-
1
-
-
0035877820
-
Ikappa B-alpha, the NF-kappa B inhibitory subunit, interacts with ANT, the mitochondrial ATP/ADP translocator
-
Bottero V., et al. Ikappa B-alpha, the NF-kappa B inhibitory subunit, interacts with ANT, the mitochondrial ATP/ADP translocator. J. Biol. Chem. 2001, 276:21317-21324.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 21317-21324
-
-
Bottero, V.1
-
2
-
-
0037474269
-
NF-kappa B and I kappa B alpha are found in the mitochondria. Evidence for regulation of mitochondrial gene expression by NF-kappa B
-
Cogswell P.C., et al. NF-kappa B and I kappa B alpha are found in the mitochondria. Evidence for regulation of mitochondrial gene expression by NF-kappa B. J. Biol. Chem. 2003, 278:2963-2968.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 2963-2968
-
-
Cogswell, P.C.1
-
3
-
-
67649988989
-
Mitochondrial Stat3 supports Ras-dependent cellular transformation
-
PMCID 148639
-
Gough D.J., et al. Mitochondrial Stat3 supports Ras-dependent cellular transformation. Science 2009, 324:1713-1716. PMCID 148639.
-
(2009)
Science
, vol.324
, pp. 1713-1716
-
-
Gough, D.J.1
-
4
-
-
39449118563
-
Thyroid effects on mitochondrial energetics
-
Harper M.E., Seifert E.L. Thyroid effects on mitochondrial energetics. Thyroid 2008, 18:145-156.
-
(2008)
Thyroid
, vol.18
, pp. 145-156
-
-
Harper, M.E.1
Seifert, E.L.2
-
5
-
-
80051677812
-
P53-dependent regulation of mitochondrial energy production by the RelA subunit of NF-kappaB
-
Johnson R.F., et al. p53-dependent regulation of mitochondrial energy production by the RelA subunit of NF-kappaB. Cancer Res. 2011, 71:5588-5597.
-
(2011)
Cancer Res.
, vol.71
, pp. 5588-5597
-
-
Johnson, R.F.1
-
6
-
-
57349115353
-
Estrogenic control of mitochondrial function and biogenesis
-
Klinge C.M. Estrogenic control of mitochondrial function and biogenesis. J. Cell. Biochem. 2008, 105:1342-1351.
-
(2008)
J. Cell. Biochem.
, vol.105
, pp. 1342-1351
-
-
Klinge, C.M.1
-
7
-
-
28844499005
-
Mitochondrial cyclic AMP response element-binding protein (CREB) mediates mitochondrial gene expression and neuronal survival
-
Lee J., et al. Mitochondrial cyclic AMP response element-binding protein (CREB) mediates mitochondrial gene expression and neuronal survival. J. Biol. Chem. 2005, 280:40398-40401.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 40398-40401
-
-
Lee, J.1
-
8
-
-
79952205241
-
Direct regulation of complex I by mitochondrial MEF2D is disrupted in a mouse model of Parkinson disease and in human patients
-
She H., et al. Direct regulation of complex I by mitochondrial MEF2D is disrupted in a mouse model of Parkinson disease and in human patients. J. Clin. Invest. 2011, 121:930-940.
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 930-940
-
-
She, H.1
-
9
-
-
59849101586
-
Function of mitochondrial Stat3 in cellular respiration
-
Wegrzyn J., et al. Function of mitochondrial Stat3 in cellular respiration. Science 2009, 323:793-797.
-
(2009)
Science
, vol.323
, pp. 793-797
-
-
Wegrzyn, J.1
-
10
-
-
66749128074
-
The transcription-independent mitochondrial p53 program is a major contributor to nutlin-induced apoptosis in tumor cells
-
Vaseva A.V., et al. The transcription-independent mitochondrial p53 program is a major contributor to nutlin-induced apoptosis in tumor cells. Cell Cycle 2009, 8:1711-1719.
-
(2009)
Cell Cycle
, vol.8
, pp. 1711-1719
-
-
Vaseva, A.V.1
-
11
-
-
25444515720
-
Antioxidants modulate mitochondrial PKA and increase CREB binding to D-loop DNA of the mitochondrial genome in neurons
-
Ryu H., et al. Antioxidants modulate mitochondrial PKA and increase CREB binding to D-loop DNA of the mitochondrial genome in neurons. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:13915-13920.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 13915-13920
-
-
Ryu, H.1
-
12
-
-
0034673324
-
E-Selectin expression in a murine model of chronic colitis
-
Kawachi S., et al. E-Selectin expression in a murine model of chronic colitis. Biochem. Biophys. Res. Commun. 2000, 268:547-552.
-
(2000)
Biochem. Biophys. Res. Commun.
, vol.268
, pp. 547-552
-
-
Kawachi, S.1
-
13
-
-
33745149291
-
P53 regulates mitochondrial respiration
-
Matoba S., et al. p53 regulates mitochondrial respiration. Science 2006, 312:1650-1653.
-
(2006)
Science
, vol.312
, pp. 1650-1653
-
-
Matoba, S.1
-
14
-
-
80053539605
-
NF-kappaB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration
-
Mauro C., et al. NF-kappaB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration. Nat. Cell Biol. 2011, 13:1272-1279.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 1272-1279
-
-
Mauro, C.1
-
15
-
-
0036851837
-
Mitochondrial deficiency and cardiac sudden death in mice lacking the MEF2A transcription factor
-
Naya F.J., et al. Mitochondrial deficiency and cardiac sudden death in mice lacking the MEF2A transcription factor. Nat. Med. 2002, 8:1303-1309.
-
(2002)
Nat. Med.
, vol.8
, pp. 1303-1309
-
-
Naya, F.J.1
-
16
-
-
43049139541
-
P53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation
-
Kawauchi K., et al. p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat. Cell Biol. 2008, 10:611-618.
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 611-618
-
-
Kawauchi, K.1
-
17
-
-
33846815521
-
A cathepsin D-cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy
-
Hilfiker-Kleiner D., et al. A cathepsin D-cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy. Cell 2007, 128:589-600.
-
(2007)
Cell
, vol.128
, pp. 589-600
-
-
Hilfiker-Kleiner, D.1
-
18
-
-
0242268405
-
Cardiomyocyte-restricted knockout of STAT3 results in higher sensitivity to inflammation, cardiac fibrosis, and heart failure with advanced age
-
Jacoby J.J., et al. Cardiomyocyte-restricted knockout of STAT3 results in higher sensitivity to inflammation, cardiac fibrosis, and heart failure with advanced age. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:12929-12934.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 12929-12934
-
-
Jacoby, J.J.1
-
19
-
-
80051943914
-
Mitochondrial-targeted signal transducer and activator of transcription 3 (STAT3) protects against ischemia-induced changes in the electron transport chain and the generation of reactive oxygen species
-
Szczepanek K., et al. Mitochondrial-targeted signal transducer and activator of transcription 3 (STAT3) protects against ischemia-induced changes in the electron transport chain and the generation of reactive oxygen species. J. Biol. Chem. 2011, 286:29610-29620.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 29610-29620
-
-
Szczepanek, K.1
-
20
-
-
77956304154
-
Tom70 mediates activation of interferon regulatory factor 3 on mitochondria
-
Liu X.Y., et al. Tom70 mediates activation of interferon regulatory factor 3 on mitochondria. Cell Res. 2010, 20:994-1011.
-
(2010)
Cell Res.
, vol.20
, pp. 994-1011
-
-
Liu, X.Y.1
-
22
-
-
77952578865
-
Viral apoptosis is induced by IRF-3-mediated activation of Bax
-
Chattopadhyay S., et al. Viral apoptosis is induced by IRF-3-mediated activation of Bax. EMBO J. 2010, 29:1762-1773.
-
(2010)
EMBO J.
, vol.29
, pp. 1762-1773
-
-
Chattopadhyay, S.1
-
23
-
-
33847276654
-
Monoubiquitylation promotes mitochondrial p53 translocation
-
Marchenko N.D., et al. Monoubiquitylation promotes mitochondrial p53 translocation. EMBO J. 2007, 26:923-934.
-
(2007)
EMBO J.
, vol.26
, pp. 923-934
-
-
Marchenko, N.D.1
-
24
-
-
2342553892
-
Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex
-
Leu J.I., et al. Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat. Cell Biol. 2004, 6:443-450.
-
(2004)
Nat. Cell Biol.
, vol.6
, pp. 443-450
-
-
Leu, J.I.1
-
25
-
-
0842278331
-
Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis
-
Chipuk J.E., et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 2004, 303:1010-1014.
-
(2004)
Science
, vol.303
, pp. 1010-1014
-
-
Chipuk, J.E.1
-
26
-
-
33749237825
-
Interferon regulatory factor 3 activates p53-dependent cell growth inhibition
-
Kim T.K., et al. Interferon regulatory factor 3 activates p53-dependent cell growth inhibition. Cancer Lett. 2006, 242:215-221.
-
(2006)
Cancer Lett.
, vol.242
, pp. 215-221
-
-
Kim, T.K.1
-
27
-
-
33747620737
-
Small-molecule inhibitor of p53 binding to mitochondria protects mice from gamma radiation
-
Strom E., et al. Small-molecule inhibitor of p53 binding to mitochondria protects mice from gamma radiation. Nat. Chem. Biol. 2006, 2:474-479.
-
(2006)
Nat. Chem. Biol.
, vol.2
, pp. 474-479
-
-
Strom, E.1
-
28
-
-
36849074245
-
Hepatic IGFBP1 is a prosurvival factor that binds to BAK, protects the liver from apoptosis, and antagonizes the proapoptotic actions of p53 at mitochondria
-
Leu J.I., George D.L. Hepatic IGFBP1 is a prosurvival factor that binds to BAK, protects the liver from apoptosis, and antagonizes the proapoptotic actions of p53 at mitochondria. Genes Dev. 2007, 21:3095-3109.
-
(2007)
Genes Dev.
, vol.21
, pp. 3095-3109
-
-
Leu, J.I.1
George, D.L.2
-
29
-
-
0037372005
-
The codon 72 polymorphic variants of p53 have markedly different apoptotic potential
-
Dumont P., et al. The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat. Genet. 2003, 33:357-365.
-
(2003)
Nat. Genet.
, vol.33
, pp. 357-365
-
-
Dumont, P.1
-
30
-
-
0034717014
-
Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling
-
Marchenko N.D., et al. Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J. Biol. Chem. 2000, 275:16202-16212.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 16202-16212
-
-
Marchenko, N.D.1
-
31
-
-
0036346345
-
Hsp70 family member, mot-2/mthsp70/GRP75, binds to the cytoplasmic sequestration domain of the p53 protein
-
Wadhwa R., et al. Hsp70 family member, mot-2/mthsp70/GRP75, binds to the cytoplasmic sequestration domain of the p53 protein. Exp. Cell Res. 2002, 274:246-253.
-
(2002)
Exp. Cell Res.
, vol.274
, pp. 246-253
-
-
Wadhwa, R.1
-
32
-
-
18144382261
-
P53 translocation to mitochondria precedes its nuclear translocation and targets mitochondrial oxidative defense protein-manganese superoxide dismutase
-
Zhao Y., et al. p53 translocation to mitochondria precedes its nuclear translocation and targets mitochondrial oxidative defense protein-manganese superoxide dismutase. Cancer Res. 2005, 65:3745-3750.
-
(2005)
Cancer Res.
, vol.65
, pp. 3745-3750
-
-
Zhao, Y.1
-
33
-
-
0038418297
-
P53 physically interacts with mitochondrial transcription factor A and differentially regulates binding to damaged DNA
-
Yoshida Y., et al. p53 physically interacts with mitochondrial transcription factor A and differentially regulates binding to damaged DNA. Cancer Res. 2003, 63:3729-3734.
-
(2003)
Cancer Res.
, vol.63
, pp. 3729-3734
-
-
Yoshida, Y.1
-
34
-
-
79951962147
-
CREB and the CRTC co-activators: sensors for hormonal and metabolic signals
-
Altarejos J.Y., Montminy M. CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat. Rev. Mol. Cell Biol. 2011, 12:141-151.
-
(2011)
Nat. Rev. Mol. Cell Biol.
, vol.12
, pp. 141-151
-
-
Altarejos, J.Y.1
Montminy, M.2
-
35
-
-
68749094302
-
CAMP response element-binding protein (CREB) is imported into mitochondria and promotes protein synthesis
-
De Rasmo D., et al. cAMP response element-binding protein (CREB) is imported into mitochondria and promotes protein synthesis. FEBS J. 2009, 276:4325-4333.
-
(2009)
FEBS J.
, vol.276
, pp. 4325-4333
-
-
De Rasmo, D.1
-
36
-
-
0032973460
-
Cyclic AMP-responsive element binding protein in brain mitochondria
-
Cammarota M., et al. Cyclic AMP-responsive element binding protein in brain mitochondria. J. Neurochem. 1999, 72:2272-2277.
-
(1999)
J. Neurochem.
, vol.72
, pp. 2272-2277
-
-
Cammarota, M.1
-
37
-
-
0031797267
-
Increased vulnerability to 3-nitropropionic acid in an animal model of Huntington's disease
-
Bogdanov M.B., et al. Increased vulnerability to 3-nitropropionic acid in an animal model of Huntington's disease. J. Neurochem. 1998, 71:2642-2644.
-
(1998)
J. Neurochem.
, vol.71
, pp. 2642-2644
-
-
Bogdanov, M.B.1
-
38
-
-
4644360267
-
Recruitment of NF-kappaB into mitochondria is involved in adenine nucleotide translocase 1 (ANT1)-induced apoptosis
-
Zamora M., et al. Recruitment of NF-kappaB into mitochondria is involved in adenine nucleotide translocase 1 (ANT1)-induced apoptosis. J. Biol. Chem. 2004, 279:38415-38423.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 38415-38423
-
-
Zamora, M.1
-
39
-
-
0036510606
-
Mitochondrial protein import: molecular basis of the ATP-dependent interaction of MtHsp70 with Tim44
-
Moro F., et al. Mitochondrial protein import: molecular basis of the ATP-dependent interaction of MtHsp70 with Tim44. J. Biol. Chem. 2002, 277:6874-6880.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 6874-6880
-
-
Moro, F.1
-
40
-
-
0037009130
-
Molecular chaperones as essential mediators of mitochondrial biogenesis
-
Voos W., Rottgers K. Molecular chaperones as essential mediators of mitochondrial biogenesis. Biochim. Biophys. Acta 2002, 1592:51-62.
-
(2002)
Biochim. Biophys. Acta
, vol.1592
, pp. 51-62
-
-
Voos, W.1
Rottgers, K.2
-
41
-
-
34249741418
-
Involvement of mortalin in cellular senescence from the perspective of its mitochondrial import, chaperone, and oxidative stress management functions
-
Yaguchi T., et al. Involvement of mortalin in cellular senescence from the perspective of its mitochondrial import, chaperone, and oxidative stress management functions. Ann. N. Y. Acad. Sci. 2007, 1100:306-311.
-
(2007)
Ann. N. Y. Acad. Sci.
, vol.1100
, pp. 306-311
-
-
Yaguchi, T.1
-
42
-
-
0035914435
-
GRIM-19, a cell death regulatory gene product, is a subunit of bovine mitochondrial NADH:ubiquinone oxidoreductase (complex I)
-
Fearnley I.M., et al. GRIM-19, a cell death regulatory gene product, is a subunit of bovine mitochondrial NADH:ubiquinone oxidoreductase (complex I). J. Biol. Chem. 2001, 276:38345-38348.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 38345-38348
-
-
Fearnley, I.M.1
-
43
-
-
4544276735
-
GRIM-19, a cell death regulatory protein, is essential for assembly and function of mitochondrial complex I
-
Huang G., et al. GRIM-19, a cell death regulatory protein, is essential for assembly and function of mitochondrial complex I. Mol. Cell. Biol. 2004, 24:8447-8456.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 8447-8456
-
-
Huang, G.1
-
44
-
-
0037451235
-
GRIM-19, a death-regulatory gene product, suppresses Stat3 activity via functional interaction
-
Lufei C., et al. GRIM-19, a death-regulatory gene product, suppresses Stat3 activity via functional interaction. EMBO J. 2003, 22:1325-1335.
-
(2003)
EMBO J.
, vol.22
, pp. 1325-1335
-
-
Lufei, C.1
-
45
-
-
0042925385
-
The cell death regulator GRIM-19 is an inhibitor of signal transducer and activator of transcription 3
-
Zhang J., et al. The cell death regulator GRIM-19 is an inhibitor of signal transducer and activator of transcription 3. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:9342-9347.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 9342-9347
-
-
Zhang, J.1
-
46
-
-
84864324029
-
GRIM-19 mediated translocation of STAT3 to mitochondria is necessary for TNF induced necroptosis
-
Shulga N., Pastorino J.G. GRIM-19 mediated translocation of STAT3 to mitochondria is necessary for TNF induced necroptosis. J. Cell Sci. 2012, 10.1242/jcs.103093.
-
(2012)
J. Cell Sci.
-
-
Shulga, N.1
Pastorino, J.G.2
-
47
-
-
79953178934
-
Intrinsic protein kinase activity in mitochondrial oxidative phosphorylation complexes
-
Phillips D., et al. Intrinsic protein kinase activity in mitochondrial oxidative phosphorylation complexes. Biochemistry 2011, 50:2515-2529.
-
(2011)
Biochemistry
, vol.50
, pp. 2515-2529
-
-
Phillips, D.1
-
48
-
-
69549088424
-
SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma
-
Hao H.X., et al. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 2009, 325:1139-1142.
-
(2009)
Science
, vol.325
, pp. 1139-1142
-
-
Hao, H.X.1
-
49
-
-
78650973258
-
STAT3 and cardiac remodeling
-
Haghikia A., et al. STAT3 and cardiac remodeling. Heart Fail. Rev. 2010, 16:35-47.
-
(2010)
Heart Fail. Rev.
, vol.16
, pp. 35-47
-
-
Haghikia, A.1
-
50
-
-
20444430064
-
Many good reasons to have STAT3 in the heart
-
Hilfiker-Kleiner D., et al. Many good reasons to have STAT3 in the heart. Pharmacol. Ther. 2005, 107:131-137.
-
(2005)
Pharmacol. Ther.
, vol.107
, pp. 131-137
-
-
Hilfiker-Kleiner, D.1
-
51
-
-
84858007745
-
Cytoprotection by the modulation of mitochondrial electron transport chain: the emerging role of mitochondrial STAT3
-
Szczepanek K., et al. Cytoprotection by the modulation of mitochondrial electron transport chain: the emerging role of mitochondrial STAT3. Mitochondrion 2012, 12:180-189.
-
(2012)
Mitochondrion
, vol.12
, pp. 180-189
-
-
Szczepanek, K.1
-
52
-
-
81355146580
-
Mitochondrial STAT3 activation and cardioprotection by ischemic postconditioning in pigs with regional myocardial ischemia/reperfusion
-
Heusch G., et al. Mitochondrial STAT3 activation and cardioprotection by ischemic postconditioning in pigs with regional myocardial ischemia/reperfusion. Circ. Res. 2011, 109:1302-1308.
-
(2011)
Circ. Res.
, vol.109
, pp. 1302-1308
-
-
Heusch, G.1
-
53
-
-
79961031623
-
H11 kinase/heat shock protein 22 deletion impairs both nuclear and mitochondrial functions of STAT3 and accelerates the transition into heart failure on cardiac overload
-
Qiu H., et al. H11 kinase/heat shock protein 22 deletion impairs both nuclear and mitochondrial functions of STAT3 and accelerates the transition into heart failure on cardiac overload. Circulation 2011, 124:406-415.
-
(2011)
Circulation
, vol.124
, pp. 406-415
-
-
Qiu, H.1
-
54
-
-
78649324875
-
Inhibition of permeability transition pore opening by mitochondrial STAT3 and its role in myocardial ischemia/reperfusion
-
Boengler K., et al. Inhibition of permeability transition pore opening by mitochondrial STAT3 and its role in myocardial ischemia/reperfusion. Basic Res. Cardiol. 2010, 105:771-785.
-
(2010)
Basic Res. Cardiol.
, vol.105
, pp. 771-785
-
-
Boengler, K.1
-
55
-
-
78049300452
-
Modulation of gene expression and tumor cell growth by redox modification of STAT3
-
Li L., et al. Modulation of gene expression and tumor cell growth by redox modification of STAT3. Cancer Res. 2010, 70:8222-8232.
-
(2010)
Cancer Res.
, vol.70
, pp. 8222-8232
-
-
Li, L.1
-
56
-
-
78349243232
-
Could STAT3 provide a link between respiration and cell cycle progression?
-
Shaw P.E. Could STAT3 provide a link between respiration and cell cycle progression?. Cell Cycle 2011, 9:4294-4296.
-
(2011)
Cell Cycle
, vol.9
, pp. 4294-4296
-
-
Shaw, P.E.1
-
57
-
-
67649886861
-
S-glutathionylation impairs signal transducer and activator of transcription 3 activation and signaling
-
Xie Y., et al. S-glutathionylation impairs signal transducer and activator of transcription 3 activation and signaling. Endocrinology 2009, 150:1122-1131.
-
(2009)
Endocrinology
, vol.150
, pp. 1122-1131
-
-
Xie, Y.1
-
58
-
-
18444365267
-
Thioredoxin-2 (TRX-2) is an essential gene regulating mitochondria-dependent apoptosis
-
Tanaka T., et al. Thioredoxin-2 (TRX-2) is an essential gene regulating mitochondria-dependent apoptosis. EMBO J. 2002, 21:1695-1703.
-
(2002)
EMBO J.
, vol.21
, pp. 1695-1703
-
-
Tanaka, T.1
-
59
-
-
9144249116
-
Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE
-
Beer S.M., et al. Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE. J. Biol. Chem. 2004, 279:47939-47951.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 47939-47951
-
-
Beer, S.M.1
-
60
-
-
77951953059
-
Glutaredoxin regulates apoptosis in cardiomyocytes via NFkappaB targets Bcl-2 and Bcl-xL: implications for cardiac aging
-
Gallogly M.M., et al. Glutaredoxin regulates apoptosis in cardiomyocytes via NFkappaB targets Bcl-2 and Bcl-xL: implications for cardiac aging. Antioxid. Redox Signal. 2010, 12:1339-1353.
-
(2010)
Antioxid. Redox Signal.
, vol.12
, pp. 1339-1353
-
-
Gallogly, M.M.1
-
61
-
-
0036226063
-
Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes
-
Rodriguez-Manzaneque M.T., et al. Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes. Mol. Biol. Cell 2002, 13:1109-1121.
-
(2002)
Mol. Biol. Cell
, vol.13
, pp. 1109-1121
-
-
Rodriguez-Manzaneque, M.T.1
-
62
-
-
22744447211
-
Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis
-
Giorgio M., et al. Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 2005, 122:221-233.
-
(2005)
Cell
, vol.122
, pp. 221-233
-
-
Giorgio, M.1
-
63
-
-
84856279893
-
Mitochondrial Rac1 GTPase import and electron transfer from cytochrome c are required for pulmonary fibrosis
-
Osborn-Heaford H.L., et al. Mitochondrial Rac1 GTPase import and electron transfer from cytochrome c are required for pulmonary fibrosis. J. Biol. Chem. 2012, 287:3301-3312.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 3301-3312
-
-
Osborn-Heaford, H.L.1
-
64
-
-
79959609376
-
Mitochondrial localized STAT3 is involved in NGF-induced neurite outgrowth
-
Zhou L., Too H.-P. Mitochondrial localized STAT3 is involved in NGF-induced neurite outgrowth. PLoS ONE 2011, 6:e21680.
-
(2011)
PLoS ONE
, vol.6
-
-
Zhou, L.1
Too, H.-P.2
-
65
-
-
77949727731
-
Disruption of astrocyte STAT3 signaling decreases mitochondrial function and increases oxidative stress in vitro
-
Sarafian T.A., et al. Disruption of astrocyte STAT3 signaling decreases mitochondrial function and increases oxidative stress in vitro. PLoS ONE 2010, 5:e9532.
-
(2010)
PLoS ONE
, vol.5
-
-
Sarafian, T.A.1
-
66
-
-
78649451048
-
Mitochondrial translocation of signal transducer and activator of transcription 5 (STAT5) in leukemic T cells and cytokine-stimulated cells
-
Chueh F.Y., et al. Mitochondrial translocation of signal transducer and activator of transcription 5 (STAT5) in leukemic T cells and cytokine-stimulated cells. Biochem. Biophys. Res. Commun. 2010, 402:778-783.
-
(2010)
Biochem. Biophys. Res. Commun.
, vol.402
, pp. 778-783
-
-
Chueh, F.Y.1
-
67
-
-
17544366950
-
Inhibition of mitochondrial function by interferon
-
Lewis J.A., et al. Inhibition of mitochondrial function by interferon. J. Biol. Chem. 1996, 271:13184-13190.
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 13184-13190
-
-
Lewis, J.A.1
-
68
-
-
0027982535
-
Supression of mitochondrial mRNA levels and mitochondrial function in cells responding to the anticellular action of interferon
-
Lou J., et al. Supression of mitochondrial mRNA levels and mitochondrial function in cells responding to the anticellular action of interferon. J. Interferon Res. 1994, 14:33-40.
-
(1994)
J. Interferon Res.
, vol.14
, pp. 33-40
-
-
Lou, J.1
-
69
-
-
0025600453
-
Interferon selectively inhibits the expression of mitochondrial genes: a novel pathway for interferon-mediated responses
-
Shan B., et al. Interferon selectively inhibits the expression of mitochondrial genes: a novel pathway for interferon-mediated responses. EMBO J. 1990, 9:4307-4314.
-
(1990)
EMBO J.
, vol.9
, pp. 4307-4314
-
-
Shan, B.1
-
70
-
-
0037349289
-
P53 has a direct apoptogenic role at the mitochondria
-
Mihara M., et al. p53 has a direct apoptogenic role at the mitochondria. Mol. Cell 2003, 11:577-590.
-
(2003)
Mol. Cell
, vol.11
, pp. 577-590
-
-
Mihara, M.1
-
71
-
-
0037160084
-
Interactions of STAT3 with caveolin-1 and heat shock protein 90 in plasma membrane raft and cytosolic complexes. Preservation of cytokine signaling during fever
-
Shah M., et al. Interactions of STAT3 with caveolin-1 and heat shock protein 90 in plasma membrane raft and cytosolic complexes. Preservation of cytokine signaling during fever. J. Biol. Chem. 2002, 277:45662-45669.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 45662-45669
-
-
Shah, M.1
|