메뉴 건너뛰기




Volumn 1844, Issue 8, 2014, Pages 1344-1354

Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation

Author keywords

Active deactive transition; Mitochondria; Reactive oxygen species (ROS); Redox proteomics; Respiratory chain complex; S nitrosylation

Indexed keywords

MITOCHONDRIAL PROTEIN; REACTIVE OXYGEN METABOLITE; SUCCINATE DEHYDROGENASE (UBIQUINONE); THIOL;

EID: 84902242573     PISSN: 15709639     EISSN: 18781454     Source Type: Journal    
DOI: 10.1016/j.bbapap.2014.02.006     Document Type: Review
Times cited : (120)

References (170)
  • 1
    • 58249093939 scopus 로고    scopus 로고
    • How mitochondria produce reactive oxygen species
    • M.P. Murphy How mitochondria produce reactive oxygen species Biochem. J. 417 2009 1 13
    • (2009) Biochem. J. , vol.417 , pp. 1-13
    • Murphy, M.P.1
  • 3
    • 77952541558 scopus 로고    scopus 로고
    • The sites and topology of mitochondrial superoxide production
    • M.D. Brand The sites and topology of mitochondrial superoxide production Exp. Gerontol. 45 2010 466 472
    • (2010) Exp. Gerontol. , vol.45 , pp. 466-472
    • Brand, M.D.1
  • 4
    • 84863738048 scopus 로고    scopus 로고
    • Molecular mechanisms of superoxide production by the mitochondrial respiratory chain
    • S. Dröse, and U. Brandt Molecular mechanisms of superoxide production by the mitochondrial respiratory chain Adv. Exp. Med. Biol. 748 2012 145 169
    • (2012) Adv. Exp. Med. Biol. , vol.748 , pp. 145-169
    • Dröse, S.1    Brandt, U.2
  • 5
    • 25444469412 scopus 로고    scopus 로고
    • Mitochondrial metabolism of reactive oxygen species
    • DOI 10.1007/s10541-005-0102-7
    • A.I. Andreyev, Y.E. Kushnareva, and A.A. Starkov Mitochondrial metabolism of reactive oxygen species Biochemistry (Mosc) 70 2005 200 214 (Pubitemid 40512329)
    • (2005) Biochemistry (Moscow) , vol.70 , Issue.2 , pp. 200-214
    • Andreyev, A.Yu.1    Kushnareva, Yu.E.2    Starkov, A.A.3
  • 6
    • 57649233079 scopus 로고    scopus 로고
    • The role of mitochondria in reactive oxygen species metabolism and signaling
    • A.A. Starkov The role of mitochondria in reactive oxygen species metabolism and signaling Ann. N. Y. Acad. Sci. 1147 2008 37 52
    • (2008) Ann. N. Y. Acad. Sci. , vol.1147 , pp. 37-52
    • Starkov, A.A.1
  • 7
    • 73849144014 scopus 로고    scopus 로고
    • Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling
    • A.G. Cox, C.C. Winterbourn, and M.B. Hampton Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling Biochem. J. 425 2010 313 325
    • (2010) Biochem. J. , vol.425 , pp. 313-325
    • Cox, A.G.1    Winterbourn, C.C.2    Hampton, M.B.3
  • 8
    • 84856729192 scopus 로고    scopus 로고
    • Mitochondrial thiols in antioxidant protection and redox signaling: Distinct roles for glutathionylation and other thiol modifications
    • M.P. Murphy Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications Antioxid. Redox Signal. 16 2012 476 495
    • (2012) Antioxid. Redox Signal. , vol.16 , pp. 476-495
    • Murphy, M.P.1
  • 10
    • 33750347347 scopus 로고    scopus 로고
    • Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases
    • DOI 10.1038/nature05292, PII NATURE05292
    • M.T. Lin, and M.F. Beal Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases Nature 443 2006 787 795 (Pubitemid 44622683)
    • (2006) Nature , vol.443 , Issue.7113 , pp. 787-795
    • Lin, M.T.1    Beal, M.F.2
  • 11
    • 70849093542 scopus 로고    scopus 로고
    • Reactive oxygen species-dependent signaling regulates cancer
    • F. Weinberg, and N.S. Chandel Reactive oxygen species-dependent signaling regulates cancer Cell. Mol. Life Sci. 66 2009 3663 3673
    • (2009) Cell. Mol. Life Sci. , vol.66 , pp. 3663-3673
    • Weinberg, F.1    Chandel, N.S.2
  • 12
    • 84866665390 scopus 로고    scopus 로고
    • Mitochondria and cancer
    • D.C. Wallace Mitochondria and cancer Nat. Rev. Cancer 12 2012 685 698
    • (2012) Nat. Rev. Cancer , vol.12 , pp. 685-698
    • Wallace, D.C.1
  • 13
    • 34547130863 scopus 로고    scopus 로고
    • The role of mitochondria in protection of the heart by preconditioning
    • DOI 10.1016/j.bbabio.2007.05.008, PII S0005272807001132
    • A.P. Halestrap, S.J. Clarke, and I. Khaliulin The role of mitochondria in protection of the heart by preconditioning Biochim. Biophys. Acta 1767 2007 1007 1031 (Pubitemid 47101788)
    • (2007) Biochimica et Biophysica Acta - Bioenergetics , vol.1767 , Issue.8 , pp. 1007-1031
    • Halestrap, A.P.1    Clarke, S.J.2    Khaliulin, I.3
  • 14
    • 34548746306 scopus 로고    scopus 로고
    • Mechanisms of disease: Myocardial reperfusion injury
    • D.M. Yellon, and D.J. Hausenloy Mechanisms of disease: myocardial reperfusion injury N. Engl. J. Med. 357 2007 1121 1135
    • (2007) N. Engl. J. Med. , vol.357 , pp. 1121-1135
    • Yellon, D.M.1    Hausenloy, D.J.2
  • 15
    • 77956186783 scopus 로고    scopus 로고
    • Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes
    • R.B. Hamanaka, and N.S. Chandel Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes Trends Biochem. Sci. 35 2010 505 513
    • (2010) Trends Biochem. Sci. , vol.35 , pp. 505-513
    • Hamanaka, R.B.1    Chandel, N.S.2
  • 17
    • 84856821006 scopus 로고    scopus 로고
    • Signal transduction by mitochondrial oxidants
    • T. Finkel Signal transduction by mitochondrial oxidants J. Biol. Chem. 287 2012 4434 4440
    • (2012) J. Biol. Chem. , vol.287 , pp. 4434-4440
    • Finkel, T.1
  • 18
    • 48449107159 scopus 로고    scopus 로고
    • Thiol chemistry and specificity in redox signaling
    • C.C. Winterbourn, and M.B. Hampton Thiol chemistry and specificity in redox signaling Free Radic. Biol. Med. 45 2008 549 561
    • (2008) Free Radic. Biol. Med. , vol.45 , pp. 549-561
    • Winterbourn, C.C.1    Hampton, M.B.2
  • 19
    • 64549097266 scopus 로고    scopus 로고
    • Thiol-based redox switches in eukaryotic proteins
    • N. Brandes, S. Schmitt, and U. Jakob Thiol-based redox switches in eukaryotic proteins Antioxid. Redox Signal. 11 2009 997 1014
    • (2009) Antioxid. Redox Signal. , vol.11 , pp. 997-1014
    • Brandes, N.1    Schmitt, S.2    Jakob, U.3
  • 20
    • 84884179284 scopus 로고    scopus 로고
    • The redox proteome
    • Y.M. Go, and D.P. Jones The redox proteome J. Biol. Chem. 288 2013 26512 26520
    • (2013) J. Biol. Chem. , vol.288 , pp. 26512-26520
    • Go, Y.M.1    Jones, D.P.2
  • 21
    • 0034740585 scopus 로고    scopus 로고
    • m-dependent and -independent production of reactive oxygen species by rat brain mitochondria
    • DOI 10.1046/j.1471-4159.2001.00548.x
    • m-Dependent and -independent production of reactive oxygen species by rat brain mitochondria J. Neurochem. 79 2001 266 277 (Pubitemid 32988942)
    • (2001) Journal of Neurochemistry , vol.79 , Issue.2 , pp. 266-277
    • Votyakova, T.V.1    Reynolds, I.J.2
  • 22
    • 4544354262 scopus 로고    scopus 로고
    • Inhibitors of the quinone-binding site allow rapid superoxide production from mitochondrial NADH:ubiquinone oxidoreductase (complex I)
    • DOI 10.1074/jbc.M406576200
    • A.J. Lambert, and M.D. Brand Inhibitors of the quinone-binding site allow rapid superoxide production from mitochondrial NADH:ubiquinone oxidoreductase (complex I) J. Biol. Chem. 279 2004 39414 39420 (Pubitemid 39258206)
    • (2004) Journal of Biological Chemistry , vol.279 , Issue.38 , pp. 39414-39420
    • Lambert, A.J.1    Brand, M.D.2
  • 23
    • 4043090717 scopus 로고    scopus 로고
    • Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane
    • DOI 10.1042/BJ20040485
    • A.J. Lambert, and M.D. Brand Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane Biochem. J. 382 2004 511 517 (Pubitemid 39243917)
    • (2004) Biochemical Journal , vol.382 , Issue.2 , pp. 511-517
    • Lambert, A.J.1    Brand, M.D.2
  • 24
    • 24044471810 scopus 로고    scopus 로고
    • Superoxide radical formation by pure complex I (NADH:ubiquinone oxidoreductase) from Yarrowia lipolytica
    • DOI 10.1074/jbc.M504709200
    • A. Galkin, and U. Brandt Superoxide radical formation by pure complex I (NADH:ubiquinone oxidoreductase) from Yarrowia lipolytica J. Biol. Chem. 280 2005 30129 30135 (Pubitemid 41216190)
    • (2005) Journal of Biological Chemistry , vol.280 , Issue.34 , pp. 30129-30135
    • Galkin, A.1    Brandt, U.2
  • 25
    • 33646716659 scopus 로고    scopus 로고
    • The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria
    • L. Kussmaul, and J. Hirst The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria Proc. Natl. Acad. Sci. U. S. A. 103 2006 7607 7612
    • (2006) Proc. Natl. Acad. Sci. U. S. A. , vol.103 , pp. 7607-7612
    • Kussmaul, L.1    Hirst, J.2
  • 26
    • 38749087624 scopus 로고    scopus 로고
    • High rates of superoxide production in skeletal-muscle mitochondria respiring on both complex I- and complex II-linked substrates
    • DOI 10.1042/BJ20071162
    • F.L. Muller, Y.H. Liu, M.A. Abdul-Ghani, M.S. Lustgarten, A. Bhattacharya, Y.C. Jang, and H. Van Remmen High rates of superoxide production in skeletal-muscle mitochondria respiring on both complex I- and complex II-linked substrates Biochem. J. 409 2008 491 499 (Pubitemid 351184967)
    • (2008) Biochemical Journal , vol.409 , Issue.2 , pp. 491-499
    • Muller, F.L.1    Liu, Y.2    Abdul-Ghani, M.A.3    Lustgarten, M.S.4    Bhattacharya, A.5    Jang, Y.C.6    Van Remmen, H.7
  • 27
    • 84864540083 scopus 로고    scopus 로고
    • Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions
    • C.L. Quinlan, A.L. Orr, I.V. Perevoshchikova, J.R. Treberg, B.A. Ackrell, and M.D. Brand Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions J. Biol. Chem. 287 2012 27255 27264
    • (2012) J. Biol. Chem. , vol.287 , pp. 27255-27264
    • Quinlan, C.L.1    Orr, A.L.2    Perevoshchikova, I.V.3    Treberg, J.R.4    Ackrell, B.A.5    Brand, M.D.6
  • 28
    • 84875710000 scopus 로고    scopus 로고
    • Differential effects of complex II on mitochondrial ROS production and their relation to cardioprotective pre- and postconditioning
    • S. Dröse Differential effects of complex II on mitochondrial ROS production and their relation to cardioprotective pre- and postconditioning Biochim. Biophys. Acta 1827 2013 578 587
    • (2013) Biochim. Biophys. Acta , vol.1827 , pp. 578-587
    • Dröse, S.1
  • 29
    • 84884593391 scopus 로고    scopus 로고
    • Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates
    • I. Siebels, and S. Dröse Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates Biochim. Biophys. Acta 1827 2013 1156 1164
    • (2013) Biochim. Biophys. Acta , vol.1827 , pp. 1156-1164
    • Siebels, I.1    Dröse, S.2
  • 33
    • 84884669583 scopus 로고    scopus 로고
    • Superoxide generation by complex III: From mechanistic rationales to functional consequences
    • L. Bleier, and S. Dröse Superoxide generation by complex III: from mechanistic rationales to functional consequences Biochim. Biophys. Acta 1827 2013 1320 1331
    • (2013) Biochim. Biophys. Acta , vol.1827 , pp. 1320-1331
    • Bleier, L.1    Dröse, S.2
  • 34
    • 84884673437 scopus 로고    scopus 로고
    • Molecular mechanisms of superoxide production by complex III: A bacterial versus human mitochondrial comparative case study
    • P. Lanciano, B. Khalfaoui-Hassani, N. Selamoglu, A. Ghelli, M. Rugolo, and F. Daldal Molecular mechanisms of superoxide production by complex III: a bacterial versus human mitochondrial comparative case study Biochim. Biophys. Acta 1827 2013 1332 1339
    • (2013) Biochim. Biophys. Acta , vol.1827 , pp. 1332-1339
    • Lanciano, P.1    Khalfaoui-Hassani, B.2    Selamoglu, N.3    Ghelli, A.4    Rugolo, M.5    Daldal, F.6
  • 35
    • 84884669648 scopus 로고    scopus 로고
    • Evolution of cytochrome bc complexes: From membrane-anchored dehydrogenases of ancient bacteria to triggers of apoptosis in vertebrates
    • D.V. Dibrova, D.A. Cherepanov, M.Y. Galperin, V.P. Skulachev, and A.Y. Mulkidjanian Evolution of cytochrome bc complexes: from membrane-anchored dehydrogenases of ancient bacteria to triggers of apoptosis in vertebrates Biochim. Biophys. Acta 1827 2013 1407 1427
    • (2013) Biochim. Biophys. Acta , vol.1827 , pp. 1407-1427
    • Dibrova, D.V.1    Cherepanov, D.A.2    Galperin, M.Y.3    Skulachev, V.P.4    Mulkidjanian, A.Y.5
  • 36
    • 36349016509 scopus 로고    scopus 로고
    • Mitochondrial complex II in the post-ischemic heart: Oxidative injury and the role of protein S-glutathionylation
    • DOI 10.1074/jbc.M702294200
    • Y.R. Chen, C.L. Chen, D.R. Pfeiffer, and J.L. Zweier Mitochondrial complex II in the post-ischemic heart - oxidative injury and the role of protein S-glutathionylation J. Biol. Chem. 282 2007 32640 32654 (Pubitemid 350159288)
    • (2007) Journal of Biological Chemistry , vol.282 , Issue.45 , pp. 32640-32654
    • Chen, Y.-R.1    Chen, C.-L.2    Pfeiffer, D.R.3    Zweier, J.L.4
  • 37
    • 83455174040 scopus 로고    scopus 로고
    • Oxidative modification with protein tyrosine nitration occurs following deglutathiolation of the 70 kDa flavoprotein of mitochondrial complex II is associated with loss of electron transfer activity in the post-ischemic myocardium
    • C.L. Chen, S. Varadhara, P.P. Kaumaya, J.L. Zweier, and Y.R. Chen Oxidative modification with protein tyrosine nitration occurs following deglutathiolation of the 70 kDa flavoprotein of mitochondrial complex II is associated with loss of electron transfer activity in the post-ischemic myocardium Circulation 118 2008 S273
    • (2008) Circulation , vol.118 , pp. 273
    • Chen, C.L.1    Varadhara, S.2    Kaumaya, P.P.3    Zweier, J.L.4    Chen, Y.R.5
  • 38
    • 54049146740 scopus 로고    scopus 로고
    • Complex i within oxidatively stressed bovine heart mitochondria is glutathionylated on Cys-531 and Cys-704 of the 75-kDa subunit - Potential role of Cys residues in decreasing oxidative damage
    • T.R. Hurd, R. Requejo, A. Filipovska, S. Brown, T.A. Prime, A.J. Robinson, I.M. Fearnley, and M.P. Murphy Complex I within oxidatively stressed bovine heart mitochondria is glutathionylated on Cys-531 and Cys-704 of the 75-kDa subunit - potential role of Cys residues in decreasing oxidative damage J. Biol. Chem. 283 2008 24801 24815
    • (2008) J. Biol. Chem. , vol.283 , pp. 24801-24815
    • Hurd, T.R.1    Requejo, R.2    Filipovska, A.3    Brown, S.4    Prime, T.A.5    Robinson, A.J.6    Fearnley, I.M.7    Murphy, M.P.8
  • 39
    • 42649144101 scopus 로고    scopus 로고
    • Oxidative and nitrative protein modifications in Parkinson's disease
    • S.R. Danielson, and J.K. Andersen Oxidative and nitrative protein modifications in Parkinson's disease Free Radic. Biol. Med. 44 2008 1787 1794
    • (2008) Free Radic. Biol. Med. , vol.44 , pp. 1787-1794
    • Danielson, S.R.1    Andersen, J.K.2
  • 40
    • 77449119371 scopus 로고    scopus 로고
    • Peptide-based antibodies against glutathione-binding domains suppress superoxide production mediated by mitochondrial complex i
    • J.F. Chen, C.L. Chen, S. Rawale, C.A. Chen, J.L. Zweier, P.T.P. Kaumaya, and Y.R. Chen Peptide-based antibodies against glutathione-binding domains suppress superoxide production mediated by mitochondrial complex I J. Biol. Chem. 285 2010 3168 3180
    • (2010) J. Biol. Chem. , vol.285 , pp. 3168-3180
    • Chen, J.F.1    Chen, C.L.2    Rawale, S.3    Chen, C.A.4    Zweier, J.L.5    Kaumaya, P.T.P.6    Chen, Y.R.7
  • 41
    • 84875974995 scopus 로고    scopus 로고
    • Redox proteomics of thiol proteins in mouse heart during ischemia/reperfusion using ICAT reagents and mass spectrometry
    • V. Kumar, T. Kleffmann, M.B. Hampton, M.B. Cannell, and C.C. Winterbourn Redox proteomics of thiol proteins in mouse heart during ischemia/reperfusion using ICAT reagents and mass spectrometry Free Radic. Biol. Med. 58 2013 109 117
    • (2013) Free Radic. Biol. Med. , vol.58 , pp. 109-117
    • Kumar, V.1    Kleffmann, T.2    Hampton, M.B.3    Cannell, M.B.4    Winterbourn, C.C.5
  • 44
    • 84856853161 scopus 로고    scopus 로고
    • Mitochondrial disulfide relay: Redox-regulated protein import into the intermembrane space
    • J.M. Herrmann, and J. Riemer Mitochondrial disulfide relay: redox-regulated protein import into the intermembrane space J. Biol. Chem. 287 2012 4426 4433
    • (2012) J. Biol. Chem. , vol.287 , pp. 4426-4433
    • Herrmann, J.M.1    Riemer, J.2
  • 45
    • 0034235229 scopus 로고    scopus 로고
    • The internal structure of mitochondria
    • T.G. Frey, and C.A. Mannella The internal structure of mitochondria Trends Biochem. Sci. 25 2000 319 324
    • (2000) Trends Biochem. Sci. , vol.25 , pp. 319-324
    • Frey, T.G.1    Mannella, C.A.2
  • 46
    • 29344434866 scopus 로고    scopus 로고
    • The relevance of mitochondrial membrane topology to mitochondrial function
    • DOI 10.1016/j.bbadis.2005.07.001, PII S0925443905001080, Mitochondria in Diseases and Therapeutics
    • C.A. Mannella The relevance of mitochondrial membrane topology to mitochondrial function Biochim. Biophys. Acta 1762 2006 140 147 (Pubitemid 43006021)
    • (2006) Biochimica et Biophysica Acta - Molecular Basis of Disease , vol.1762 , Issue.2 , pp. 140-147
    • Mannella, C.A.1
  • 47
    • 77957060561 scopus 로고    scopus 로고
    • The intermembrane space of mitochondria
    • J.M. Herrmann, and J. Riemer The intermembrane space of mitochondria Antioxid. Redox Signal. 13 2010 1341 1358
    • (2010) Antioxid. Redox Signal. , vol.13 , pp. 1341-1358
    • Herrmann, J.M.1    Riemer, J.2
  • 48
    • 0038230469 scopus 로고    scopus 로고
    • Supercomplexes in the respiratory chains of yeast and mammalian mitochondria
    • H. Schägger, and K. Pfeiffer Supercomplexes in the respiratory chains of yeast and mammalian mitochondria EMBO J. 19 2000 1777 1783 (Pubitemid 30204389)
    • (2000) EMBO Journal , vol.19 , Issue.8 , pp. 1777-1783
    • Schagger, H.1    Pfeiffer, K.2
  • 51
    • 84884610374 scopus 로고    scopus 로고
    • Role of cryo-ET in membrane bioenergetics research
    • K.M. Davies, and B. Daum Role of cryo-ET in membrane bioenergetics research Biochem. Soc. Trans. 41 2013 1227 1234
    • (2013) Biochem. Soc. Trans. , vol.41 , pp. 1227-1234
    • Davies, K.M.1    Daum, B.2
  • 52
    • 57649183232 scopus 로고    scopus 로고
    • The redox environment in the mitochondrial intermembrane space is maintained separately from the cytosol and matrix
    • J.J. Hu, L.X. Dong, and C.E. Outten The redox environment in the mitochondrial intermembrane space is maintained separately from the cytosol and matrix J. Biol. Chem. 283 2008 29126 29134
    • (2008) J. Biol. Chem. , vol.283 , pp. 29126-29134
    • Hu, J.J.1    Dong, L.X.2    Outten, C.E.3
  • 53
    • 84876917760 scopus 로고    scopus 로고
    • Thioredoxins, glutaredoxins, and peroxiredoxins-molecular mechanisms and health significance: From cofactors to antioxidants to redox signaling
    • E.M. Hanschmann, J.R. Godoy, C. Berndt, C. Hudemann, and C.H. Lillig Thioredoxins, glutaredoxins, and peroxiredoxins-molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling Antioxid. Redox Signal. 19 2013 1539 1605
    • (2013) Antioxid. Redox Signal. , vol.19 , pp. 1539-1605
    • Hanschmann, E.M.1    Godoy, J.R.2    Berndt, C.3    Hudemann, C.4    Lillig, C.H.5
  • 54
    • 49349085256 scopus 로고    scopus 로고
    • Redox compartmentalization in eukaryotic cells
    • Y.M. Go, and D.P. Jones Redox compartmentalization in eukaryotic cells Biochim. Biophys. Acta 1780 2008 1271 1290
    • (2008) Biochim. Biophys. Acta , vol.1780 , pp. 1271-1290
    • Go, Y.M.1    Jones, D.P.2
  • 55
    • 78650068036 scopus 로고    scopus 로고
    • Regulation of mitochondrial glutathione redox status and protein glutathionylation by respiratory substrates
    • J. Garcia, D. Han, H. Sancheti, L.P. Yap, N. Kaplowitz, and E. Cadenas Regulation of mitochondrial glutathione redox status and protein glutathionylation by respiratory substrates J. Biol. Chem. 285 2010 39646 39654
    • (2010) J. Biol. Chem. , vol.285 , pp. 39646-39654
    • Garcia, J.1    Han, D.2    Sancheti, H.3    Yap, L.P.4    Kaplowitz, N.5    Cadenas, E.6
  • 56
    • 0035371184 scopus 로고    scopus 로고
    • Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple
    • DOI 10.1016/S0891-5849(01)00480-4, PII S0891584901004804
    • F.Q. Schafer, and G.R. Buettner Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple Free Radic. Biol. Med. 30 2001 1191 1212 (Pubitemid 32463931)
    • (2001) Free Radical Biology and Medicine , vol.30 , Issue.11 , pp. 1191-1212
    • Schafer, F.Q.1    Buettner, G.R.2
  • 59
    • 6944220226 scopus 로고    scopus 로고
    • Comparison of thiol redox state of mitochondria and homogenates of various tissues between two strains of mice with different longevities
    • DOI 10.1016/j.exger.2004.08.014, PII S0531556504002694
    • I. Rebrin, and R.S. Sohal Comparison of thiol redox state of mitochondria and homogenates of various tissues between two strains of mice with different longevities Exp. Gerontol. 39 2004 1513 1519 (Pubitemid 39410551)
    • (2004) Experimental Gerontology , vol.39 , Issue.10 , pp. 1513-1519
    • Rebrin, I.1    Sohal, R.S.2
  • 60
    • 39949085437 scopus 로고    scopus 로고
    • Nonequilibrium thermodynamics of thiol/disulfide redox systems: A perspective on redox systems biology
    • M. Kemp, Y.M. Go, and D.P. Jones Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology Free Radic. Biol. Med. 44 2008 921 937
    • (2008) Free Radic. Biol. Med. , vol.44 , pp. 921-937
    • Kemp, M.1    Go, Y.M.2    Jones, D.P.3
  • 62
    • 33745635338 scopus 로고    scopus 로고
    • Mitochondrial NADPH, transhydrogenase and disease
    • DOI 10.1016/j.bbabio.2006.03.010, PII S000527280600065X
    • J. Rydström Mitochondrial NADPH, transhydrogenase and disease Biochim. Biophys. Acta 1757 2006 721 726 (Pubitemid 43993846)
    • (2006) Biochimica et Biophysica Acta - Bioenergetics , vol.1757 , Issue.5-6 , pp. 721-726
    • Rydstrom, J.1
  • 63
    • 0028339522 scopus 로고
    • Proton-translocating transhydrogenase and NAD-linked and NADP-linked isocitrate dehydrogenases operate in a substrate cycle which contributes to fine regulation of the tricarboxylic-acid cycle activity in mitochondria
    • L.A. Sazanov, and J.B. Jackson Proton-translocating transhydrogenase and NAD-linked and NADP-linked isocitrate dehydrogenases operate in a substrate cycle which contributes to fine regulation of the tricarboxylic-acid cycle activity in mitochondria FEBS Lett. 344 1994 109 116
    • (1994) FEBS Lett. , vol.344 , pp. 109-116
    • Sazanov, L.A.1    Jackson, J.B.2
  • 65
    • 37549068090 scopus 로고    scopus 로고
    • +/NADPH in cellular functions and cell death: Regulation and biological consequences
    • +/NADPH in cellular functions and cell death: regulation and biological consequences Antioxid. Redox Signal. 10 2008 179 206
    • (2008) Antioxid. Redox Signal. , vol.10 , pp. 179-206
    • Ying, W.H.1
  • 66
    • 0018787249 scopus 로고
    • Energy-linked nicotinamide nucleotide transhydrogenase - Properties of proton-translocating and ATP-driven transhydrogenase reconstituted from synthetic phospholipids and purified transhydrogenase from beef-heart mitochondria
    • J. Rydström Energy-linked nicotinamide nucleotide transhydrogenase - properties of proton-translocating and ATP-driven transhydrogenase reconstituted from synthetic phospholipids and purified transhydrogenase from beef-heart mitochondria J. Biol. Chem. 254 1979 8611 8619
    • (1979) J. Biol. Chem. , vol.254 , pp. 8611-8619
    • Rydström, J.1
  • 68
    • 77956250065 scopus 로고    scopus 로고
    • 2 removal in brain mitochondria via the thioredoxin/peroxiredoxin system
    • 2 removal in brain mitochondria via the thioredoxin/peroxiredoxin system J. Biol. Chem. 285 2010 27850 27858
    • (2010) J. Biol. Chem. , vol.285 , pp. 27850-27858
    • Drechsel, D.A.1    Patel, M.2
  • 69
    • 77953565915 scopus 로고    scopus 로고
    • Hydrogen peroxide efflux from muscle mitochondria underestimates matrix superoxide production - A correction using glutathione depletion
    • J.R. Treberg, C.L. Quinlan, and M.D. Brand Hydrogen peroxide efflux from muscle mitochondria underestimates matrix superoxide production - a correction using glutathione depletion FEBS J. 277 2010 2766 2778
    • (2010) FEBS J. , vol.277 , pp. 2766-2778
    • Treberg, J.R.1    Quinlan, C.L.2    Brand, M.D.3
  • 72
    • 77749316875 scopus 로고    scopus 로고
    • Cysteine residues exposed on protein surfaces are the dominant intramitochondrial thiol and may protect against oxidative damage
    • R. Requejo, T.R. Hurd, N.J. Costa, and M.P. Murphy Cysteine residues exposed on protein surfaces are the dominant intramitochondrial thiol and may protect against oxidative damage FEBS J. 277 2010 1465 1480
    • (2010) FEBS J. , vol.277 , pp. 1465-1480
    • Requejo, R.1    Hurd, T.R.2    Costa, N.J.3    Murphy, M.P.4
  • 73
    • 42249088093 scopus 로고    scopus 로고
    • Reconciling the chemistry and biology of reactive oxygen species
    • DOI 10.1038/nchembio.85, PII NCHEMBIO85
    • C.C. Winterbourn Reconciling the chemistry and biology of reactive oxygen species Nat. Chem. Biol. 4 2008 278 286 (Pubitemid 351550893)
    • (2008) Nature Chemical Biology , vol.4 , Issue.5 , pp. 278-286
    • Winterbourn, C.C.1
  • 75
    • 0035283131 scopus 로고    scopus 로고
    • Kinetics of the reactions of hypochlorous acid and amino acid chloramines with thiols, methionine, and ascorbate
    • DOI 10.1016/S0891-5849(00)00506-2, PII S0891584900005062
    • A.V. Peskin, and C.C. Winterbourn Kinetics of the reactions of hypochlorous acid and amino acid chloramines with thiols, methionine, and ascorbate Free Radic. Biol. Med. 30 2001 572 579 (Pubitemid 32162964)
    • (2001) Free Radical Biology and Medicine , vol.30 , Issue.5 , pp. 572-579
    • Peskin, A.V.1    Winterbourn, C.C.2
  • 76
    • 84864119697 scopus 로고    scopus 로고
    • Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state
    • K. Kojer, M. Bien, H. Gangel, B. Morgan, T.P. Dick, and J. Riemer Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state EMBO J. 31 2012 3169 3182
    • (2012) EMBO J. , vol.31 , pp. 3169-3182
    • Kojer, K.1    Bien, M.2    Gangel, H.3    Morgan, B.4    Dick, T.P.5    Riemer, J.6
  • 77
    • 33746329868 scopus 로고    scopus 로고
    • Energy converting NADH:quinone oxidoreductase (complex I)
    • DOI 10.1146/annurev.biochem.75.103004.142539
    • U. Brandt Energy converting NADH: quinone oxidoreductase (complex I) Annu. Rev. Biochem. 75 2006 69 92 (Pubitemid 44118026)
    • (2006) Annual Review of Biochemistry , vol.75 , pp. 69-92
    • Brandt, U.1
  • 79
    • 21244445718 scopus 로고    scopus 로고
    • A disulfide relay system in the intermembrane space of mitochondria that mediates protein import
    • DOI 10.1016/j.cell.2005.04.011, PII S0092867405003570
    • N. Mesecke, N. Terziyska, C. Kozany, F. Baumann, W. Neupert, K. Hell, and J.M. Herrmann A disulfide relay system in the intermembrane space of mitochondria that mediates protein import Cell 121 2005 1059 1069 (Pubitemid 40884396)
    • (2005) Cell , vol.121 , Issue.7 , pp. 1059-1069
    • Mesecke, N.1    Terziyska, N.2    Kozany, C.3    Baumann, F.4    Neupert, W.5    Hell, K.6    Herrmann, J.M.7
  • 82
    • 84872102687 scopus 로고    scopus 로고
    • The function and the role of the mitochondrial glycerol-3-phosphate dehydrogenase in mammalian tissues
    • T. Mracek, Z. Drahota, and J. Houstek The function and the role of the mitochondrial glycerol-3-phosphate dehydrogenase in mammalian tissues Biochim. Biophys. Acta 1827 2013 401 410
    • (2013) Biochim. Biophys. Acta , vol.1827 , pp. 401-410
    • Mracek, T.1    Drahota, Z.2    Houstek, J.3
  • 84
    • 67349133591 scopus 로고    scopus 로고
    • Ambivalent effects of diazoxide on mitochondrial ROS production at respiratory chain complexes i and III
    • S. Dröse, P.J. Hanley, and U. Brandt Ambivalent effects of diazoxide on mitochondrial ROS production at respiratory chain complexes I and III Biochim. Biophys. Acta 1790 2009 558 565
    • (2009) Biochim. Biophys. Acta , vol.1790 , pp. 558-565
    • Dröse, S.1    Hanley, P.J.2    Brandt, U.3
  • 85
    • 79955029789 scopus 로고    scopus 로고
    • A common mechanism links differently acting complex II inhibitors to cardioprotection: Modulation of mitochondrial reactive oxygen species production
    • S. Dröse, L. Bleier, and U. Brandt A common mechanism links differently acting complex II inhibitors to cardioprotection: modulation of mitochondrial reactive oxygen species production Mol. Pharmacol. 79 2011 814 822
    • (2011) Mol. Pharmacol. , vol.79 , pp. 814-822
    • Dröse, S.1    Bleier, L.2    Brandt, U.3
  • 86
    • 75749136883 scopus 로고    scopus 로고
    • Signaling functions of reactive oxygen species
    • H.J. Forman, M. Maiorino, and F. Ursini Signaling functions of reactive oxygen species Biochemistry 49 2010 835 842
    • (2010) Biochemistry , vol.49 , pp. 835-842
    • Forman, H.J.1    Maiorino, M.2    Ursini, F.3
  • 87
    • 0037160091 scopus 로고    scopus 로고
    • Topology of superoxide production from different sites in the mitochondrial electron transport chain
    • DOI 10.1074/jbc.M207217200
    • J. St Pierre, J.A. Buckingham, S.J. Roebuck, and M.D. Brand Topology of superoxide production from different sites in the mitochondrial electron transport chain J. Biol. Chem. 277 2002 44784 44790 (Pubitemid 36159072)
    • (2002) Journal of Biological Chemistry , vol.277 , Issue.47 , pp. 44784-44790
    • St-Pierre, J.1    Buckingham, J.A.2    Roebuck, S.J.3    Brand, M.D.4
  • 88
    • 10344221083 scopus 로고    scopus 로고
    • Complex III releases superoxide to both sides of the inner mitochondrial membrane
    • DOI 10.1074/jbc.M407715200
    • F.L. Muller, Y.H. Liu, and H. Van Remmen Complex III releases superoxide to both sides of the inner mitochondrial membrane J. Biol. Chem. 279 2004 49064 49073 (Pubitemid 39625788)
    • (2004) Journal of Biological Chemistry , vol.279 , Issue.47 , pp. 49064-49073
    • Muller, F.L.1    Liu, Y.2    Van Remmen, H.3
  • 89
    • 0141815741 scopus 로고    scopus 로고
    • Production of reactive oxygen species by mitochondria: Central role of complex III
    • DOI 10.1074/jbc.M304854200
    • Q. Chen, E.J. Vazquez, S. Moghaddas, C.L. Hoppel, and E.J. Lesnefsky Production of reactive oxygen species by mitochondria: central role of complex III J. Biol. Chem. 278 2003 36027 36031 (Pubitemid 37139922)
    • (2003) Journal of Biological Chemistry , vol.278 , Issue.38 , pp. 36027-36031
    • Chen, Q.1    Vazquez, E.J.2    Moghaddas, S.3    Hoppel, C.L.4    Lesnefsky, E.J.5
  • 90
    • 33745628757 scopus 로고    scopus 로고
    • Generation of superoxide by the mitochondrial Complex I
    • DOI 10.1016/j.bbabio.2006.03.013, PII S0005272806000685
    • V.G. Grivennikova, and A.D. Vinogradov Generation of superoxide by the mitochondrial complex I Biochim. Biophys. Acta 1757 2006 553 561 (Pubitemid 43993849)
    • (2006) Biochimica et Biophysica Acta - Bioenergetics , vol.1757 , Issue.5-6 , pp. 553-561
    • Grivennikova, V.G.1    Vinogradov, A.D.2
  • 91
    • 79955977892 scopus 로고    scopus 로고
    • Superoxide is produced by the reduced flavin in mitochondrial complex i
    • K.R. Pryde, and J. Hirst Superoxide is produced by the reduced flavin in mitochondrial complex I J. Biol. Chem. 286 2011 18056 18065
    • (2011) J. Biol. Chem. , vol.286 , pp. 18056-18065
    • Pryde, K.R.1    Hirst, J.2
  • 92
    • 79961008706 scopus 로고    scopus 로고
    • Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I)
    • J.R. Treberg, C.L. Quinlan, and M.D. Brand Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I) J. Biol. Chem. 286 2011 27103 27110
    • (2011) J. Biol. Chem. , vol.286 , pp. 27103-27110
    • Treberg, J.R.1    Quinlan, C.L.2    Brand, M.D.3
  • 93
    • 77954848120 scopus 로고    scopus 로고
    • Functional modules and structural basis of conformational coupling in mitochondrial complex i
    • C. Hunte, V. Zickermann, and U. Brandt Functional modules and structural basis of conformational coupling in mitochondrial complex I Science 329 2010 448 451
    • (2010) Science , vol.329 , pp. 448-451
    • Hunte, C.1    Zickermann, V.2    Brandt, U.3
  • 97
    • 0346850862 scopus 로고    scopus 로고
    • The Ubiquinone-binding Site of the Saccharomyces cerevisiae Succinate-Ubiquinone Oxidoreductase Is a Source of Superoxide
    • DOI 10.1074/jbc.M306312200
    • J. Guo, and B.D. Lemire The ubiquinone-binding site of the Saccharomyces cerevisiae succinate-ubiquinone oxidoreductase is a source of superoxide J. Biol. Chem. 278 2003 47629 47635 (Pubitemid 37523207)
    • (2003) Journal of Biological Chemistry , vol.278 , Issue.48 , pp. 47629-47635
    • Guo, J.1    Lemire, B.D.2
  • 98
    • 34848866025 scopus 로고    scopus 로고
    • Ubiquinone-binding site mutations in the Saccharomyces cerevisiae succinate dehydrogenase generate superoxide and lead to the accumulation of succinate
    • DOI 10.1074/jbc.M700601200
    • S.S.W. Szeto, S.N. Reinke, B.D. Sykes, and B.D. Lemire Ubiquinone-binding site mutations in the Saccharomyces cerevisiae succinate dehydrogenase generate superoxide and lead to the accumulation of succinate J. Biol. Chem. 282 2007 27518 27526 (Pubitemid 47501935)
    • (2007) Journal of Biological Chemistry , vol.282 , Issue.37 , pp. 27518-27526
    • Szeto, S.S.W.1    Reinke, S.N.2    Sykes, B.D.3    Lemire, B.D.4
  • 99
    • 76049086567 scopus 로고    scopus 로고
    • Contribution of the FAD and quinone binding sites to the production of reactive oxygen species from Ascaris suum mitochondrial complex II
    • M.P. Paranagama, K. Sakamoto, H. Amino, M. Awano, H. Miyoshi, and K. Kita Contribution of the FAD and quinone binding sites to the production of reactive oxygen species from Ascaris suum mitochondrial complex II Mitochondrion 10 2010 158 165
    • (2010) Mitochondrion , vol.10 , pp. 158-165
    • Paranagama, M.P.1    Sakamoto, K.2    Amino, H.3    Awano, M.4    Miyoshi, H.5    Kita, K.6
  • 101
    • 84872254434 scopus 로고    scopus 로고
    • Redox proteomics: Chemical principles, methodological approaches and biological/biomedical promises
    • A. Bachi, I. Dalle-Donne, and A. Scaloni Redox proteomics: chemical principles, methodological approaches and biological/biomedical promises Chem. Rev. 113 2013 596 698
    • (2013) Chem. Rev. , vol.113 , pp. 596-698
    • Bachi, A.1    Dalle-Donne, I.2    Scaloni, A.3
  • 103
    • 69949093360 scopus 로고    scopus 로고
    • An introduction to methods for analyzing thiols and disulfides: Reactions, reagents, and practical considerations
    • R.E. Hansen, and J.R. Winther An introduction to methods for analyzing thiols and disulfides: reactions, reagents, and practical considerations Anal. Biochem. 394 2009 147 158
    • (2009) Anal. Biochem. , vol.394 , pp. 147-158
    • Hansen, R.E.1    Winther, J.R.2
  • 104
    • 33646745126 scopus 로고    scopus 로고
    • Protein thiol oxidation in health and disease: Techniques for measuring disulfides and related modifications in complex protein mixtures
    • DOI 10.1016/j.freeradbiomed.2005.12.037, PII S0891584906001614
    • P. Eaton Protein thiol oxidation in health and disease: techniques for measuring disulfides and related modifications in complex protein mixtures Free Radic. Biol. Med. 40 2006 1889 1899 (Pubitemid 43744434)
    • (2006) Free Radical Biology and Medicine , vol.40 , Issue.11 , pp. 1889-1899
    • Eaton, P.1
  • 105
    • 33750030779 scopus 로고    scopus 로고
    • Detection of reversible protein thiol modifications in tissues
    • DOI 10.1016/j.ab.2006.08.020, PII S0003269706006051
    • L.K. Rogers, B.L. Leinweber, and C.V. Smith Detection of reversible protein thiol modifications in tissues Anal. Biochem. 358 2006 171 184 (Pubitemid 44573080)
    • (2006) Analytical Biochemistry , vol.358 , Issue.2 , pp. 171-184
    • Rogers, L.K.1    Leinweber, B.L.2    Smith, C.V.3
  • 106
    • 34548507495 scopus 로고    scopus 로고
    • Thiol oxidation in signaling and response to stress: Detection and quantification of physiological and pathophysiological thiol modifications
    • DOI 10.1016/j.freeradbiomed.2007.07.014, PII S0891584907004959
    • J. Ying, N. Clavreul, M. Sethuraman, T. Adachi, and R.A. Cohen Thiol oxidation in signaling and response to stress: detection and quantification of physiological and pathophysiological thiol modifications Free Radic. Biol. Med. 43 2007 1099 1108 (Pubitemid 47374443)
    • (2007) Free Radical Biology and Medicine , vol.43 , Issue.8 , pp. 1099-1108
    • Ying, J.1    Clavreul, N.2    Sethuraman, M.3    Adachi, T.4    Cohen, R.A.5
  • 108
    • 51049093616 scopus 로고    scopus 로고
    • Identification of the mitochondrial ND3 subunit as a structural component involved in the active/deactive enzyme transition of respiratory complex i
    • A. Galkin, B. Meyer, I. Wittig, M. Karas, H. Schagger, A. Vinogradov, and U. Brandt Identification of the mitochondrial ND3 subunit as a structural component involved in the active/deactive enzyme transition of respiratory complex I J. Biol. Chem. 283 2008 20907 20913
    • (2008) J. Biol. Chem. , vol.283 , pp. 20907-20913
    • Galkin, A.1    Meyer, B.2    Wittig, I.3    Karas, M.4    Schagger, H.5    Vinogradov, A.6    Brandt, U.7
  • 109
    • 0016711037 scopus 로고
    • High-resolution 2-dimensional electrophoresis of proteins
    • P.H. O'Farrell High-resolution 2-dimensional electrophoresis of proteins J. Biol. Chem. 250 1975 4007 4021
    • (1975) J. Biol. Chem. , vol.250 , pp. 4007-4021
    • O'Farrell, P.H.1
  • 110
    • 0036745407 scopus 로고    scopus 로고
    • Detection of oxidant sensitive thiol proteins by fluorescence labeling and two-dimensional electrophoresis
    • J.W. Baty, M.B. Hampton, and C.C. Winterbourn Detection of oxidant sensitive thiol proteins by fluorescence labeling and two-dimensional electrophoresis Proteomics 2 2002 1261 1266
    • (2002) Proteomics , vol.2 , pp. 1261-1266
    • Baty, J.W.1    Hampton, M.B.2    Winterbourn, C.C.3
  • 111
    • 34547592709 scopus 로고    scopus 로고
    • Detection of reactive oxygen species-sensitive thiol proteins by redox difference gel electrophoresis: Implications for mitochondrial redox signaling
    • DOI 10.1074/jbc.M703591200
    • T.R. Hurd, T.A. Prime, M.E. Harbour, K.S. Lilley, and M.P. Murphy Detection of reactive oxygen species-sensitive thiol proteins by redox difference gel electrophoresis - implications for mitochondrial redox signaling J. Biol. Chem. 282 2007 22040 22051 (Pubitemid 47195755)
    • (2007) Journal of Biological Chemistry , vol.282 , Issue.30 , pp. 22040-22051
    • Hurd, T.R.1    Prime, T.A.2    Harbour, M.E.3    Lilley, K.S.4    Murphy, M.P.5
  • 112
    • 0343376097 scopus 로고    scopus 로고
    • Difference gel electrophoresis: A single gel method for detecting changes in protein extracts
    • M. Unlu, M.E. Morgan, and J.S. Minden Difference gel electrophoresis: a single gel method for detecting changes in protein extracts Electrophoresis 18 1997 2071 2077 (Pubitemid 27501267)
    • (1997) Electrophoresis , vol.18 , Issue.11 , pp. 2071-2077
    • Unlu, M.1    Morgan, M.E.2    Minden, J.S.3
  • 113
    • 77955492720 scopus 로고    scopus 로고
    • Identification of S-nitrosated mitochondrial proteins by S-nitrosothiol difference in gel electrophoresis (SNO-DIGE): Implications for the regulation of mitochondrial function by reversible S-nitrosation
    • E.T. Chouchani, T.R. Hurd, S.M. Nadtochiy, P.S. Brookes, I.M. Fearnley, K.S. Lilley, R.A.J. Smith, and M.P. Murphy Identification of S-nitrosated mitochondrial proteins by S-nitrosothiol difference in gel electrophoresis (SNO-DIGE): implications for the regulation of mitochondrial function by reversible S-nitrosation Biochem. J. 430 2010 49 59
    • (2010) Biochem. J. , vol.430 , pp. 49-59
    • Chouchani, E.T.1    Hurd, T.R.2    Nadtochiy, S.M.3    Brookes, P.S.4    Fearnley, I.M.5    Lilley, K.S.6    Smith, R.A.J.7    Murphy, M.P.8
  • 114
    • 84862696452 scopus 로고    scopus 로고
    • Protein S-nitrosylation and denitrosylation in the mouse spinal cord upon injury of the sciatic nerve
    • R. Scheving, I. Wittig, H. Heide, B. Albuquerque, M. Steger, U. Brandt, and I. Tegeder Protein S-nitrosylation and denitrosylation in the mouse spinal cord upon injury of the sciatic nerve J. Proteome 75 2012 3987 4004
    • (2012) J. Proteome , vol.75 , pp. 3987-4004
    • Scheving, R.1    Wittig, I.2    Heide, H.3    Albuquerque, B.4    Steger, M.5    Brandt, U.6    Tegeder, I.7
  • 115
    • 77954754565 scopus 로고    scopus 로고
    • Targeted quantitation of site-specific cysteine oxidation in endogenous proteins using a differential alkylation and multiple reaction monitoring mass spectrometry approach
    • J.M. Held, S.R. Danielson, J.B. Behring, C. Atsriku, D.J. Britton, R.L. Puckett, B. Schilling, J. Campisi, C.C. Benz, and B.W. Gibson Targeted quantitation of site-specific cysteine oxidation in endogenous proteins using a differential alkylation and multiple reaction monitoring mass spectrometry approach Mol. Cell. Proteomics 9 2010 1400 1410
    • (2010) Mol. Cell. Proteomics , vol.9 , pp. 1400-1410
    • Held, J.M.1    Danielson, S.R.2    Behring, J.B.3    Atsriku, C.4    Britton, D.J.5    Puckett, R.L.6    Schilling, B.7    Campisi, J.8    Benz, C.C.9    Gibson, B.W.10
  • 116
    • 0035147435 scopus 로고    scopus 로고
    • Protein S-nitrosylation: A physiological signal for neuronal nitric oxide
    • DOI 10.1038/35055104
    • S.R. Jaffrey, H. Erdjument-Bromage, C.D. Ferris, P. Tempst, and S.H. Snyder Protein S-nitrosylation: a physiological signal for neuronal nitric oxide Nat. Cell Biol. 3 2001 193 197 (Pubitemid 32118373)
    • (2001) Nature Cell Biology , vol.3 , Issue.2 , pp. 193-197
    • Jaffrey, S.R.1    Erdjument-Bromage, H.2    Ferris, C.D.3    Tempst, P.4    Snyder, S.H.5
  • 120
    • 84890120403 scopus 로고    scopus 로고
    • Sulfenic acid chemistry, detection and cellular lifetime
    • V. Gupta, and K.S. Carroll Sulfenic acid chemistry, detection and cellular lifetime Biochim. Biophys. Acta 1840 2014 847 875
    • (2014) Biochim. Biophys. Acta , vol.1840 , pp. 847-875
    • Gupta, V.1    Carroll, K.S.2
  • 121
    • 34250657012 scopus 로고    scopus 로고
    • Quantitative proteome analysis using isotope-coded affinity tags and mass spectrometry
    • Y. Shiio, and R. Aebersold Quantitative proteome analysis using isotope-coded affinity tags and mass spectrometry Nat. Protoc. 1 2006 139 145
    • (2006) Nat. Protoc. , vol.1 , pp. 139-145
    • Shiio, Y.1    Aebersold, R.2
  • 122
    • 11144252625 scopus 로고    scopus 로고
    • Isotope-coded affinity tag (ICAT) approach to redox proteomics: Identification and quantitation of oxidant-sensitive cysteine thiols in complex protein mixtures
    • DOI 10.1021/pr049887e
    • M. Sethuraman, M.E. Mccomb, H. Huang, S.Q. Huang, T. Heibeck, C.E. Costello, and R.A. Cohen Isotope-coded affinity tag (ICAT) approach to redox proteomics: identification and quantitation of oxidant-sensitive cysteine thiols in complex protein mixtures J. Proteome Res. 3 2004 1228 1233 (Pubitemid 40040377)
    • (2004) Journal of Proteome Research , vol.3 , Issue.6 , pp. 1228-1233
    • Sethuraman, M.1    McComb, M.E.2    Huang, H.3    Huang, S.4    Heibeck, T.5    Costello, C.E.6    Cohen, R.A.7
  • 123
    • 2642576571 scopus 로고    scopus 로고
    • Isotope-coded affinity tag approach to identify and quantify oxidant-sensitive protein thiols
    • DOI 10.1074/mcp.T300011-MCP200
    • M. Sethuraman, M.E. Mccomb, T. Heibeck, C.E. Costello, and R.A. Cohen Isotope-coded affinity tag approach to identify and quantify oxidant-sensitive protein thiols Mol. Cell. Proteomics 3 2004 273 278 (Pubitemid 38714283)
    • (2004) Molecular and Cellular Proteomics , vol.3 , Issue.3 , pp. 273-278
    • Sethuraman, M.1    McCombs, M.E.2    Heibeck, T.3    Costellos, C.E.4    Cohen, R.A.5
  • 125
  • 126
    • 84864120983 scopus 로고    scopus 로고
    • Quantitative redox proteomics: The NOxICAT method
    • C. Lindemann, and L.I. Leichert Quantitative redox proteomics: the NOxICAT method Methods Mol. Biol. 893 2012 387 403
    • (2012) Methods Mol. Biol. , vol.893 , pp. 387-403
    • Lindemann, C.1    Leichert, L.I.2
  • 127
    • 84866272849 scopus 로고    scopus 로고
    • Quantitative in vivo redox sensors uncover oxidative stress as an early event in life
    • D. Knoefler, M. Thamsen, M. Koniczek, N.J. Niemuth, A.K. Diederich, and U. Jakob Quantitative in vivo redox sensors uncover oxidative stress as an early event in life Mol. Cell 47 2012 767 776
    • (2012) Mol. Cell , vol.47 , pp. 767-776
    • Knoefler, D.1    Thamsen, M.2    Koniczek, M.3    Niemuth, N.J.4    Diederich, A.K.5    Jakob, U.6
  • 131
    • 0345146921 scopus 로고    scopus 로고
    • Reversible inactivation of α-ketoglutarate dehydrogenase in response to alterations in the mitochondrial glutathione status
    • DOI 10.1021/bi027370f
    • A.C. Nulton-Persson, D.W. Starke, J.J. Mieyal, and L.I. Szweda Reversible inactivation of alpha-ketoglutarate dehydrogenase in response to alterations in the mitochondrial glutathione status Biochemistry 42 2003 4235 4242 (Pubitemid 36418317)
    • (2003) Biochemistry , vol.42 , Issue.14 , pp. 4235-4242
    • Nulton-Persson, A.C.1    Starke, D.W.2    Mieyal, J.J.3    Szweda, L.I.4
  • 132
    • 37849043898 scopus 로고    scopus 로고
    • Reversible inhibition of alpha-ketoglutarate dehydrogenase by hydrogen peroxide: Glutathionylation and protection of lipoic acid
    • M.A.B. Applegate, K.M. Humphries, and L.I. Szweda Reversible inhibition of alpha-ketoglutarate dehydrogenase by hydrogen peroxide: glutathionylation and protection of lipoic acid Biochemistry 47 2008 473 478
    • (2008) Biochemistry , vol.47 , pp. 473-478
    • Applegate, M.A.B.1    Humphries, K.M.2    Szweda, L.I.3
  • 133
    • 84877035408 scopus 로고    scopus 로고
    • Glutathionylation of alpha-ketoglutarate dehydrogenase: The chemical nature and relative susceptibility of the cofactor lipoic acid to modification
    • A.L. Mclain, P.J. Cormier, M. Kinter, and L.I. Szweda Glutathionylation of alpha-ketoglutarate dehydrogenase: the chemical nature and relative susceptibility of the cofactor lipoic acid to modification Free Radic. Biol. Med. 61 2013 161 169
    • (2013) Free Radic. Biol. Med. , vol.61 , pp. 161-169
    • McLain, A.L.1    Cormier, P.J.2    Kinter, M.3    Szweda, L.I.4
  • 134
    • 79955467911 scopus 로고    scopus 로고
    • In situ kinetic trapping reveals a fingerprint of reversible protein thiol oxidation in the mitochondrial matrix
    • J. Engelhard, B.E. Christian, L. Weingarten, G. Kuntz, L.L. Spremulli, and T.P. Dick In situ kinetic trapping reveals a fingerprint of reversible protein thiol oxidation in the mitochondrial matrix Free Radic. Biol. Med. 50 2011 1234 1241
    • (2011) Free Radic. Biol. Med. , vol.50 , pp. 1234-1241
    • Engelhard, J.1    Christian, B.E.2    Weingarten, L.3    Kuntz, G.4    Spremulli, L.L.5    Dick, T.P.6
  • 135
    • 0031013623 scopus 로고    scopus 로고
    • Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase
    • A.P. Halestrap, K.Y. Woodfield, and C.P. Connern Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase J. Biol. Chem. 272 1997 3346 3354
    • (1997) J. Biol. Chem. , vol.272 , pp. 3346-3354
    • Halestrap, A.P.1    Woodfield, K.Y.2    Connern, C.P.3
  • 136
    • 84857579110 scopus 로고    scopus 로고
    • Slow calcium waves and redox changes precede mitochondrial permeability transition pore opening in the intact heart during hypoxia and reoxygenation
    • S.M. Davidson, D.M. Yellon, M.P. Murphy, and M.R. Duchen Slow calcium waves and redox changes precede mitochondrial permeability transition pore opening in the intact heart during hypoxia and reoxygenation Cardiovasc. Res. 93 2012 445 453
    • (2012) Cardiovasc. Res. , vol.93 , pp. 445-453
    • Davidson, S.M.1    Yellon, D.M.2    Murphy, M.P.3    Duchen, M.R.4
  • 137
    • 46349097952 scopus 로고    scopus 로고
    • Recent progress in elucidating the molecular mechanism of the mitochondrial permeability transition pore
    • A.W.C. Leung, and A.P. Halestrap Recent progress in elucidating the molecular mechanism of the mitochondrial permeability transition pore Biochim. Biophys. Acta 1777 2008 946 952
    • (2008) Biochim. Biophys. Acta , vol.1777 , pp. 946-952
    • Leung, A.W.C.1    Halestrap, A.P.2
  • 139
    • 79952070504 scopus 로고    scopus 로고
    • Simultaneous measurement of protein oxidation and S-nitrosylation during preconditioning and ischemia/reperfusion injury with resin-assisted capture
    • (418-U50)
    • M.J. Kohr, J.H. Sun, A. Aponte, G.H. Wang, M. Gucek, E. Murphy, and C. Steenbergen Simultaneous measurement of protein oxidation and S-nitrosylation during preconditioning and ischemia/reperfusion injury with resin-assisted capture Circ. Res. 108 2011 (418-U50)
    • (2011) Circ. Res. , vol.108
    • Kohr, M.J.1    Sun, J.H.2    Aponte, A.3    Wang, G.H.4    Gucek, M.5    Murphy, E.6    Steenbergen, C.7
  • 140
    • 81155123702 scopus 로고    scopus 로고
    • Cysteine 203 of cyclophilin D is critical for cyclophilin D activation of the mitochondrial permeability transition pore
    • T.T. Nguyen, M.V. Stevens, M. Kohr, C. Steenbergen, M.N. Sack, and E. Murphy Cysteine 203 of cyclophilin D is critical for cyclophilin D activation of the mitochondrial permeability transition pore J. Biol. Chem. 286 2011 40184 40192
    • (2011) J. Biol. Chem. , vol.286 , pp. 40184-40192
    • Nguyen, T.T.1    Stevens, M.V.2    Kohr, M.3    Steenbergen, C.4    Sack, M.N.5    Murphy, E.6
  • 142
    • 84875439431 scopus 로고    scopus 로고
    • Glutaredoxin-2 is required to control proton leak through uncoupling protein-3
    • R.J. Mailloux, J.Y. Xuan, B. Beauchamp, L.D. Jui, M. Lou, and M.E. Harper Glutaredoxin-2 is required to control proton leak through uncoupling protein-3 J. Biol. Chem. 288 2013 8365 8379
    • (2013) J. Biol. Chem. , vol.288 , pp. 8365-8379
    • Mailloux, R.J.1    Xuan, J.Y.2    Beauchamp, B.3    Jui, L.D.4    Lou, M.5    Harper, M.E.6
  • 143
    • 84888133598 scopus 로고    scopus 로고
    • Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics
    • R.J. Mailloux, S.L. McBride, and M.E. Harper Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics Trends Biochem. Sci. 38 2013 592 602
    • (2013) Trends Biochem. Sci. , vol.38 , pp. 592-602
    • Mailloux, R.J.1    McBride, S.L.2    Harper, M.E.3
  • 144
    • 36348964192 scopus 로고    scopus 로고
    • Preconditioning results in S-nitrosylation of proteins involved in regulation of mitochondrial energetics and calcium transport
    • DOI 10.1161/CIRCRESAHA.107.155879
    • J.H. Sun, M. Morgan, R.F. Shen, C. Steenbergen, and E. Murphy Preconditioning results in S-nitrosylation of proteins involved in regulation of mitochondrial energetics and calcium transport Circ. Res. 101 2007 1155 1163 (Pubitemid 350146442)
    • (2007) Circulation Research , vol.101 , Issue.11 , pp. 1155-1163
    • Sun, J.1    Morgan, M.2    Shen, R.-F.3    Steenbergen, C.4    Murphy, E.5
  • 145
    • 0037490142 scopus 로고    scopus 로고
    • Reversible glutathionylation of complex I increases mitochondrial superoxide formation
    • DOI 10.1074/jbc.M209359200
    • E.R. Taylor, F. Hurrell, R.J. Shannon, T.K. Lin, J. Hirst, and M.P. Murphy Reversible glutathionylation of complex I increases mitochondrial superoxide formation J. Biol. Chem. 278 2003 19603 19610 (Pubitemid 36799143)
    • (2003) Journal of Biological Chemistry , vol.278 , Issue.22 , pp. 19603-19610
    • Taylor, E.R.1    Hurrell, F.2    Shannon, R.J.3    Lin, T.-K.4    Hirst, J.5    Murphy, M.P.6
  • 147
    • 33744527052 scopus 로고    scopus 로고
    • Persistent S-nitrosation of complex I and other mitochondrial membrane proteins by S-nitrosothiols but not nitric oxide or peroxynitrite: Implications for the interaction of nitric oxide with mitochondria
    • DOI 10.1074/jbc.M512203200
    • C.C. Dahm, K. Moore, and M.P. Murphy Persistent S-nitrosation of complex I and other mitochondrial membrane proteins by S-nitrosothiols but not nitric oxide or peroxynitrite - implications for the interaction of nitric oxide with mitochondria J. Biol. Chem. 281 2006 10056 10065 (Pubitemid 43864540)
    • (2006) Journal of Biological Chemistry , vol.281 , Issue.15 , pp. 10056-10065
    • Dahm, C.C.1    Moore, K.2    Murphy, M.P.3
  • 148
    • 34248569415 scopus 로고    scopus 로고
    • Site-specific S-glutathiolation of mitochondrial NADH ubiquinone reductase
    • DOI 10.1021/bi602580c
    • C.L. Chen, L.W. Zhang, A. Yeh, C.A. Chen, K.B. Green-Church, J.L. Zweier, and Y.R. Chen Site-specific S-glutathiolation of mitochondrial NADH ubiquinone reductase Biochemistry 46 2007 5754 5765 (Pubitemid 46764124)
    • (2007) Biochemistry , vol.46 , Issue.19 , pp. 5754-5765
    • Chen, C.-L.1    Zhang, L.2    Yeh, A.3    Chen, C.-A.4    Green-Church, K.B.5    Zweier, J.L.6    Chen, Y.-R.7
  • 149
    • 57049186735 scopus 로고    scopus 로고
    • Mass spectrometry profiles superoxide-induced intramolecular disulfide in the FMN-binding subunit of mitochondrial complex i
    • L. Zhang, H. Xu, C.L. Chen, K.B. Green-Church, M.A. Freitas, and Y.R. Chen Mass spectrometry profiles superoxide-induced intramolecular disulfide in the FMN-binding subunit of mitochondrial complex I J. Am. Soc. Mass Spectrom. 19 2008 1875 1886
    • (2008) J. Am. Soc. Mass Spectrom. , vol.19 , pp. 1875-1886
    • Zhang, L.1    Xu, H.2    Chen, C.L.3    Green-Church, K.B.4    Freitas, M.A.5    Chen, Y.R.6
  • 151
    • 0025072729 scopus 로고
    • Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase
    • A.B. Kotlyar, and A.D. Vinogradov Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase Biochim. Biophys. Acta 1019 1990 151 158
    • (1990) Biochim. Biophys. Acta , vol.1019 , pp. 151-158
    • Kotlyar, A.B.1    Vinogradov, A.D.2
  • 152
    • 0142106477 scopus 로고    scopus 로고
    • Active/de-active transition of respiratory complex I in bacteria, fungi, and animals
    • DOI 10.1016/S0005-2728(03)00087-2
    • E. Maklashina, A.B. Kotlyar, and G. Cecchini Active/de-active transition of respiratory complex I in bacteria, fungi, and animals Biochim. Biophys. Acta 1606 2003 95 103 (Pubitemid 37267873)
    • (2003) Biochimica et Biophysica Acta - Bioenergetics , vol.1606 , Issue.1-3 , pp. 95-103
    • Maklashina, E.1    Kotlyar, A.B.2    Cecchini, G.3
  • 153
    • 0027121489 scopus 로고
    • 2 + ions on the slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase
    • 2 + ions on the slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase Biochim. Biophys. Acta 1098 1992 144 150
    • (1992) Biochim. Biophys. Acta , vol.1098 , pp. 144-150
    • Kotlyar, A.B.1    Sled, V.D.2    Vinogradov, A.D.3
  • 154
    • 0033042196 scopus 로고    scopus 로고
    • Active/de-active state transition of the mitochondrial complex I as revealed by specific sulfhydryl group labeling
    • DOI 10.1016/S0014-5793(99)00850-9, PII S0014579399008509
    • E.V. Gavrikova, and A.D. Vinogradov Active/de-active state transition of the mitochondrial complex I as revealed by specific sulfhydryl group labeling FEBS Lett. 455 1999 36 40 (Pubitemid 29322777)
    • (1999) FEBS Letters , vol.455 , Issue.1-2 , pp. 36-40
    • Gavrikova, E.V.1    Vinogradov, A.D.2
  • 155
    • 0037015692 scopus 로고    scopus 로고
    • Effect of anoxia/reperfusion on the reversible active/de-active transition of NADH-ubiquinone oxidoreductase (complex I) in rat heart
    • DOI 10.1016/S0005-2728(02)00280-3, PII S0005272802002803
    • E. Maklashina, Y. Sher, H.Z. Zhou, M.O. Gray, J.S. Karliner, and G. Cecchini Effect of anoxia/reperfusion on the reversible active/de-active transition of NADH-ubiquinone oxidoreductase (complex I) in rat heart Biochim. Biophys. Acta 1556 2002 6 12 (Pubitemid 35283893)
    • (2002) Biochimica et Biophysica Acta - Bioenergetics , vol.1556 , Issue.1 , pp. 6-12
    • Maklashina, E.1    Sher, Y.2    Zhou, H.-Z.3    Gray, M.O.4    Karliner, J.S.5    Cecchini, G.6
  • 156
    • 38049136885 scopus 로고    scopus 로고
    • S-nitrosation of mitochondrial complex i depends on its structural conformation
    • A. Galkin, and S. Moncada S-nitrosation of mitochondrial complex I depends on its structural conformation J. Biol. Chem. 2007 37748 37753
    • (2007) J. Biol. Chem. , pp. 37748-37753
    • Galkin, A.1    Moncada, S.2
  • 157
    • 73649126881 scopus 로고    scopus 로고
    • Lack of oxygen deactivates mitochondrial complex i - Implications for ischemic injury?
    • A. Galkin, A.Y. Abramov, N. Frakich, M.R. Duchen, and S. Moncada Lack of oxygen deactivates mitochondrial complex I - implications for ischemic injury? J. Biol. Chem. 284 2009 36055 36061
    • (2009) J. Biol. Chem. , vol.284 , pp. 36055-36061
    • Galkin, A.1    Abramov, A.Y.2    Frakich, N.3    Duchen, M.R.4    Moncada, S.5
  • 158
  • 162
    • 84875388964 scopus 로고    scopus 로고
    • Conformation-specific crosslinking of mitochondrial complex i
    • M. Ciano, M. Fuszard, H. Heide, C.H. Botting, and A. Galkin Conformation-specific crosslinking of mitochondrial complex I FEBS Lett. 587 2013 867 872
    • (2013) FEBS Lett. , vol.587 , pp. 867-872
    • Ciano, M.1    Fuszard, M.2    Heide, H.3    Botting, C.H.4    Galkin, A.5
  • 163
    • 0026484793 scopus 로고
    • Conservation of sequences of subunits of mitochondrial complex i and their relationships with other proteins
    • I.M. Fearnley, and J.E. Walker Conservation of sequences of subunits of mitochondrial complex I and their relationships with other proteins Biochim. Biophys. Acta 1140 1992 105 134
    • (1992) Biochim. Biophys. Acta , vol.1140 , pp. 105-134
    • Fearnley, I.M.1    Walker, J.E.2
  • 164
    • 0033600871 scopus 로고    scopus 로고
    • A reductase/isomerase subunit of mitochondrial NADH:ubiquinone oxidoreductase (complex I) carries an NADPH and is involved in the biogenesis of the complex
    • DOI 10.1006/jmbi.1999.3096
    • U. Schulte, V. Haupt, A. Abelmann, W. Fecke, B. Brors, T. Rasmussen, T. Friedrich, and H. Weiss A reductase/isomerase subunit of mitochondrial NADH:ubiquinone oxidoreductase (complex I) carries an NADPH and is involved in the biogenesis of the complex J. Mol. Biol. 292 1999 569 580 (Pubitemid 29457319)
    • (1999) Journal of Molecular Biology , vol.292 , Issue.3 , pp. 569-580
    • Schulte, U.1    Haupt, V.2    Abelmann, A.3    Fecke, W.4    Brors, B.5    Rasmussen, T.6    Friedrich, T.7    Weiss, H.8
  • 165
    • 33751561773 scopus 로고    scopus 로고
    • Tight binding of NADPH to the 39-kDa subunit of complex I is not required for catalytic activity but stabilizes the multiprotein complex
    • DOI 10.1016/j.bbabio.2006.09.003, PII S0005272806002775
    • A. Abdrakhmanova, K. Zwicker, S. Kerscher, V. Zickermann, and U. Brandt Tight binding of NADPH to the 39-kDa subunit of complex I is not required for catalytic activity but stabilizes the multiprotein complex Biochim. Biophys. Acta 1757 2006 1676 1682 (Pubitemid 44841959)
    • (2006) Biochimica et Biophysica Acta - Bioenergetics , vol.1757 , Issue.12 , pp. 1676-1682
    • Abdrakhmanova, A.1    Zwicker, K.2    Kerscher, S.3    Zickermann, V.4    Brandt, U.5
  • 166
    • 55549123029 scopus 로고    scopus 로고
    • Protein tyrosine nitration of the flavin subunit is associated with oxidative modification of mitochondrial complex II in the post-ischemic myocardium
    • C.L. Chen, J.F. Chen, S. Rawale, S. Varadharaj, P.P.T. Kaumaya, J.L. Zweier, and Y.R. Chen Protein tyrosine nitration of the flavin subunit is associated with oxidative modification of mitochondrial complex II in the post-ischemic myocardium J. Biol. Chem. 283 2008 27991 28003
    • (2008) J. Biol. Chem. , vol.283 , pp. 27991-28003
    • Chen, C.L.1    Chen, J.F.2    Rawale, S.3    Varadharaj, S.4    Kaumaya, P.P.T.5    Zweier, J.L.6    Chen, Y.R.7
  • 167
    • 77949502858 scopus 로고    scopus 로고
    • Peroxynitrite-mediated oxidative modifications of complex II: Relevance in myocardial infarction
    • L.W. Zhang, C.L. Chen, P.T. Kang, V. Garg, K.L. Hu, K.B. Green-Church, and Y.R. Chen Peroxynitrite-mediated oxidative modifications of complex II: relevance in myocardial infarction Biochemistry 49 2010 2529 2539
    • (2010) Biochemistry , vol.49 , pp. 2529-2539
    • Zhang, L.W.1    Chen, C.L.2    Kang, P.T.3    Garg, V.4    Hu, K.L.5    Green-Church, K.B.6    Chen, Y.R.7
  • 169
    • 0042665896 scopus 로고    scopus 로고
    • Identification of proteins undergoing glutathionylation in oxidatively stressed hepatocytes and hepatoma cells
    • DOI 10.1002/pmic.200300436
    • M. Fratelli, H. Demol, M. Puype, S. Casagrande, P. Villa, I. Eberini, J. Vandekerckhove, E. Gianazza, and P. Ghezzi Identification of proteins undergoing glutathionylation in oxidatively stressed hepatocytes and hepatoma cells Proteomics 3 2003 1154 1161 (Pubitemid 36929537)
    • (2003) Proteomics , vol.3 , Issue.7 , pp. 1154-1161
    • Fratelli, M.1    Demol, H.2    Puype, M.3    Casagrande, S.4    Villa, P.5    Eberini, I.6    Vandekerckhove, J.7    Gianazza, E.8    Ghezzi, P.9
  • 170
    • 84856556021 scopus 로고    scopus 로고
    • There is no evidence that mitochondria are the main source of reactive oxygen species in mammalian cells
    • Brown, and Borutaite There is no evidence that mitochondria are the main source of reactive oxygen species in mammalian cells Mitochondrion 12 2003 1 4
    • (2003) Mitochondrion , vol.12 , pp. 1-4
    • Brown1    Borutaite2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.