메뉴 건너뛰기




Volumn 26, Issue 5, 2016, Pages 341-351

Nuclear Mechanisms of Insulin Resistance

Author keywords

[No Author keywords available]

Indexed keywords

GLUCOCORTICOID RECEPTOR; INSULIN; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA COACTIVATOR 1ALPHA; TRANSCRIPTION FACTOR; TRANSCRIPTION FACTOR FKHR; CELL RECEPTOR;

EID: 84955619589     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2016.01.002     Document Type: Review
Times cited : (59)

References (99)
  • 1
    • 84941702063 scopus 로고    scopus 로고
    • Prevalence of and trends in diabetes among adults in the United States, 1988-2012
    • Menke A., et al. Prevalence of and trends in diabetes among adults in the United States, 1988-2012. JAMA 2015, 314:1021-1029.
    • (2015) JAMA , vol.314 , pp. 1021-1029
    • Menke, A.1
  • 2
    • 84891648237 scopus 로고    scopus 로고
    • Insulin receptor signaling in normal and insulin-resistant states
    • Boucher J., et al. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb. Perspect. Biol. 2014, 6:a009191.
    • (2014) Cold Spring Harb. Perspect. Biol. , vol.6 , pp. a009191
    • Boucher, J.1
  • 3
    • 33645982255 scopus 로고    scopus 로고
    • From mice to men: insights into the insulin resistance syndromes
    • Biddinger S.B., Kahn C.R. From mice to men: insights into the insulin resistance syndromes. Annu. Rev. Physiol. 2006, 68:123-158.
    • (2006) Annu. Rev. Physiol. , vol.68 , pp. 123-158
    • Biddinger, S.B.1    Kahn, C.R.2
  • 4
    • 79957804531 scopus 로고    scopus 로고
    • Congenital syndromes of severe insulin resistance
    • Huang-Doran I., Savage D.B. Congenital syndromes of severe insulin resistance. Pediatr. Endocrinol. Rev. 2011, 8:190-199.
    • (2011) Pediatr. Endocrinol. Rev. , vol.8 , pp. 190-199
    • Huang-Doran, I.1    Savage, D.B.2
  • 5
    • 77950343252 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress and the inflammatory basis of metabolic disease
    • Hotamisligil G.S. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 2010, 140:900-917.
    • (2010) Cell , vol.140 , pp. 900-917
    • Hotamisligil, G.S.1
  • 6
    • 33645860825 scopus 로고    scopus 로고
    • Reactive oxygen species have a causal role in multiple forms of insulin resistance
    • Houstis N., et al. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 2006, 440:944-948.
    • (2006) Nature , vol.440 , pp. 944-948
    • Houstis, N.1
  • 7
    • 84865438468 scopus 로고    scopus 로고
    • Mitochondrial oxidative stress and the metabolic syndrome
    • James A.M., et al. Mitochondrial oxidative stress and the metabolic syndrome. Trends Endocrinol. Metab. 2012, 23:429-434.
    • (2012) Trends Endocrinol. Metab. , vol.23 , pp. 429-434
    • James, A.M.1
  • 8
    • 77951918926 scopus 로고    scopus 로고
    • Macrophages, inflammation, and insulin resistance
    • Olefsky J.M., Glass C.K. Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 2010, 72:219-246.
    • (2010) Annu. Rev. Physiol. , vol.72 , pp. 219-246
    • Olefsky, J.M.1    Glass, C.K.2
  • 9
    • 84926161089 scopus 로고    scopus 로고
    • Identification of nuclear hormone receptor pathways causing insulin resistance by transcriptional and epigenomic analysis
    • Kang S., et al. Identification of nuclear hormone receptor pathways causing insulin resistance by transcriptional and epigenomic analysis. Nat. Cell Biol. 2015, 17:44-56.
    • (2015) Nat. Cell Biol. , vol.17 , pp. 44-56
    • Kang, S.1
  • 10
    • 33845968034 scopus 로고    scopus 로고
    • Functional studies of Akt isoform specificity in skeletal muscle in vivo; maintained insulin sensitivity despite reduced insulin receptor substrate-1 expression
    • Cleasby M.E., et al. Functional studies of Akt isoform specificity in skeletal muscle in vivo; maintained insulin sensitivity despite reduced insulin receptor substrate-1 expression. Mol. Endocrinol. 2007, 21:215-228.
    • (2007) Mol. Endocrinol. , vol.21 , pp. 215-228
    • Cleasby, M.E.1
  • 11
    • 42649127400 scopus 로고    scopus 로고
    • IRS1-independent defects define major nodes of insulin resistance
    • Hoehn K.L., et al. IRS1-independent defects define major nodes of insulin resistance. Cell Metab. 2008, 7:421-433.
    • (2008) Cell Metab. , vol.7 , pp. 421-433
    • Hoehn, K.L.1
  • 12
    • 0032698470 scopus 로고    scopus 로고
    • Normal insulin-dependent activation of Akt/protein kinase B, with diminished activation of phosphoinositide 3-kinase, in muscle in type 2 diabetes
    • Kim Y.B., et al. Normal insulin-dependent activation of Akt/protein kinase B, with diminished activation of phosphoinositide 3-kinase, in muscle in type 2 diabetes. J. Clin. Invest. 1999, 104:733-741.
    • (1999) J. Clin. Invest. , vol.104 , pp. 733-741
    • Kim, Y.B.1
  • 13
    • 0035658486 scopus 로고    scopus 로고
    • Normal Akt/PKB with reduced PI3K activation in insulin-resistant mice
    • Nadler S.T., et al. Normal Akt/PKB with reduced PI3K activation in insulin-resistant mice. Am. J. Physiol. Endocrinol. Metab. 2001, 281:E1249-E1254.
    • (2001) Am. J. Physiol. Endocrinol. Metab. , vol.281 , pp. E1249-E1254
    • Nadler, S.T.1
  • 14
    • 84877329207 scopus 로고    scopus 로고
    • PPARgamma signaling and metabolism: the good, the bad and the future
    • Ahmadian M., et al. PPARgamma signaling and metabolism: the good, the bad and the future. Nat. Med. 2013, 19:557-566.
    • (2013) Nat. Med. , vol.19 , pp. 557-566
    • Ahmadian, M.1
  • 15
    • 84907990392 scopus 로고    scopus 로고
    • Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes
    • Soccio R.E., et al. Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. Cell Metab. 2014, 20:573-591.
    • (2014) Cell Metab. , vol.20 , pp. 573-591
    • Soccio, R.E.1
  • 16
    • 77954716663 scopus 로고    scopus 로고
    • Weight gain and insulin resistance in children treated with valproate: the influence of time
    • Masuccio F., et al. Weight gain and insulin resistance in children treated with valproate: the influence of time. J. Child Neurol. 2010, 25:941-947.
    • (2010) J. Child Neurol. , vol.25 , pp. 941-947
    • Masuccio, F.1
  • 17
    • 68049095260 scopus 로고    scopus 로고
    • Obesity and metabolic syndrome in histone demethylase JHDM2a-deficient mice
    • Inagaki T., et al. Obesity and metabolic syndrome in histone demethylase JHDM2a-deficient mice. Genes Cells 2009, 14:991-1001.
    • (2009) Genes Cells , vol.14 , pp. 991-1001
    • Inagaki, T.1
  • 18
    • 84889604511 scopus 로고    scopus 로고
    • EHMT1 controls brown adipose cell fate and thermogenesis through the PRDM16 complex
    • Ohno H., et al. EHMT1 controls brown adipose cell fate and thermogenesis through the PRDM16 complex. Nature 2013, 504:163-167.
    • (2013) Nature , vol.504 , pp. 163-167
    • Ohno, H.1
  • 19
    • 64749111074 scopus 로고    scopus 로고
    • Role of Jhdm2a in regulating metabolic gene expression and obesity resistance
    • Tateishi K., et al. Role of Jhdm2a in regulating metabolic gene expression and obesity resistance. Nature 2009, 458:757-761.
    • (2009) Nature , vol.458 , pp. 757-761
    • Tateishi, K.1
  • 20
    • 84925857675 scopus 로고    scopus 로고
    • I'm eating for two: parental dietary effects on offspring metabolism
    • Rando O.J., Simmons R.A. I'm eating for two: parental dietary effects on offspring metabolism. Cell 2015, 161:93-105.
    • (2015) Cell , vol.161 , pp. 93-105
    • Rando, O.J.1    Simmons, R.A.2
  • 21
    • 33746189670 scopus 로고    scopus 로고
    • The Dutch famine of 1944-1945: a pathophysiological model of long-term consequences of wasting disease
    • Kyle U.G., Pichard C. The Dutch famine of 1944-1945: a pathophysiological model of long-term consequences of wasting disease. Curr. Opin. Clin. Nutr. Metab. Care 2006, 9:388-394.
    • (2006) Curr. Opin. Clin. Nutr. Metab. Care , vol.9 , pp. 388-394
    • Kyle, U.G.1    Pichard, C.2
  • 22
    • 45549101233 scopus 로고    scopus 로고
    • Histone code modifications repress glucose transporter 4 expression in the intrauterine growth-restricted offspring
    • Raychaudhuri N., et al. Histone code modifications repress glucose transporter 4 expression in the intrauterine growth-restricted offspring. J. Biol. Chem. 2008, 283:13611-13626.
    • (2008) J. Biol. Chem. , vol.283 , pp. 13611-13626
    • Raychaudhuri, N.1
  • 23
    • 84876771596 scopus 로고    scopus 로고
    • The immune system as a sensor of the metabolic state
    • Odegaard J.I., Chawla A. The immune system as a sensor of the metabolic state. Immunity 2013, 38:644-654.
    • (2013) Immunity , vol.38 , pp. 644-654
    • Odegaard, J.I.1    Chawla, A.2
  • 24
    • 2942748585 scopus 로고    scopus 로고
    • Metabolic and hormonal interactions between muscle and adipose tissue
    • Tomas E., et al. Metabolic and hormonal interactions between muscle and adipose tissue. Proc. Nutr. Soc. 2004, 63:381-385.
    • (2004) Proc. Nutr. Soc. , vol.63 , pp. 381-385
    • Tomas, E.1
  • 25
    • 84903846040 scopus 로고    scopus 로고
    • The brain modulates insulin sensitivity in multiple tissues
    • Parlevliet E.T., et al. The brain modulates insulin sensitivity in multiple tissues. Front. Horm. Res. 2014, 42:50-58.
    • (2014) Front. Horm. Res. , vol.42 , pp. 50-58
    • Parlevliet, E.T.1
  • 26
    • 84878785347 scopus 로고    scopus 로고
    • Immunological goings-on in visceral adipose tissue
    • Mathis D. Immunological goings-on in visceral adipose tissue. Cell Metab. 2013, 17:851-859.
    • (2013) Cell Metab. , vol.17 , pp. 851-859
    • Mathis, D.1
  • 27
    • 84888131271 scopus 로고    scopus 로고
    • Interferon regulatory factor 4 regulates obesity-induced inflammation through regulation of adipose tissue macrophage polarization
    • Eguchi J., et al. Interferon regulatory factor 4 regulates obesity-induced inflammation through regulation of adipose tissue macrophage polarization. Diabetes 2013, 62:3394-3403.
    • (2013) Diabetes , vol.62 , pp. 3394-3403
    • Eguchi, J.1
  • 28
    • 0033708410 scopus 로고    scopus 로고
    • Adipose tissue is required for the antidiabetic, but not for the hypolipidemic, effect of thiazolidinediones
    • Chao L., et al. Adipose tissue is required for the antidiabetic, but not for the hypolipidemic, effect of thiazolidinediones. J. Clin. Invest. 2000, 106:1221-1228.
    • (2000) J. Clin. Invest. , vol.106 , pp. 1221-1228
    • Chao, L.1
  • 29
    • 9144229185 scopus 로고    scopus 로고
    • Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle
    • He W., et al. Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:15712-15717.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 15712-15717
    • He, W.1
  • 30
    • 76049086229 scopus 로고    scopus 로고
    • PPARgamma activation in adipocytes is sufficient for systemic insulin sensitization
    • Sugii S., et al. PPARgamma activation in adipocytes is sufficient for systemic insulin sensitization. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:22504-22509.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 22504-22509
    • Sugii, S.1
  • 31
    • 0346027235 scopus 로고    scopus 로고
    • Muscle-specific PPARγ deletion causes insulin resistance
    • Hevener A.L., et al. Muscle-specific PPARγ deletion causes insulin resistance. Nat. Med. 2003, 9:1491-1497.
    • (2003) Nat. Med. , vol.9 , pp. 1491-1497
    • Hevener, A.L.1
  • 32
    • 85047693638 scopus 로고    scopus 로고
    • Muscle-specific PPARgamma-deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones
    • Norris A.W., et al. Muscle-specific PPARgamma-deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones. J. Clin. Invest. 2003, 112:608-618.
    • (2003) J. Clin. Invest. , vol.112 , pp. 608-618
    • Norris, A.W.1
  • 33
    • 0141450254 scopus 로고    scopus 로고
    • Targeted elimination of peroxisome proliferator-activated receptor gamma in beta cells leads to abnormalities in islet mass without compromising glucose homeostasis
    • Rosen E.D., et al. Targeted elimination of peroxisome proliferator-activated receptor gamma in beta cells leads to abnormalities in islet mass without compromising glucose homeostasis. Mol. Cell. Biol. 2003, 23:7222-7229.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 7222-7229
    • Rosen, E.D.1
  • 34
    • 34547492488 scopus 로고    scopus 로고
    • PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties
    • Bouhlel M.A., et al. PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab. 2007, 6:137-143.
    • (2007) Cell Metab. , vol.6 , pp. 137-143
    • Bouhlel, M.A.1
  • 35
    • 34347354309 scopus 로고    scopus 로고
    • Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance
    • Odegaard J.I., et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 2007, 447:1116-1120.
    • (2007) Nature , vol.447 , pp. 1116-1120
    • Odegaard, J.I.1
  • 36
    • 34249907880 scopus 로고    scopus 로고
    • Macrophage PPAR gamma is required for normal skeletal muscle and hepatic insulin sensitivity and full antidiabetic effects of thiazolidinediones
    • Hevener A.L., et al. Macrophage PPAR gamma is required for normal skeletal muscle and hepatic insulin sensitivity and full antidiabetic effects of thiazolidinediones. J. Clin. Invest. 2007, 117:1658-1669.
    • (2007) J. Clin. Invest. , vol.117 , pp. 1658-1669
    • Hevener, A.L.1
  • 37
    • 36749077119 scopus 로고    scopus 로고
    • Macrophage peroxisome proliferator activated receptor gamma as a therapeutic target to combat type 2 diabetes
    • Pascual G., et al. Macrophage peroxisome proliferator activated receptor gamma as a therapeutic target to combat type 2 diabetes. Expert Opin. Ther. Targets 2007, 11:1503-1520.
    • (2007) Expert Opin. Ther. Targets , vol.11 , pp. 1503-1520
    • Pascual, G.1
  • 38
    • 84862986986 scopus 로고    scopus 로고
    • PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells
    • Cipolletta D., et al. PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 2012, 486:549-553.
    • (2012) Nature , vol.486 , pp. 549-553
    • Cipolletta, D.1
  • 39
    • 79955694276 scopus 로고    scopus 로고
    • Brain PPAR-gamma promotes obesity and is required for the insulin-sensitizing effect of thiazolidinediones
    • Lu M., et al. Brain PPAR-gamma promotes obesity and is required for the insulin-sensitizing effect of thiazolidinediones. Nat. Med. 2011, 17:618-622.
    • (2011) Nat. Med. , vol.17 , pp. 618-622
    • Lu, M.1
  • 40
    • 79955692835 scopus 로고    scopus 로고
    • A role for central nervous system PPAR-gamma in the regulation of energy balance
    • Ryan K.K., et al. A role for central nervous system PPAR-gamma in the regulation of energy balance. Nat. Med. 2011, 17:623-626.
    • (2011) Nat. Med. , vol.17 , pp. 623-626
    • Ryan, K.K.1
  • 41
    • 4143075930 scopus 로고    scopus 로고
    • Direct demonstration of lipid sequestration as a mechanism by which rosiglitazone prevents fatty-acid-induced insulin resistance in the rat: comparison with metformin
    • Ye J.M., et al. Direct demonstration of lipid sequestration as a mechanism by which rosiglitazone prevents fatty-acid-induced insulin resistance in the rat: comparison with metformin. Diabetologia 2004, 47:1306-1313.
    • (2004) Diabetologia , vol.47 , pp. 1306-1313
    • Ye, J.M.1
  • 42
    • 0035029255 scopus 로고    scopus 로고
    • Pioglitazone ameliorates tumor necrosis factor-alpha-induced insulin resistance by a mechanism independent of adipogenic activity of peroxisome proliferator-activated receptor-gamma
    • Iwata M., et al. Pioglitazone ameliorates tumor necrosis factor-alpha-induced insulin resistance by a mechanism independent of adipogenic activity of peroxisome proliferator-activated receptor-gamma. Diabetes 2001, 50:1083-1092.
    • (2001) Diabetes , vol.50 , pp. 1083-1092
    • Iwata, M.1
  • 43
    • 0036326005 scopus 로고    scopus 로고
    • Potentiation of insulin signaling in tissues of Zucker obese rats after acute and long-term treatment with PPARgamma agonists
    • Jiang G., et al. Potentiation of insulin signaling in tissues of Zucker obese rats after acute and long-term treatment with PPARgamma agonists. Diabetes 2002, 51:2412-2419.
    • (2002) Diabetes , vol.51 , pp. 2412-2419
    • Jiang, G.1
  • 44
    • 84858039282 scopus 로고    scopus 로고
    • PPARgamma agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein
    • Ohno H., et al. PPARgamma agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab. 2012, 15:395-404.
    • (2012) Cell Metab. , vol.15 , pp. 395-404
    • Ohno, H.1
  • 45
    • 84864615516 scopus 로고    scopus 로고
    • Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Pparγ
    • Qiang L., et al. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Pparγ. Cell 2012, 150:620-632.
    • (2012) Cell , vol.150 , pp. 620-632
    • Qiang, L.1
  • 46
    • 68849107400 scopus 로고    scopus 로고
    • C/EBPalpha and the corepressors CtBP1 and CtBP2 regulate repression of select visceral white adipose genes during induction of the brown phenotype in white adipocytes by peroxisome proliferator-activated receptor gamma agonists
    • Vernochet C., et al. C/EBPalpha and the corepressors CtBP1 and CtBP2 regulate repression of select visceral white adipose genes during induction of the brown phenotype in white adipocytes by peroxisome proliferator-activated receptor gamma agonists. Mol. Cell. Biol. 2009, 29:4714-4728.
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 4714-4728
    • Vernochet, C.1
  • 47
    • 42149134825 scopus 로고    scopus 로고
    • The effect of thiazolidinediones on adiponectin serum level: a meta-analysis
    • Riera-Guardia N., Rothenbacher D. The effect of thiazolidinediones on adiponectin serum level: a meta-analysis. Diabetes Obes. Metab. 2008, 10:367-375.
    • (2008) Diabetes Obes. Metab. , vol.10 , pp. 367-375
    • Riera-Guardia, N.1    Rothenbacher, D.2
  • 48
    • 84901820044 scopus 로고    scopus 로고
    • PPARgamma and the global map of adipogenesis and beyond
    • Lefterova M.I., et al. PPARgamma and the global map of adipogenesis and beyond. Trends Endocrinol. Metab. 2014, 25:293-302.
    • (2014) Trends Endocrinol. Metab. , vol.25 , pp. 293-302
    • Lefterova, M.I.1
  • 49
    • 0141920726 scopus 로고    scopus 로고
    • Genetic modulation of PPARγ phosphorylation regulates insulin sensitivity
    • Rangwala S.M., et al. Genetic modulation of PPARγ phosphorylation regulates insulin sensitivity. Dev. Cell 2003, 5:657-663.
    • (2003) Dev. Cell , vol.5 , pp. 657-663
    • Rangwala, S.M.1
  • 50
    • 77954941113 scopus 로고    scopus 로고
    • Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5
    • Choi J.H., et al. Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5. Nature 2010, 466:451-456.
    • (2010) Nature , vol.466 , pp. 451-456
    • Choi, J.H.1
  • 51
    • 80053131732 scopus 로고    scopus 로고
    • Antidiabetic actions of a non-agonist PPARgamma ligand blocking Cdk5-mediated phosphorylation
    • Choi J.H., et al. Antidiabetic actions of a non-agonist PPARgamma ligand blocking Cdk5-mediated phosphorylation. Nature 2011, 477:477-481.
    • (2011) Nature , vol.477 , pp. 477-481
    • Choi, J.H.1
  • 52
    • 84923124525 scopus 로고    scopus 로고
    • An ERK/Cdk5 axis controls the diabetogenic actions of PPARgamma
    • Banks A.S., et al. An ERK/Cdk5 axis controls the diabetogenic actions of PPARgamma. Nature 2015, 517:391-395.
    • (2015) Nature , vol.517 , pp. 391-395
    • Banks, A.S.1
  • 53
    • 84863012459 scopus 로고    scopus 로고
    • Fibroblast growth factor-21 regulates PPARgamma activity and the antidiabetic actions of thiazolidinediones
    • Dutchak P.A., et al. Fibroblast growth factor-21 regulates PPARgamma activity and the antidiabetic actions of thiazolidinediones. Cell 2012, 148:556-567.
    • (2012) Cell , vol.148 , pp. 556-567
    • Dutchak, P.A.1
  • 54
    • 79952799756 scopus 로고    scopus 로고
    • Cellular processing of the glucocorticoid receptor gene and protein: new mechanisms for generating tissue-specific actions of glucocorticoids
    • Oakley R.H., Cidlowski J.A. Cellular processing of the glucocorticoid receptor gene and protein: new mechanisms for generating tissue-specific actions of glucocorticoids. J. Biol. Chem. 2011, 286:3177-3184.
    • (2011) J. Biol. Chem. , vol.286 , pp. 3177-3184
    • Oakley, R.H.1    Cidlowski, J.A.2
  • 55
    • 84903575036 scopus 로고    scopus 로고
    • Minireview: new molecular mediators of glucocorticoid receptor activity in metabolic tissues
    • Patel R., et al. Minireview: new molecular mediators of glucocorticoid receptor activity in metabolic tissues. Mol. Endocrinol. 2014, 28:999-1011.
    • (2014) Mol. Endocrinol. , vol.28 , pp. 999-1011
    • Patel, R.1
  • 56
    • 3442885596 scopus 로고
    • Natural course of Cushing's syndrome as compared with the course of rheumatoid arthritis treated by hormones
    • Plotz C.M., et al. Natural course of Cushing's syndrome as compared with the course of rheumatoid arthritis treated by hormones. Ann. Rheum. Dis. 1952, 11:308-309.
    • (1952) Ann. Rheum. Dis. , vol.11 , pp. 308-309
    • Plotz, C.M.1
  • 57
    • 85003195436 scopus 로고
    • Cortisol-induced insulin resistance in man: impaired suppression of glucose production and stimulation of glucose utilization due to a postreceptor detect of insulin action
    • Rizza R.A., et al. Cortisol-induced insulin resistance in man: impaired suppression of glucose production and stimulation of glucose utilization due to a postreceptor detect of insulin action. J. Clin. Endocrinol. Metab. 1982, 54:131-138.
    • (1982) J. Clin. Endocrinol. Metab. , vol.54 , pp. 131-138
    • Rizza, R.A.1
  • 58
    • 84875859581 scopus 로고    scopus 로고
    • Dexamethasone-mediated changes in adipose triacylglycerol metabolism are exaggerated, not diminished, in the absence of a functional GR dimerization domain
    • Roohk D.J., et al. Dexamethasone-mediated changes in adipose triacylglycerol metabolism are exaggerated, not diminished, in the absence of a functional GR dimerization domain. Endocrinology 2013, 154:1528-1539.
    • (2013) Endocrinology , vol.154 , pp. 1528-1539
    • Roohk, D.J.1
  • 59
    • 8144228848 scopus 로고    scopus 로고
    • Chromatin immunoprecipitation (ChIP) scanning identifies primary glucocorticoid receptor target genes
    • Wang J.C., et al. Chromatin immunoprecipitation (ChIP) scanning identifies primary glucocorticoid receptor target genes. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:15603-15608.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 15603-15608
    • Wang, J.C.1
  • 60
    • 33745131127 scopus 로고    scopus 로고
    • Kinome analysis reveals nongenomic glucocorticoid receptor-dependent inhibition of insulin signaling
    • Lowenberg M., et al. Kinome analysis reveals nongenomic glucocorticoid receptor-dependent inhibition of insulin signaling. Endocrinology 2006, 147:3555-3562.
    • (2006) Endocrinology , vol.147 , pp. 3555-3562
    • Lowenberg, M.1
  • 61
    • 2542495763 scopus 로고    scopus 로고
    • Inactivation of the glucocorticoid receptor in hepatocytes leads to fasting hypoglycemia and ameliorates hyperglycemia in streptozotocin-induced diabetes mellitus
    • Opherk C., et al. Inactivation of the glucocorticoid receptor in hepatocytes leads to fasting hypoglycemia and ameliorates hyperglycemia in streptozotocin-induced diabetes mellitus. Mol. Endocrinol. 2004, 18:1346-1353.
    • (2004) Mol. Endocrinol. , vol.18 , pp. 1346-1353
    • Opherk, C.1
  • 62
    • 84863032246 scopus 로고    scopus 로고
    • Glucocorticoid signaling in the arcuate nucleus modulates hepatic insulin sensitivity
    • Yi C.X., et al. Glucocorticoid signaling in the arcuate nucleus modulates hepatic insulin sensitivity. Diabetes 2012, 61:339-345.
    • (2012) Diabetes , vol.61 , pp. 339-345
    • Yi, C.X.1
  • 63
    • 0025933090 scopus 로고
    • Glucocorticoids as modulators in the control of feeding
    • Castonguay T.W. Glucocorticoids as modulators in the control of feeding. Brain Res. Bull. 1991, 27:423-428.
    • (1991) Brain Res. Bull. , vol.27 , pp. 423-428
    • Castonguay, T.W.1
  • 64
    • 84863943516 scopus 로고    scopus 로고
    • Genome-wide analysis of glucocorticoid receptor-binding sites in myotubes identifies gene networks modulating insulin signaling
    • Kuo T., et al. Genome-wide analysis of glucocorticoid receptor-binding sites in myotubes identifies gene networks modulating insulin signaling. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:11160-11165.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 11160-11165
    • Kuo, T.1
  • 65
    • 0035736260 scopus 로고    scopus 로고
    • Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo
    • Bodine S.C., et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat. Cell Biol. 2001, 3:1014-1019.
    • (2001) Nat. Cell Biol. , vol.3 , pp. 1014-1019
    • Bodine, S.C.1
  • 66
    • 84884594284 scopus 로고    scopus 로고
    • The role of FOXO1 in beta-cell failure and type 2 diabetes mellitus
    • Kitamura T. The role of FOXO1 in beta-cell failure and type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2013, 9:615-623.
    • (2013) Nat. Rev. Endocrinol. , vol.9 , pp. 615-623
    • Kitamura, T.1
  • 67
    • 84868337361 scopus 로고    scopus 로고
    • Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes
    • Morris A.P., et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat. Genet. 2012, 44:981-990.
    • (2012) Nat. Genet. , vol.44 , pp. 981-990
    • Morris, A.P.1
  • 68
    • 78149272381 scopus 로고    scopus 로고
    • FoxOs function synergistically to promote glucose production
    • Haeusler R.A., et al. FoxOs function synergistically to promote glucose production. J. Biol. Chem. 2010, 285:35245-35248.
    • (2010) J. Biol. Chem. , vol.285 , pp. 35245-35248
    • Haeusler, R.A.1
  • 69
    • 84940069349 scopus 로고    scopus 로고
    • Forkhead Box O6 (FoxO6) depletion attenuates hepatic gluconeogenesis and protects against fat-induced glucose disorder in mice
    • Calabuig-Navarro V., et al. Forkhead Box O6 (FoxO6) depletion attenuates hepatic gluconeogenesis and protects against fat-induced glucose disorder in mice. J. Biol. Chem. 2015, 290:15581-15594.
    • (2015) J. Biol. Chem. , vol.290 , pp. 15581-15594
    • Calabuig-Navarro, V.1
  • 70
    • 40949164735 scopus 로고    scopus 로고
    • Forkhead transcription factor FoxO1 in adipose tissue regulates energy storage and expenditure
    • Nakae J., et al. Forkhead transcription factor FoxO1 in adipose tissue regulates energy storage and expenditure. Diabetes 2008, 57:563-576.
    • (2008) Diabetes , vol.57 , pp. 563-576
    • Nakae, J.1
  • 71
    • 84861976352 scopus 로고    scopus 로고
    • FoxO1 target Gpr17 activates AgRP neurons to regulate food intake
    • Ren H., et al. FoxO1 target Gpr17 activates AgRP neurons to regulate food intake. Cell 2012, 149:1314-1326.
    • (2012) Cell , vol.149 , pp. 1314-1326
    • Ren, H.1
  • 72
    • 41849128523 scopus 로고    scopus 로고
    • The FoxO code
    • Calnan D.R., Brunet A. The FoxO code. Oncogene 2008, 27:2276-2288.
    • (2008) Oncogene , vol.27 , pp. 2276-2288
    • Calnan, D.R.1    Brunet, A.2
  • 73
    • 33644865024 scopus 로고    scopus 로고
    • The forkhead transcription factor Foxo1 bridges the JNK pathway and the transcription factor PDX-1 through its intracellular translocation
    • Kawamori D., et al. The forkhead transcription factor Foxo1 bridges the JNK pathway and the transcription factor PDX-1 through its intracellular translocation. J. Biol. Chem. 2006, 281:1091-1098.
    • (2006) J. Biol. Chem. , vol.281 , pp. 1091-1098
    • Kawamori, D.1
  • 74
    • 34848861463 scopus 로고    scopus 로고
    • The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor
    • Greer E.L., et al. The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J. Biol. Chem. 2007, 282:30107-30119.
    • (2007) J. Biol. Chem. , vol.282 , pp. 30107-30119
    • Greer, E.L.1
  • 75
    • 34848814178 scopus 로고    scopus 로고
    • Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting beta-catenin from T cell factor- to forkhead box O-mediated transcription
    • Almeida M., et al. Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting beta-catenin from T cell factor- to forkhead box O-mediated transcription. J. Biol. Chem. 2007, 282:27298-27305.
    • (2007) J. Biol. Chem. , vol.282 , pp. 27298-27305
    • Almeida, M.1
  • 76
    • 18844382368 scopus 로고    scopus 로고
    • Functional interaction between beta-catenin and FOXO in oxidative stress signaling
    • Essers M.A., et al. Functional interaction between beta-catenin and FOXO in oxidative stress signaling. Science 2005, 308:1181-1184.
    • (2005) Science , vol.308 , pp. 1181-1184
    • Essers, M.A.1
  • 77
    • 84924320470 scopus 로고    scopus 로고
    • Liver-specific expression of dominant-negative transcription factor 7-like 2 causes progressive impairment in glucose homeostasis
    • Ip W., et al. Liver-specific expression of dominant-negative transcription factor 7-like 2 causes progressive impairment in glucose homeostasis. Diabetes 2015, 64:1923-1932.
    • (2015) Diabetes , vol.64 , pp. 1923-1932
    • Ip, W.1
  • 78
    • 80052968080 scopus 로고    scopus 로고
    • Regulation of FoxO transcription factors by acetylation and protein-protein interactions
    • Daitoku H., et al. Regulation of FoxO transcription factors by acetylation and protein-protein interactions. Biochim. Biophys. Acta 2011, 1813:1954-1960.
    • (2011) Biochim. Biophys. Acta , vol.1813 , pp. 1954-1960
    • Daitoku, H.1
  • 79
    • 23844485211 scopus 로고    scopus 로고
    • Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation
    • Matsuzaki H., et al. Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:11278-11283.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 11278-11283
    • Matsuzaki, H.1
  • 80
    • 20144365700 scopus 로고    scopus 로고
    • Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes
    • Frescas D., et al. Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. J. Biol. Chem. 2005, 280:20589-20595.
    • (2005) J. Biol. Chem. , vol.280 , pp. 20589-20595
    • Frescas, D.1
  • 81
    • 47749149232 scopus 로고    scopus 로고
    • O-GlcNAc regulates FoxO activation in response to glucose
    • Housley M.P., et al. O-GlcNAc regulates FoxO activation in response to glucose. J. Biol. Chem. 2008, 283:16283-16292.
    • (2008) J. Biol. Chem. , vol.283 , pp. 16283-16292
    • Housley, M.P.1
  • 82
    • 0035855905 scopus 로고    scopus 로고
    • CREB regulates hepatic gluconeogenesis through the coactivator PGC-1
    • Herzig S., et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 2001, 413:179-183.
    • (2001) Nature , vol.413 , pp. 179-183
    • Herzig, S.1
  • 83
    • 0035855858 scopus 로고    scopus 로고
    • Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1
    • Yoon J.C., et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 2001, 413:131-138.
    • (2001) Nature , vol.413 , pp. 131-138
    • Yoon, J.C.1
  • 84
    • 0038187621 scopus 로고    scopus 로고
    • Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction
    • Puigserver P., et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature 2003, 423:550-555.
    • (2003) Nature , vol.423 , pp. 550-555
    • Puigserver, P.1
  • 85
    • 63649087890 scopus 로고    scopus 로고
    • Biological role of liver X receptors
    • Baranowski M. Biological role of liver X receptors. J. Physiol. Pharmacol. 2008, 59(Suppl. 7):31-55.
    • (2008) J. Physiol. Pharmacol. , vol.59 , pp. 31-55
    • Baranowski, M.1
  • 86
    • 84925681813 scopus 로고    scopus 로고
    • Deletion of macrophage Vitamin D receptor promotes insulin resistance and monocyte cholesterol transport to accelerate atherosclerosis in mice
    • Oh J., et al. Deletion of macrophage Vitamin D receptor promotes insulin resistance and monocyte cholesterol transport to accelerate atherosclerosis in mice. Cell Rep. 2015, 10:1872-1886.
    • (2015) Cell Rep. , vol.10 , pp. 1872-1886
    • Oh, J.1
  • 87
    • 84859921736 scopus 로고    scopus 로고
    • A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism
    • Herman M.A., et al. A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature 2012, 484:333-338.
    • (2012) Nature , vol.484 , pp. 333-338
    • Herman, M.A.1
  • 88
    • 2442435802 scopus 로고    scopus 로고
    • Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis
    • Iizuka K., et al. Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:7281-7286.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 7281-7286
    • Iizuka, K.1
  • 89
    • 84864752368 scopus 로고    scopus 로고
    • LRH-1-dependent glucose sensing determines intermediary metabolism in liver
    • Oosterveer M.H., et al. LRH-1-dependent glucose sensing determines intermediary metabolism in liver. J. Clin. Invest. 2012, 122:2817-2826.
    • (2012) J. Clin. Invest. , vol.122 , pp. 2817-2826
    • Oosterveer, M.H.1
  • 90
    • 84864464496 scopus 로고    scopus 로고
    • The transcriptional coactivators p/CIP and SRC-1 control insulin resistance through IRS1 in obesity models
    • Wang Z., et al. The transcriptional coactivators p/CIP and SRC-1 control insulin resistance through IRS1 in obesity models. PLoS ONE 2012, 7:e36961.
    • (2012) PLoS ONE , vol.7 , pp. e36961
    • Wang, Z.1
  • 91
    • 81055144760 scopus 로고    scopus 로고
    • Adipocyte NCoR knockout decreases PPARgamma phosphorylation and enhances PPARgamma activity and insulin sensitivity
    • Li P., et al. Adipocyte NCoR knockout decreases PPARgamma phosphorylation and enhances PPARgamma activity and insulin sensitivity. Cell 2011, 147:815-826.
    • (2011) Cell , vol.147 , pp. 815-826
    • Li, P.1
  • 92
    • 84944880405 scopus 로고    scopus 로고
    • Hepatic insulin resistance following chronic activation of the CREB coactivator CRTC2
    • Hogan M.F., et al. Hepatic insulin resistance following chronic activation of the CREB coactivator CRTC2. J. Biol. Chem. 2015, 290:25997-26006.
    • (2015) J. Biol. Chem. , vol.290 , pp. 25997-26006
    • Hogan, M.F.1
  • 93
    • 14844328611 scopus 로고    scopus 로고
    • Tissue-specific regulation of metabolic pathways through the transcriptional coactivator PGC1-alpha
    • Puigserver P. Tissue-specific regulation of metabolic pathways through the transcriptional coactivator PGC1-alpha. Int. J. Obes. (Lond.) 2005, 29(Suppl. 1):S5-S9.
    • (2005) Int. J. Obes. (Lond.) , vol.29 , pp. S5-S9
    • Puigserver, P.1
  • 94
    • 0035957375 scopus 로고    scopus 로고
    • Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1
    • Michael L.F., et al. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc. Natl. Acad. Sci. U.S.A. 2001, 98:3820-3825.
    • (2001) Proc. Natl. Acad. Sci. U.S.A. , vol.98 , pp. 3820-3825
    • Michael, L.F.1
  • 95
    • 0037326196 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator
    • Puigserver P., Spiegelman B.M. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr. Rev. 2003, 24:78-90.
    • (2003) Endocr. Rev. , vol.24 , pp. 78-90
    • Puigserver, P.1    Spiegelman, B.M.2
  • 96
    • 61749095297 scopus 로고    scopus 로고
    • SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes
    • Yoshizaki T., et al. SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes. Mol. Cell. Biol. 2009, 29:1363-1374.
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 1363-1374
    • Yoshizaki, T.1
  • 97
    • 80555142897 scopus 로고    scopus 로고
    • Sirt1 enhances skeletal muscle insulin sensitivity in mice during caloric restriction
    • Schenk S., et al. Sirt1 enhances skeletal muscle insulin sensitivity in mice during caloric restriction. J. Clin. Invest. 2011, 121:4281-4288.
    • (2011) J. Clin. Invest. , vol.121 , pp. 4281-4288
    • Schenk, S.1
  • 98
    • 79955661493 scopus 로고    scopus 로고
    • Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver
    • Li Y., et al. Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver. FASEB J. 2011, 25:1664-1679.
    • (2011) FASEB J. , vol.25 , pp. 1664-1679
    • Li, Y.1
  • 99
    • 77349087078 scopus 로고    scopus 로고
    • SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity
    • Yoshizaki T., et al. SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity. Am. J. Physiol. Endocrinol. Metab. 2010, 298:E419-E428.
    • (2010) Am. J. Physiol. Endocrinol. Metab. , vol.298 , pp. E419-E428
    • Yoshizaki, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.