711-1719
    • Vaseva, A.V.1
  • 11
    • 25444515720 scopus 로고    scopus 로고
    • Antioxidants modulate mitochondrial PKA and increase CREB binding to D-loop DNA of the mitochondrial genome in neurons
    • Ryu H., et al. Antioxidants modulate mitochondrial PKA and increase CREB binding to D-loop DNA of the mitochondrial genome in neurons. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:13915-13920.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 13915-13920
    • Ryu, H.1
  • 12
    • 0034673324 scopus 로고    scopus 로고
    • E-Selectin expression in a murine model of chronic colitis
    • Kawachi S., et al. E-Selectin expression in a murine model of chronic colitis. Biochem. Biophys. Res. Commun. 2000, 268:547-552.
    • (2000) Biochem. Biophys. Res. Commun. , vol.268 , pp. 547-552
    • Kawachi, S.1
  • 13
    • 33745149291 scopus 로고    scopus 로고
    • P53 regulates mitochondrial respiration
    • Matoba S., et al. p53 regulates mitochondrial respiration. Science 2006, 312:1650-1653.
    • (2006) Science , vol.312 , pp. 1650-1653
    • Matoba, S.1
  • 14
    • 80053539605 scopus 로고    scopus 로고
    • NF-kappaB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration
    • Mauro C., et al. NF-kappaB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration. Nat. Cell Biol. 2011, 13:1272-1279.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 1272-1279
    • Mauro, C.1
  • 15
    • 0036851837 scopus 로고    scopus 로고
    • Mitochondrial deficiency and cardiac sudden death in mice lacking the MEF2A transcription factor
    • Naya F.J., et al. Mitochondrial deficiency and cardiac sudden death in mice lacking the MEF2A transcription factor. Nat. Med. 2002, 8:1303-1309.
    • (2002) Nat. Med. , vol.8 , pp. 1303-1309
    • Naya, F.J.1
  • 16
    • 43049139541 scopus 로고    scopus 로고
    • P53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation
    • Kawauchi K., et al. p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat. Cell Biol. 2008, 10:611-618.
    • (2008) Nat. Cell Biol. , vol.10 , pp. 611-618
    • Kawauchi, K.1
  • 17
    • 33846815521 scopus 로고    scopus 로고
    • A cathepsin D-cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy
    • Hilfiker-Kleiner D., et al. A cathepsin D-cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy. Cell 2007, 128:589-600.
    • (2007) Cell , vol.128 , pp. 589-600
    • Hilfiker-Kleiner, D.1
  • 18
    • 0242268405 scopus 로고    scopus 로고
    • Cardiomyocyte-restricted knockout of STAT3 results in higher sensitivity to inflammation, cardiac fibrosis, and heart failure with advanced age
    • Jacoby J.J., et al. Cardiomyocyte-restricted knockout of STAT3 results in higher sensitivity to inflammation, cardiac fibrosis, and heart failure with advanced age. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:12929-12934.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 12929-12934
    • Jacoby, J.J.1
  • 19
    • 80051943914 scopus 로고    scopus 로고
    • Mitochondrial-targeted signal transducer and activator of transcription 3 (STAT3) protects against ischemia-induced changes in the electron transport chain and the generation of reactive oxygen species
    • Szczepanek K., et al. Mitochondrial-targeted signal transducer and activator of transcription 3 (STAT3) protects against ischemia-induced changes in the electron transport chain and the generation of reactive oxygen species. J. Biol. Chem. 2011, 286:29610-29620.
    • (2011) J. Biol. Chem. , vol.286 , pp. 29610-29620
    • Szczepanek, K.1
  • 20
    • 77956304154 scopus 로고    scopus 로고
    • Tom70 mediates activation of interferon regulatory factor 3 on mitochondria
    • Liu X.Y., et al. Tom70 mediates activation of interferon regulatory factor 3 on mitochondria. Cell Res. 2010, 20:994-1011.
    • (2010) Cell Res. , vol.20 , pp. 994-1011
    • Liu, X.Y.1
  • 22
    • 77952578865 scopus 로고    scopus 로고
    • Viral apoptosis is induced by IRF-3-mediated activation of Bax
    • Chattopadhyay S., et al. Viral apoptosis is induced by IRF-3-mediated activation of Bax. EMBO J. 2010, 29:1762-1773.
    • (2010) EMBO J. , vol.29 , pp. 1762-1773
    • Chattopadhyay, S.1
  • 23
    • 33847276654 scopus 로고    scopus 로고
    • Monoubiquitylation promotes mitochondrial p53 translocation
    • Marchenko N.D., et al. Monoubiquitylation promotes mitochondrial p53 translocation. EMBO J. 2007, 26:923-934.
    • (2007) EMBO J. , vol.26 , pp. 923-934
    • Marchenko, N.D.1
  • 24
    • 2342553892 scopus 로고    scopus 로고
    • Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex
    • Leu J.I., et al. Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat. Cell Biol. 2004, 6:443-450.
    • (2004) Nat. Cell Biol. , vol.6 , pp. 443-450
    • Leu, J.I.1
  • 25
    • 0842278331 scopus 로고    scopus 로고
    • Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis
    • Chipuk J.E., et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 2004, 303:1010-1014.
    • (2004) Science , vol.303 , pp. 1010-1014
    • Chipuk, J.E.1
  • 26
    • 33749237825 scopus 로고    scopus 로고
    • Interferon regulatory factor 3 activates p53-dependent cell growth inhibition
    • Kim T.K., et al. Interferon regulatory factor 3 activates p53-dependent cell growth inhibition. Cancer Lett. 2006, 242:215-221.
    • (2006) Cancer Lett. , vol.242 , pp. 215-221
    • Kim, T.K.1
  • 27
    • 33747620737 scopus 로고    scopus 로고
    • Small-molecule inhibitor of p53 binding to mitochondria protects mice from gamma radiation
    • Strom E., et al. Small-molecule inhibitor of p53 binding to mitochondria protects mice from gamma radiation. Nat. Chem. Biol. 2006, 2:474-479.
    • (2006) Nat. Chem. Biol. , vol.2 , pp. 474-479
    • Strom, E.1
  • 28
    • 36849074245 scopus 로고    scopus 로고
    • Hepatic IGFBP1 is a prosurvival factor that binds to BAK, protects the liver from apoptosis, and antagonizes the proapoptotic actions of p53 at mitochondria
    • Leu J.I., George D.L. Hepatic IGFBP1 is a prosurvival factor that binds to BAK, protects the liver from apoptosis, and antagonizes the proapoptotic actions of p53 at mitochondria. Genes Dev. 2007, 21:3095-3109.
    • (2007) Genes Dev. , vol.21 , pp. 3095-3109
    • Leu, J.I.1    George, D.L.2
  • 29
    • 0037372005 scopus 로고    scopus 로고
    • The codon 72 polymorphic variants of p53 have markedly different apoptotic potential
    • Dumont P., et al. The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat. Genet. 2003, 33:357-365.
    • (2003) Nat. Genet. , vol.33 , pp. 357-365
    • Dumont, P.1
  • 30
    • 0034717014 scopus 로고    scopus 로고
    • Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling
    • Marchenko N.D., et al. Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J. Biol. Chem. 2000, 275:16202-16212.
    • (2000) J. Biol. Chem. , vol.275 , pp. 16202-16212
    • Marchenko, N.D.1
  • 31
    • 0036346345 scopus 로고    scopus 로고
    • Hsp70 family member, mot-2/mthsp70/GRP75, binds to the cytoplasmic sequestration domain of the p53 protein
    • Wadhwa R., et al. Hsp70 family member, mot-2/mthsp70/GRP75, binds to the cytoplasmic sequestration domain of the p53 protein. Exp. Cell Res. 2002, 274:246-253.
    • (2002) Exp. Cell Res. , vol.274 , pp. 246-253
    • Wadhwa, R.1
  • 32
    • 18144382261 scopus 로고    scopus 로고
    • P53 translocation to mitochondria precedes its nuclear translocation and targets mitochondrial oxidative defense protein-manganese superoxide dismutase
    • Zhao Y., et al. p53 translocation to mitochondria precedes its nuclear translocation and targets mitochondrial oxidative defense protein-manganese superoxide dismutase. Cancer Res. 2005, 65:3745-3750.
    • (2005) Cancer Res. , vol.65 , pp. 3745-3750
    • Zhao, Y.1
  • 33
    • 0038418297 scopus 로고    scopus 로고
    • P53 physically interacts with mitochondrial transcription factor A and differentially regulates binding to damaged DNA
    • Yoshida Y., et al. p53 physically interacts with mitochondrial transcription factor A and differentially regulates binding to damaged DNA. Cancer Res. 2003, 63:3729-3734.
    • (2003) Cancer Res. , vol.63 , pp. 3729-3734
    • Yoshida, Y.1
  • 34
    • 79951962147 scopus 로고    scopus 로고
    • CREB and the CRTC co-activators: sensors for hormonal and metabolic signals
    • Altarejos J.Y., Montminy M. CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat. Rev. Mol. Cell Biol. 2011, 12:141-151.
    • (2011) Nat. Rev. Mol. Cell Biol. , vol.12 , pp. 141-151
    • Altarejos, J.Y.1    Montminy, M.2
  • 35
    • 68749094302 scopus 로고    scopus 로고
    • CAMP response element-binding protein (CREB) is imported into mitochondria and promotes protein synthesis
    • De Rasmo D., et al. cAMP response element-binding protein (CREB) is imported into mitochondria and promotes protein synthesis. FEBS J. 2009, 276:4325-4333.
    • (2009) FEBS J. , vol.276 , pp. 4325-4333
    • De Rasmo, D.1
  • 36
    • 0032973460 scopus 로고    scopus 로고
    • Cyclic AMP-responsive element binding protein in brain mitochondria
    • Cammarota M., et al. Cyclic AMP-responsive element binding protein in brain mitochondria. J. Neurochem. 1999, 72:2272-2277.
    • (1999) J. Neurochem. , vol.72 , pp. 2272-2277
    • Cammarota, M.1
  • 37
    • 0031797267 scopus 로고    scopus 로고
    • Increased vulnerability to 3-nitropropionic acid in an animal model of Huntington's disease
    • Bogdanov M.B., et al. Increased vulnerability to 3-nitropropionic acid in an animal model of Huntington's disease. J. Neurochem. 1998, 71:2642-2644.
    • (1998) J. Neurochem. , vol.71 , pp. 2642-2644
    • Bogdanov, M.B.1
  • 38
    • 4644360267 scopus 로고    scopus 로고
    • Recruitment of NF-kappaB into mitochondria is involved in adenine nucleotide translocase 1 (ANT1)-induced apoptosis
    • Zamora M., et al. Recruitment of NF-kappaB into mitochondria is involved in adenine nucleotide translocase 1 (ANT1)-induced apoptosis. J. Biol. Chem. 2004, 279:38415-38423.
    • (2004) J. Biol. Chem. , vol.279 , pp. 38415-38423
    • Zamora, M.1
  • 39
    • 0036510606 scopus 로고    scopus 로고
    • Mitochondrial protein import: molecular basis of the ATP-dependent interaction of MtHsp70 with Tim44
    • Moro F., et al. Mitochondrial protein import: molecular basis of the ATP-dependent interaction of MtHsp70 with Tim44. J. Biol. Chem. 2002, 277:6874-6880.
    • (2002) J. Biol. Chem. , vol.277 , pp. 6874-6880
    • Moro, F.1
  • 40
    • 0037009130 scopus 로고    scopus 로고
    • Molecular chaperones as essential mediators of mitochondrial biogenesis
    • Voos W., Rottgers K. Molecular chaperones as essential mediators of mitochondrial biogenesis. Biochim. Biophys. Acta 2002, 1592:51-62.
    • (2002) Biochim. Biophys. Acta , vol.1592 , pp. 51-62
    • Voos, W.1    Rottgers, K.2
  • 41
    • 34249741418 scopus 로고    scopus 로고
    • Involvement of mortalin in cellular senescence from the perspective of its mitochondrial import, chaperone, and oxidative stress management functions
    • Yaguchi T., et al. Involvement of mortalin in cellular senescence from the perspective of its mitochondrial import, chaperone, and oxidative stress management functions. Ann. N. Y. Acad. Sci. 2007, 1100:306-311.
    • (2007) Ann. N. Y. Acad. Sci. , vol.1100 , pp. 306-311
    • Yaguchi, T.1
  • 42
    • 0035914435 scopus 로고    scopus 로고
    • GRIM-19, a cell death regulatory gene product, is a subunit of bovine mitochondrial NADH:ubiquinone oxidoreductase (complex I)
    • Fearnley I.M., et al. GRIM-19, a cell death regulatory gene product, is a subunit of bovine mitochondrial NADH:ubiquinone oxidoreductase (complex I). J. Biol. Chem. 2001, 276:38345-38348.
    • (2001) J. Biol. Chem. , vol.276 , pp. 38345-38348
    • Fearnley, I.M.1
  • 43
    • 4544276735 scopus 로고    scopus 로고
    • GRIM-19, a cell death regulatory protein, is essential for assembly and function of mitochondrial complex I
    • Huang G., et al. GRIM-19, a cell death regulatory protein, is essential for assembly and function of mitochondrial complex I. Mol. Cell. Biol. 2004, 24:8447-8456.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 8447-8456
    • Huang, G.1
  • 44
    • 0037451235 scopus 로고    scopus 로고
    • GRIM-19, a death-regulatory gene product, suppresses Stat3 activity via functional interaction
    • Lufei C., et al. GRIM-19, a death-regulatory gene product, suppresses Stat3 activity via functional interaction. EMBO J. 2003, 22:1325-1335.
    • (2003) EMBO J. , vol.22 , pp. 1325-1335
    • Lufei, C.1
  • 45
    • 0042925385 scopus 로고    scopus 로고
    • The cell death regulator GRIM-19 is an inhibitor of signal transducer and activator of transcription 3
    • Zhang J., et al. The cell death regulator GRIM-19 is an inhibitor of signal transducer and activator of transcription 3. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:9342-9347.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 9342-9347
    • Zhang, J.1
  • 46
    • 84864324029 scopus 로고    scopus 로고
    • GRIM-19 mediated translocation of STAT3 to mitochondria is necessary for TNF induced necroptosis
    • Shulga N., Pastorino J.G. GRIM-19 mediated translocation of STAT3 to mitochondria is necessary for TNF induced necroptosis. J. Cell Sci. 2012, 10.1242/jcs.103093.
    • (2012) J. Cell Sci.
    • Shulga, N.1    Pastorino, J.G.2
  • 47
    • 79953178934 scopus 로고    scopus 로고
    • Intrinsic protein kinase activity in mitochondrial oxidative phosphorylation complexes
    • Phillips D., et al. Intrinsic protein kinase activity in mitochondrial oxidative phosphorylation complexes. Biochemistry 2011, 50:2515-2529.
    • (2011) Biochemistry , vol.50 , pp. 2515-2529
    • Phillips, D.1
  • 48
    • 69549088424 scopus 로고    scopus 로고
    • SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma
    • Hao H.X., et al. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 2009, 325:1139-1142.
    • (2009) Science , vol.325 , pp. 1139-1142
    • Hao, H.X.1
  • 49
    • 78650973258 scopus 로고    scopus 로고
    • STAT3 and cardiac remodeling
    • Haghikia A., et al. STAT3 and cardiac remodeling. Heart Fail. Rev. 2010, 16:35-47.
    • (2010) Heart Fail. Rev. , vol.16 , pp. 35-47
    • Haghikia, A.1
  • 50
    • 20444430064 scopus 로고    scopus 로고
    • Many good reasons to have STAT3 in the heart
    • Hilfiker-Kleiner D., et al. Many good reasons to have STAT3 in the heart. Pharmacol. Ther. 2005, 107:131-137.
    • (2005) Pharmacol. Ther. , vol.107 , pp. 131-137
    • Hilfiker-Kleiner, D.1
  • 51
    • 84858007745 scopus 로고    scopus 로고
    • Cytoprotection by the modulation of mitochondrial electron transport chain: the emerging role of mitochondrial STAT3
    • Szczepanek K., et al. Cytoprotection by the modulation of mitochondrial electron transport chain: the emerging role of mitochondrial STAT3. Mitochondrion 2012, 12:180-189.
    • (2012) Mitochondrion , vol.12 , pp. 180-189
    • Szczepanek, K.1
  • 52
    • 81355146580 scopus 로고    scopus 로고
    • Mitochondrial STAT3 activation and cardioprotection by ischemic postconditioning in pigs with regional myocardial ischemia/reperfusion
    • Heusch G., et al. Mitochondrial STAT3 activation and cardioprotection by ischemic postconditioning in pigs with regional myocardial ischemia/reperfusion. Circ. Res. 2011, 109:1302-1308.
    • (2011) Circ. Res. , vol.109 , pp. 1302-1308
    • Heusch, G.1
  • 53
    • 79961031623 scopus 로고    scopus 로고
    • H11 kinase/heat shock protein 22 deletion impairs both nuclear and mitochondrial functions of STAT3 and accelerates the transition into heart failure on cardiac overload
    • Qiu H., et al. H11 kinase/heat shock protein 22 deletion impairs both nuclear and mitochondrial functions of STAT3 and accelerates the transition into heart failure on cardiac overload. Circulation 2011, 124:406-415.
    • (2011) Circulation , vol.124 , pp. 406-415
    • Qiu, H.1
  • 54
    • 78649324875 scopus 로고    scopus 로고
    • Inhibition of permeability transition pore opening by mitochondrial STAT3 and its role in myocardial ischemia/reperfusion
    • Boengler K., et al. Inhibition of permeability transition pore opening by mitochondrial STAT3 and its role in myocardial ischemia/reperfusion. Basic Res. Cardiol. 2010, 105:771-785.
    • (2010) Basic Res. Cardiol. , vol.105 , pp. 771-785
    • Boengler, K.1
  • 55
    • 78049300452 scopus 로고    scopus 로고
    • Modulation of gene expression and tumor cell growth by redox modification of STAT3
    • Li L., et al. Modulation of gene expression and tumor cell growth by redox modification of STAT3. Cancer Res. 2010, 70:8222-8232.
    • (2010) Cancer Res. , vol.70 , pp. 8222-8232
    • Li, L.1
  • 56
    • 78349243232 scopus 로고    scopus 로고
    • Could STAT3 provide a link between respiration and cell cycle progression?
    • Shaw P.E. Could STAT3 provide a link between respiration and cell cycle progression?. Cell Cycle 2011, 9:4294-4296.
    • (2011) Cell Cycle , vol.9 , pp. 4294-4296
    • Shaw, P.E.1
  • 57
    • 67649886861 scopus 로고    scopus 로고
    • S-glutathionylation impairs signal transducer and activator of transcription 3 activation and signaling
    • Xie Y., et al. S-glutathionylation impairs signal transducer and activator of transcription 3 activation and signaling. Endocrinology 2009, 150:1122-1131.
    • (2009) Endocrinology , vol.150 , pp. 1122-1131
    • Xie, Y.1
  • 58
    • 18444365267 scopus 로고    scopus 로고
    • Thioredoxin-2 (TRX-2) is an essential gene regulating mitochondria-dependent apoptosis
    • Tanaka T., et al. Thioredoxin-2 (TRX-2) is an essential gene regulating mitochondria-dependent apoptosis. EMBO J. 2002, 21:1695-1703.
    • (2002) EMBO J. , vol.21 , pp. 1695-1703
    • Tanaka, T.1
  • 59
    • 9144249116 scopus 로고    scopus 로고
    • Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE
    • Beer S.M., et al. Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE. J. Biol. Chem. 2004, 279:47939-47951.
    • (2004) J. Biol. Chem. , vol.279 , pp. 47939-47951
    • Beer, S.M.1
  • 60
    • 77951953059 scopus 로고    scopus 로고
    • Glutaredoxin regulates apoptosis in cardiomyocytes via NFkappaB targets Bcl-2 and Bcl-xL: implications for cardiac aging
    • Gallogly M.M., et al. Glutaredoxin regulates apoptosis in cardiomyocytes via NFkappaB targets Bcl-2 and Bcl-xL: implications for cardiac aging. Antioxid. Redox Signal. 2010, 12:1339-1353.
    • (2010) Antioxid. Redox Signal. , vol.12 , pp. 1339-1353
    • Gallogly, M.M.1
  • 61
    • 0036226063 scopus 로고    scopus 로고
    • Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes
    • Rodriguez-Manzaneque M.T., et al. Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes. Mol. Biol. Cell 2002, 13:1109-1121.
    • (2002) Mol. Biol. Cell , vol.13 , pp. 1109-1121
    • Rodriguez-Manzaneque, M.T.1
  • 62
    • 22744447211 scopus 로고    scopus 로고
    • Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis
    • Giorgio M., et al. Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 2005, 122:221-233.
    • (2005) Cell , vol.122 , pp. 221-233
    • Giorgio, M.1
  • 63
    • 84856279893 scopus 로고    scopus 로고
    • Mitochondrial Rac1 GTPase import and electron transfer from cytochrome c are required for pulmonary fibrosis
    • Osborn-Heaford H.L., et al. Mitochondrial Rac1 GTPase import and electron transfer from cytochrome c are required for pulmonary fibrosis. J. Biol. Chem. 2012, 287:3301-3312.
    • (2012) J. Biol. Chem. , vol.287 , pp. 3301-3312
    • Osborn-Heaford, H.L.1
  • 64
    • 79959609376 scopus 로고    scopus 로고
    • Mitochondrial localized STAT3 is involved in NGF-induced neurite outgrowth
    • Zhou L., Too H.-P. Mitochondrial localized STAT3 is involved in NGF-induced neurite outgrowth. PLoS ONE 2011, 6:e21680.
    • (2011) PLoS ONE , vol.6
    • Zhou, L.1    Too, H.-P.2
  • 65
    • 77949727731 scopus 로고    scopus 로고
    • Disruption of astrocyte STAT3 signaling decreases mitochondrial function and increases oxidative stress in vitro
    • Sarafian T.A., et al. Disruption of astrocyte STAT3 signaling decreases mitochondrial function and increases oxidative stress in vitro. PLoS ONE 2010, 5:e9532.
    • (2010) PLoS ONE , vol.5
    • Sarafian, T.A.1
  • 66
    • 78649451048 scopus 로고    scopus 로고
    • Mitochondrial translocation of signal transducer and activator of transcription 5 (STAT5) in leukemic T cells and cytokine-stimulated cells
    • Chueh F.Y., et al. Mitochondrial translocation of signal transducer and activator of transcription 5 (STAT5) in leukemic T cells and cytokine-stimulated cells. Biochem. Biophys. Res. Commun. 2010, 402:778-783.
    • (2010) Biochem. Biophys. Res. Commun. , vol.402 , pp. 778-783
    • Chueh, F.Y.1
  • 67
    • 17544366950 scopus 로고    scopus 로고
    • Inhibition of mitochondrial function by interferon
    • Lewis J.A., et al. Inhibition of mitochondrial function by interferon. J. Biol. Chem. 1996, 271:13184-13190.
    • (1996) J. Biol. Chem. , vol.271 , pp. 13184-13190
    • Lewis, J.A.1
  • 68
    • 0027982535 scopus 로고
    • Supression of mitochondrial mRNA levels and mitochondrial function in cells responding to the anticellular action of interferon
    • Lou J., et al. Supression of mitochondrial mRNA levels and mitochondrial function in cells responding to the anticellular action of interferon. J. Interferon Res. 1994, 14:33-40.
    • (1994) J. Interferon Res. , vol.14 , pp. 33-40
    • Lou, J.1
  • 69
    • 0025600453 scopus 로고
    • Interferon selectively inhibits the expression of mitochondrial genes: a novel pathway for interferon-mediated responses
    • Shan B., et al. Interferon selectively inhibits the expression of mitochondrial genes: a novel pathway for interferon-mediated responses. EMBO J. 1990, 9:4307-4314.
    • (1990) EMBO J. , vol.9 , pp. 4307-4314
    • Shan, B.1
  • 70
    • 0037349289 scopus 로고    scopus 로고
    • P53 has a direct apoptogenic role at the mitochondria
    • Mihara M., et al. p53 has a direct apoptogenic role at the mitochondria. Mol. Cell 2003, 11:577-590.
    • (2003) Mol. Cell , vol.11 , pp. 577-590
    • Mihara, M.1
  • 71
    • 0037160084 scopus 로고    scopus 로고
    • Interactions of STAT3 with caveolin-1 and heat shock protein 90 in plasma membrane raft and cytosolic complexes. Preservation of cytokine signaling during fever
    • Shah M., et al. Interactions of STAT3 with caveolin-1 and heat shock protein 90 in plasma membrane raft and cytosolic complexes. Preservation of cytokine signaling during fever. J. Biol. Chem. 2002, 277:45662-45669.
    • (2002) J. Biol. Chem. , vol.277 , pp. 45662-45669
    • Shah, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.