-
1
-
-
84941702063
-
Prevalence of and trends in diabetes among adults in the United States, 1988-2012
-
Menke A., et al. Prevalence of and trends in diabetes among adults in the United States, 1988-2012. JAMA 2015, 314:1021-1029.
-
(2015)
JAMA
, vol.314
, pp. 1021-1029
-
-
Menke, A.1
-
2
-
-
84891648237
-
Insulin receptor signaling in normal and insulin-resistant states
-
Boucher J., et al. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb. Perspect. Biol. 2014, 6:a009191.
-
(2014)
Cold Spring Harb. Perspect. Biol.
, vol.6
, pp. a009191
-
-
Boucher, J.1
-
3
-
-
33645982255
-
From mice to men: insights into the insulin resistance syndromes
-
Biddinger S.B., Kahn C.R. From mice to men: insights into the insulin resistance syndromes. Annu. Rev. Physiol. 2006, 68:123-158.
-
(2006)
Annu. Rev. Physiol.
, vol.68
, pp. 123-158
-
-
Biddinger, S.B.1
Kahn, C.R.2
-
5
-
-
77950343252
-
Endoplasmic reticulum stress and the inflammatory basis of metabolic disease
-
Hotamisligil G.S. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 2010, 140:900-917.
-
(2010)
Cell
, vol.140
, pp. 900-917
-
-
Hotamisligil, G.S.1
-
6
-
-
33645860825
-
Reactive oxygen species have a causal role in multiple forms of insulin resistance
-
Houstis N., et al. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 2006, 440:944-948.
-
(2006)
Nature
, vol.440
, pp. 944-948
-
-
Houstis, N.1
-
7
-
-
84865438468
-
Mitochondrial oxidative stress and the metabolic syndrome
-
James A.M., et al. Mitochondrial oxidative stress and the metabolic syndrome. Trends Endocrinol. Metab. 2012, 23:429-434.
-
(2012)
Trends Endocrinol. Metab.
, vol.23
, pp. 429-434
-
-
James, A.M.1
-
8
-
-
77951918926
-
Macrophages, inflammation, and insulin resistance
-
Olefsky J.M., Glass C.K. Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 2010, 72:219-246.
-
(2010)
Annu. Rev. Physiol.
, vol.72
, pp. 219-246
-
-
Olefsky, J.M.1
Glass, C.K.2
-
9
-
-
84926161089
-
Identification of nuclear hormone receptor pathways causing insulin resistance by transcriptional and epigenomic analysis
-
Kang S., et al. Identification of nuclear hormone receptor pathways causing insulin resistance by transcriptional and epigenomic analysis. Nat. Cell Biol. 2015, 17:44-56.
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 44-56
-
-
Kang, S.1
-
10
-
-
33845968034
-
Functional studies of Akt isoform specificity in skeletal muscle in vivo; maintained insulin sensitivity despite reduced insulin receptor substrate-1 expression
-
Cleasby M.E., et al. Functional studies of Akt isoform specificity in skeletal muscle in vivo; maintained insulin sensitivity despite reduced insulin receptor substrate-1 expression. Mol. Endocrinol. 2007, 21:215-228.
-
(2007)
Mol. Endocrinol.
, vol.21
, pp. 215-228
-
-
Cleasby, M.E.1
-
11
-
-
42649127400
-
IRS1-independent defects define major nodes of insulin resistance
-
Hoehn K.L., et al. IRS1-independent defects define major nodes of insulin resistance. Cell Metab. 2008, 7:421-433.
-
(2008)
Cell Metab.
, vol.7
, pp. 421-433
-
-
Hoehn, K.L.1
-
12
-
-
0032698470
-
Normal insulin-dependent activation of Akt/protein kinase B, with diminished activation of phosphoinositide 3-kinase, in muscle in type 2 diabetes
-
Kim Y.B., et al. Normal insulin-dependent activation of Akt/protein kinase B, with diminished activation of phosphoinositide 3-kinase, in muscle in type 2 diabetes. J. Clin. Invest. 1999, 104:733-741.
-
(1999)
J. Clin. Invest.
, vol.104
, pp. 733-741
-
-
Kim, Y.B.1
-
13
-
-
0035658486
-
Normal Akt/PKB with reduced PI3K activation in insulin-resistant mice
-
Nadler S.T., et al. Normal Akt/PKB with reduced PI3K activation in insulin-resistant mice. Am. J. Physiol. Endocrinol. Metab. 2001, 281:E1249-E1254.
-
(2001)
Am. J. Physiol. Endocrinol. Metab.
, vol.281
, pp. E1249-E1254
-
-
Nadler, S.T.1
-
14
-
-
84877329207
-
PPARgamma signaling and metabolism: the good, the bad and the future
-
Ahmadian M., et al. PPARgamma signaling and metabolism: the good, the bad and the future. Nat. Med. 2013, 19:557-566.
-
(2013)
Nat. Med.
, vol.19
, pp. 557-566
-
-
Ahmadian, M.1
-
15
-
-
84907990392
-
Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes
-
Soccio R.E., et al. Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. Cell Metab. 2014, 20:573-591.
-
(2014)
Cell Metab.
, vol.20
, pp. 573-591
-
-
Soccio, R.E.1
-
16
-
-
77954716663
-
Weight gain and insulin resistance in children treated with valproate: the influence of time
-
Masuccio F., et al. Weight gain and insulin resistance in children treated with valproate: the influence of time. J. Child Neurol. 2010, 25:941-947.
-
(2010)
J. Child Neurol.
, vol.25
, pp. 941-947
-
-
Masuccio, F.1
-
17
-
-
68049095260
-
Obesity and metabolic syndrome in histone demethylase JHDM2a-deficient mice
-
Inagaki T., et al. Obesity and metabolic syndrome in histone demethylase JHDM2a-deficient mice. Genes Cells 2009, 14:991-1001.
-
(2009)
Genes Cells
, vol.14
, pp. 991-1001
-
-
Inagaki, T.1
-
18
-
-
84889604511
-
EHMT1 controls brown adipose cell fate and thermogenesis through the PRDM16 complex
-
Ohno H., et al. EHMT1 controls brown adipose cell fate and thermogenesis through the PRDM16 complex. Nature 2013, 504:163-167.
-
(2013)
Nature
, vol.504
, pp. 163-167
-
-
Ohno, H.1
-
19
-
-
64749111074
-
Role of Jhdm2a in regulating metabolic gene expression and obesity resistance
-
Tateishi K., et al. Role of Jhdm2a in regulating metabolic gene expression and obesity resistance. Nature 2009, 458:757-761.
-
(2009)
Nature
, vol.458
, pp. 757-761
-
-
Tateishi, K.1
-
20
-
-
84925857675
-
I'm eating for two: parental dietary effects on offspring metabolism
-
Rando O.J., Simmons R.A. I'm eating for two: parental dietary effects on offspring metabolism. Cell 2015, 161:93-105.
-
(2015)
Cell
, vol.161
, pp. 93-105
-
-
Rando, O.J.1
Simmons, R.A.2
-
21
-
-
33746189670
-
The Dutch famine of 1944-1945: a pathophysiological model of long-term consequences of wasting disease
-
Kyle U.G., Pichard C. The Dutch famine of 1944-1945: a pathophysiological model of long-term consequences of wasting disease. Curr. Opin. Clin. Nutr. Metab. Care 2006, 9:388-394.
-
(2006)
Curr. Opin. Clin. Nutr. Metab. Care
, vol.9
, pp. 388-394
-
-
Kyle, U.G.1
Pichard, C.2
-
22
-
-
45549101233
-
Histone code modifications repress glucose transporter 4 expression in the intrauterine growth-restricted offspring
-
Raychaudhuri N., et al. Histone code modifications repress glucose transporter 4 expression in the intrauterine growth-restricted offspring. J. Biol. Chem. 2008, 283:13611-13626.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 13611-13626
-
-
Raychaudhuri, N.1
-
23
-
-
84876771596
-
The immune system as a sensor of the metabolic state
-
Odegaard J.I., Chawla A. The immune system as a sensor of the metabolic state. Immunity 2013, 38:644-654.
-
(2013)
Immunity
, vol.38
, pp. 644-654
-
-
Odegaard, J.I.1
Chawla, A.2
-
24
-
-
2942748585
-
Metabolic and hormonal interactions between muscle and adipose tissue
-
Tomas E., et al. Metabolic and hormonal interactions between muscle and adipose tissue. Proc. Nutr. Soc. 2004, 63:381-385.
-
(2004)
Proc. Nutr. Soc.
, vol.63
, pp. 381-385
-
-
Tomas, E.1
-
25
-
-
84903846040
-
The brain modulates insulin sensitivity in multiple tissues
-
Parlevliet E.T., et al. The brain modulates insulin sensitivity in multiple tissues. Front. Horm. Res. 2014, 42:50-58.
-
(2014)
Front. Horm. Res.
, vol.42
, pp. 50-58
-
-
Parlevliet, E.T.1
-
26
-
-
84878785347
-
Immunological goings-on in visceral adipose tissue
-
Mathis D. Immunological goings-on in visceral adipose tissue. Cell Metab. 2013, 17:851-859.
-
(2013)
Cell Metab.
, vol.17
, pp. 851-859
-
-
Mathis, D.1
-
27
-
-
84888131271
-
Interferon regulatory factor 4 regulates obesity-induced inflammation through regulation of adipose tissue macrophage polarization
-
Eguchi J., et al. Interferon regulatory factor 4 regulates obesity-induced inflammation through regulation of adipose tissue macrophage polarization. Diabetes 2013, 62:3394-3403.
-
(2013)
Diabetes
, vol.62
, pp. 3394-3403
-
-
Eguchi, J.1
-
28
-
-
0033708410
-
Adipose tissue is required for the antidiabetic, but not for the hypolipidemic, effect of thiazolidinediones
-
Chao L., et al. Adipose tissue is required for the antidiabetic, but not for the hypolipidemic, effect of thiazolidinediones. J. Clin. Invest. 2000, 106:1221-1228.
-
(2000)
J. Clin. Invest.
, vol.106
, pp. 1221-1228
-
-
Chao, L.1
-
29
-
-
9144229185
-
Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle
-
He W., et al. Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:15712-15717.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 15712-15717
-
-
He, W.1
-
30
-
-
76049086229
-
PPARgamma activation in adipocytes is sufficient for systemic insulin sensitization
-
Sugii S., et al. PPARgamma activation in adipocytes is sufficient for systemic insulin sensitization. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:22504-22509.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 22504-22509
-
-
Sugii, S.1
-
31
-
-
0346027235
-
Muscle-specific PPARγ deletion causes insulin resistance
-
Hevener A.L., et al. Muscle-specific PPARγ deletion causes insulin resistance. Nat. Med. 2003, 9:1491-1497.
-
(2003)
Nat. Med.
, vol.9
, pp. 1491-1497
-
-
Hevener, A.L.1
-
32
-
-
85047693638
-
Muscle-specific PPARgamma-deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones
-
Norris A.W., et al. Muscle-specific PPARgamma-deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones. J. Clin. Invest. 2003, 112:608-618.
-
(2003)
J. Clin. Invest.
, vol.112
, pp. 608-618
-
-
Norris, A.W.1
-
33
-
-
0141450254
-
Targeted elimination of peroxisome proliferator-activated receptor gamma in beta cells leads to abnormalities in islet mass without compromising glucose homeostasis
-
Rosen E.D., et al. Targeted elimination of peroxisome proliferator-activated receptor gamma in beta cells leads to abnormalities in islet mass without compromising glucose homeostasis. Mol. Cell. Biol. 2003, 23:7222-7229.
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 7222-7229
-
-
Rosen, E.D.1
-
34
-
-
34547492488
-
PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties
-
Bouhlel M.A., et al. PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab. 2007, 6:137-143.
-
(2007)
Cell Metab.
, vol.6
, pp. 137-143
-
-
Bouhlel, M.A.1
-
35
-
-
34347354309
-
Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance
-
Odegaard J.I., et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 2007, 447:1116-1120.
-
(2007)
Nature
, vol.447
, pp. 1116-1120
-
-
Odegaard, J.I.1
-
36
-
-
34249907880
-
Macrophage PPAR gamma is required for normal skeletal muscle and hepatic insulin sensitivity and full antidiabetic effects of thiazolidinediones
-
Hevener A.L., et al. Macrophage PPAR gamma is required for normal skeletal muscle and hepatic insulin sensitivity and full antidiabetic effects of thiazolidinediones. J. Clin. Invest. 2007, 117:1658-1669.
-
(2007)
J. Clin. Invest.
, vol.117
, pp. 1658-1669
-
-
Hevener, A.L.1
-
37
-
-
36749077119
-
Macrophage peroxisome proliferator activated receptor gamma as a therapeutic target to combat type 2 diabetes
-
Pascual G., et al. Macrophage peroxisome proliferator activated receptor gamma as a therapeutic target to combat type 2 diabetes. Expert Opin. Ther. Targets 2007, 11:1503-1520.
-
(2007)
Expert Opin. Ther. Targets
, vol.11
, pp. 1503-1520
-
-
Pascual, G.1
-
38
-
-
84862986986
-
PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells
-
Cipolletta D., et al. PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 2012, 486:549-553.
-
(2012)
Nature
, vol.486
, pp. 549-553
-
-
Cipolletta, D.1
-
39
-
-
79955694276
-
Brain PPAR-gamma promotes obesity and is required for the insulin-sensitizing effect of thiazolidinediones
-
Lu M., et al. Brain PPAR-gamma promotes obesity and is required for the insulin-sensitizing effect of thiazolidinediones. Nat. Med. 2011, 17:618-622.
-
(2011)
Nat. Med.
, vol.17
, pp. 618-622
-
-
Lu, M.1
-
40
-
-
79955692835
-
A role for central nervous system PPAR-gamma in the regulation of energy balance
-
Ryan K.K., et al. A role for central nervous system PPAR-gamma in the regulation of energy balance. Nat. Med. 2011, 17:623-626.
-
(2011)
Nat. Med.
, vol.17
, pp. 623-626
-
-
Ryan, K.K.1
-
41
-
-
4143075930
-
Direct demonstration of lipid sequestration as a mechanism by which rosiglitazone prevents fatty-acid-induced insulin resistance in the rat: comparison with metformin
-
Ye J.M., et al. Direct demonstration of lipid sequestration as a mechanism by which rosiglitazone prevents fatty-acid-induced insulin resistance in the rat: comparison with metformin. Diabetologia 2004, 47:1306-1313.
-
(2004)
Diabetologia
, vol.47
, pp. 1306-1313
-
-
Ye, J.M.1
-
42
-
-
0035029255
-
Pioglitazone ameliorates tumor necrosis factor-alpha-induced insulin resistance by a mechanism independent of adipogenic activity of peroxisome proliferator-activated receptor-gamma
-
Iwata M., et al. Pioglitazone ameliorates tumor necrosis factor-alpha-induced insulin resistance by a mechanism independent of adipogenic activity of peroxisome proliferator-activated receptor-gamma. Diabetes 2001, 50:1083-1092.
-
(2001)
Diabetes
, vol.50
, pp. 1083-1092
-
-
Iwata, M.1
-
43
-
-
0036326005
-
Potentiation of insulin signaling in tissues of Zucker obese rats after acute and long-term treatment with PPARgamma agonists
-
Jiang G., et al. Potentiation of insulin signaling in tissues of Zucker obese rats after acute and long-term treatment with PPARgamma agonists. Diabetes 2002, 51:2412-2419.
-
(2002)
Diabetes
, vol.51
, pp. 2412-2419
-
-
Jiang, G.1
-
44
-
-
84858039282
-
PPARgamma agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein
-
Ohno H., et al. PPARgamma agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab. 2012, 15:395-404.
-
(2012)
Cell Metab.
, vol.15
, pp. 395-404
-
-
Ohno, H.1
-
45
-
-
84864615516
-
Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Pparγ
-
Qiang L., et al. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Pparγ. Cell 2012, 150:620-632.
-
(2012)
Cell
, vol.150
, pp. 620-632
-
-
Qiang, L.1
-
46
-
-
68849107400
-
C/EBPalpha and the corepressors CtBP1 and CtBP2 regulate repression of select visceral white adipose genes during induction of the brown phenotype in white adipocytes by peroxisome proliferator-activated receptor gamma agonists
-
Vernochet C., et al. C/EBPalpha and the corepressors CtBP1 and CtBP2 regulate repression of select visceral white adipose genes during induction of the brown phenotype in white adipocytes by peroxisome proliferator-activated receptor gamma agonists. Mol. Cell. Biol. 2009, 29:4714-4728.
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 4714-4728
-
-
Vernochet, C.1
-
47
-
-
42149134825
-
The effect of thiazolidinediones on adiponectin serum level: a meta-analysis
-
Riera-Guardia N., Rothenbacher D. The effect of thiazolidinediones on adiponectin serum level: a meta-analysis. Diabetes Obes. Metab. 2008, 10:367-375.
-
(2008)
Diabetes Obes. Metab.
, vol.10
, pp. 367-375
-
-
Riera-Guardia, N.1
Rothenbacher, D.2
-
48
-
-
84901820044
-
PPARgamma and the global map of adipogenesis and beyond
-
Lefterova M.I., et al. PPARgamma and the global map of adipogenesis and beyond. Trends Endocrinol. Metab. 2014, 25:293-302.
-
(2014)
Trends Endocrinol. Metab.
, vol.25
, pp. 293-302
-
-
Lefterova, M.I.1
-
49
-
-
0141920726
-
Genetic modulation of PPARγ phosphorylation regulates insulin sensitivity
-
Rangwala S.M., et al. Genetic modulation of PPARγ phosphorylation regulates insulin sensitivity. Dev. Cell 2003, 5:657-663.
-
(2003)
Dev. Cell
, vol.5
, pp. 657-663
-
-
Rangwala, S.M.1
-
50
-
-
77954941113
-
Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5
-
Choi J.H., et al. Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5. Nature 2010, 466:451-456.
-
(2010)
Nature
, vol.466
, pp. 451-456
-
-
Choi, J.H.1
-
51
-
-
80053131732
-
Antidiabetic actions of a non-agonist PPARgamma ligand blocking Cdk5-mediated phosphorylation
-
Choi J.H., et al. Antidiabetic actions of a non-agonist PPARgamma ligand blocking Cdk5-mediated phosphorylation. Nature 2011, 477:477-481.
-
(2011)
Nature
, vol.477
, pp. 477-481
-
-
Choi, J.H.1
-
52
-
-
84923124525
-
An ERK/Cdk5 axis controls the diabetogenic actions of PPARgamma
-
Banks A.S., et al. An ERK/Cdk5 axis controls the diabetogenic actions of PPARgamma. Nature 2015, 517:391-395.
-
(2015)
Nature
, vol.517
, pp. 391-395
-
-
Banks, A.S.1
-
53
-
-
84863012459
-
Fibroblast growth factor-21 regulates PPARgamma activity and the antidiabetic actions of thiazolidinediones
-
Dutchak P.A., et al. Fibroblast growth factor-21 regulates PPARgamma activity and the antidiabetic actions of thiazolidinediones. Cell 2012, 148:556-567.
-
(2012)
Cell
, vol.148
, pp. 556-567
-
-
Dutchak, P.A.1
-
54
-
-
79952799756
-
Cellular processing of the glucocorticoid receptor gene and protein: new mechanisms for generating tissue-specific actions of glucocorticoids
-
Oakley R.H., Cidlowski J.A. Cellular processing of the glucocorticoid receptor gene and protein: new mechanisms for generating tissue-specific actions of glucocorticoids. J. Biol. Chem. 2011, 286:3177-3184.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 3177-3184
-
-
Oakley, R.H.1
Cidlowski, J.A.2
-
55
-
-
84903575036
-
Minireview: new molecular mediators of glucocorticoid receptor activity in metabolic tissues
-
Patel R., et al. Minireview: new molecular mediators of glucocorticoid receptor activity in metabolic tissues. Mol. Endocrinol. 2014, 28:999-1011.
-
(2014)
Mol. Endocrinol.
, vol.28
, pp. 999-1011
-
-
Patel, R.1
-
56
-
-
3442885596
-
Natural course of Cushing's syndrome as compared with the course of rheumatoid arthritis treated by hormones
-
Plotz C.M., et al. Natural course of Cushing's syndrome as compared with the course of rheumatoid arthritis treated by hormones. Ann. Rheum. Dis. 1952, 11:308-309.
-
(1952)
Ann. Rheum. Dis.
, vol.11
, pp. 308-309
-
-
Plotz, C.M.1
-
57
-
-
85003195436
-
Cortisol-induced insulin resistance in man: impaired suppression of glucose production and stimulation of glucose utilization due to a postreceptor detect of insulin action
-
Rizza R.A., et al. Cortisol-induced insulin resistance in man: impaired suppression of glucose production and stimulation of glucose utilization due to a postreceptor detect of insulin action. J. Clin. Endocrinol. Metab. 1982, 54:131-138.
-
(1982)
J. Clin. Endocrinol. Metab.
, vol.54
, pp. 131-138
-
-
Rizza, R.A.1
-
58
-
-
84875859581
-
Dexamethasone-mediated changes in adipose triacylglycerol metabolism are exaggerated, not diminished, in the absence of a functional GR dimerization domain
-
Roohk D.J., et al. Dexamethasone-mediated changes in adipose triacylglycerol metabolism are exaggerated, not diminished, in the absence of a functional GR dimerization domain. Endocrinology 2013, 154:1528-1539.
-
(2013)
Endocrinology
, vol.154
, pp. 1528-1539
-
-
Roohk, D.J.1
-
59
-
-
8144228848
-
Chromatin immunoprecipitation (ChIP) scanning identifies primary glucocorticoid receptor target genes
-
Wang J.C., et al. Chromatin immunoprecipitation (ChIP) scanning identifies primary glucocorticoid receptor target genes. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:15603-15608.
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 15603-15608
-
-
Wang, J.C.1
-
60
-
-
33745131127
-
Kinome analysis reveals nongenomic glucocorticoid receptor-dependent inhibition of insulin signaling
-
Lowenberg M., et al. Kinome analysis reveals nongenomic glucocorticoid receptor-dependent inhibition of insulin signaling. Endocrinology 2006, 147:3555-3562.
-
(2006)
Endocrinology
, vol.147
, pp. 3555-3562
-
-
Lowenberg, M.1
-
61
-
-
2542495763
-
Inactivation of the glucocorticoid receptor in hepatocytes leads to fasting hypoglycemia and ameliorates hyperglycemia in streptozotocin-induced diabetes mellitus
-
Opherk C., et al. Inactivation of the glucocorticoid receptor in hepatocytes leads to fasting hypoglycemia and ameliorates hyperglycemia in streptozotocin-induced diabetes mellitus. Mol. Endocrinol. 2004, 18:1346-1353.
-
(2004)
Mol. Endocrinol.
, vol.18
, pp. 1346-1353
-
-
Opherk, C.1
-
62
-
-
84863032246
-
Glucocorticoid signaling in the arcuate nucleus modulates hepatic insulin sensitivity
-
Yi C.X., et al. Glucocorticoid signaling in the arcuate nucleus modulates hepatic insulin sensitivity. Diabetes 2012, 61:339-345.
-
(2012)
Diabetes
, vol.61
, pp. 339-345
-
-
Yi, C.X.1
-
63
-
-
0025933090
-
Glucocorticoids as modulators in the control of feeding
-
Castonguay T.W. Glucocorticoids as modulators in the control of feeding. Brain Res. Bull. 1991, 27:423-428.
-
(1991)
Brain Res. Bull.
, vol.27
, pp. 423-428
-
-
Castonguay, T.W.1
-
64
-
-
84863943516
-
Genome-wide analysis of glucocorticoid receptor-binding sites in myotubes identifies gene networks modulating insulin signaling
-
Kuo T., et al. Genome-wide analysis of glucocorticoid receptor-binding sites in myotubes identifies gene networks modulating insulin signaling. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:11160-11165.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 11160-11165
-
-
Kuo, T.1
-
65
-
-
0035736260
-
Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo
-
Bodine S.C., et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat. Cell Biol. 2001, 3:1014-1019.
-
(2001)
Nat. Cell Biol.
, vol.3
, pp. 1014-1019
-
-
Bodine, S.C.1
-
66
-
-
84884594284
-
The role of FOXO1 in beta-cell failure and type 2 diabetes mellitus
-
Kitamura T. The role of FOXO1 in beta-cell failure and type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2013, 9:615-623.
-
(2013)
Nat. Rev. Endocrinol.
, vol.9
, pp. 615-623
-
-
Kitamura, T.1
-
67
-
-
84868337361
-
Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes
-
Morris A.P., et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat. Genet. 2012, 44:981-990.
-
(2012)
Nat. Genet.
, vol.44
, pp. 981-990
-
-
Morris, A.P.1
-
68
-
-
78149272381
-
FoxOs function synergistically to promote glucose production
-
Haeusler R.A., et al. FoxOs function synergistically to promote glucose production. J. Biol. Chem. 2010, 285:35245-35248.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 35245-35248
-
-
Haeusler, R.A.1
-
69
-
-
84940069349
-
Forkhead Box O6 (FoxO6) depletion attenuates hepatic gluconeogenesis and protects against fat-induced glucose disorder in mice
-
Calabuig-Navarro V., et al. Forkhead Box O6 (FoxO6) depletion attenuates hepatic gluconeogenesis and protects against fat-induced glucose disorder in mice. J. Biol. Chem. 2015, 290:15581-15594.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 15581-15594
-
-
Calabuig-Navarro, V.1
-
70
-
-
40949164735
-
Forkhead transcription factor FoxO1 in adipose tissue regulates energy storage and expenditure
-
Nakae J., et al. Forkhead transcription factor FoxO1 in adipose tissue regulates energy storage and expenditure. Diabetes 2008, 57:563-576.
-
(2008)
Diabetes
, vol.57
, pp. 563-576
-
-
Nakae, J.1
-
71
-
-
84861976352
-
FoxO1 target Gpr17 activates AgRP neurons to regulate food intake
-
Ren H., et al. FoxO1 target Gpr17 activates AgRP neurons to regulate food intake. Cell 2012, 149:1314-1326.
-
(2012)
Cell
, vol.149
, pp. 1314-1326
-
-
Ren, H.1
-
73
-
-
33644865024
-
The forkhead transcription factor Foxo1 bridges the JNK pathway and the transcription factor PDX-1 through its intracellular translocation
-
Kawamori D., et al. The forkhead transcription factor Foxo1 bridges the JNK pathway and the transcription factor PDX-1 through its intracellular translocation. J. Biol. Chem. 2006, 281:1091-1098.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 1091-1098
-
-
Kawamori, D.1
-
74
-
-
34848861463
-
The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor
-
Greer E.L., et al. The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J. Biol. Chem. 2007, 282:30107-30119.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 30107-30119
-
-
Greer, E.L.1
-
75
-
-
34848814178
-
Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting beta-catenin from T cell factor- to forkhead box O-mediated transcription
-
Almeida M., et al. Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting beta-catenin from T cell factor- to forkhead box O-mediated transcription. J. Biol. Chem. 2007, 282:27298-27305.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 27298-27305
-
-
Almeida, M.1
-
76
-
-
18844382368
-
Functional interaction between beta-catenin and FOXO in oxidative stress signaling
-
Essers M.A., et al. Functional interaction between beta-catenin and FOXO in oxidative stress signaling. Science 2005, 308:1181-1184.
-
(2005)
Science
, vol.308
, pp. 1181-1184
-
-
Essers, M.A.1
-
77
-
-
84924320470
-
Liver-specific expression of dominant-negative transcription factor 7-like 2 causes progressive impairment in glucose homeostasis
-
Ip W., et al. Liver-specific expression of dominant-negative transcription factor 7-like 2 causes progressive impairment in glucose homeostasis. Diabetes 2015, 64:1923-1932.
-
(2015)
Diabetes
, vol.64
, pp. 1923-1932
-
-
Ip, W.1
-
78
-
-
80052968080
-
Regulation of FoxO transcription factors by acetylation and protein-protein interactions
-
Daitoku H., et al. Regulation of FoxO transcription factors by acetylation and protein-protein interactions. Biochim. Biophys. Acta 2011, 1813:1954-1960.
-
(2011)
Biochim. Biophys. Acta
, vol.1813
, pp. 1954-1960
-
-
Daitoku, H.1
-
79
-
-
23844485211
-
Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation
-
Matsuzaki H., et al. Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:11278-11283.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 11278-11283
-
-
Matsuzaki, H.1
-
80
-
-
20144365700
-
Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes
-
Frescas D., et al. Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. J. Biol. Chem. 2005, 280:20589-20595.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 20589-20595
-
-
Frescas, D.1
-
81
-
-
47749149232
-
O-GlcNAc regulates FoxO activation in response to glucose
-
Housley M.P., et al. O-GlcNAc regulates FoxO activation in response to glucose. J. Biol. Chem. 2008, 283:16283-16292.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 16283-16292
-
-
Housley, M.P.1
-
82
-
-
0035855905
-
CREB regulates hepatic gluconeogenesis through the coactivator PGC-1
-
Herzig S., et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 2001, 413:179-183.
-
(2001)
Nature
, vol.413
, pp. 179-183
-
-
Herzig, S.1
-
83
-
-
0035855858
-
Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1
-
Yoon J.C., et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 2001, 413:131-138.
-
(2001)
Nature
, vol.413
, pp. 131-138
-
-
Yoon, J.C.1
-
84
-
-
0038187621
-
Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction
-
Puigserver P., et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature 2003, 423:550-555.
-
(2003)
Nature
, vol.423
, pp. 550-555
-
-
Puigserver, P.1
-
85
-
-
63649087890
-
Biological role of liver X receptors
-
Baranowski M. Biological role of liver X receptors. J. Physiol. Pharmacol. 2008, 59(Suppl. 7):31-55.
-
(2008)
J. Physiol. Pharmacol.
, vol.59
, pp. 31-55
-
-
Baranowski, M.1
-
86
-
-
84925681813
-
Deletion of macrophage Vitamin D receptor promotes insulin resistance and monocyte cholesterol transport to accelerate atherosclerosis in mice
-
Oh J., et al. Deletion of macrophage Vitamin D receptor promotes insulin resistance and monocyte cholesterol transport to accelerate atherosclerosis in mice. Cell Rep. 2015, 10:1872-1886.
-
(2015)
Cell Rep.
, vol.10
, pp. 1872-1886
-
-
Oh, J.1
-
87
-
-
84859921736
-
A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism
-
Herman M.A., et al. A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature 2012, 484:333-338.
-
(2012)
Nature
, vol.484
, pp. 333-338
-
-
Herman, M.A.1
-
88
-
-
2442435802
-
Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis
-
Iizuka K., et al. Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:7281-7286.
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 7281-7286
-
-
Iizuka, K.1
-
89
-
-
84864752368
-
LRH-1-dependent glucose sensing determines intermediary metabolism in liver
-
Oosterveer M.H., et al. LRH-1-dependent glucose sensing determines intermediary metabolism in liver. J. Clin. Invest. 2012, 122:2817-2826.
-
(2012)
J. Clin. Invest.
, vol.122
, pp. 2817-2826
-
-
Oosterveer, M.H.1
-
90
-
-
84864464496
-
The transcriptional coactivators p/CIP and SRC-1 control insulin resistance through IRS1 in obesity models
-
Wang Z., et al. The transcriptional coactivators p/CIP and SRC-1 control insulin resistance through IRS1 in obesity models. PLoS ONE 2012, 7:e36961.
-
(2012)
PLoS ONE
, vol.7
, pp. e36961
-
-
Wang, Z.1
-
91
-
-
81055144760
-
Adipocyte NCoR knockout decreases PPARgamma phosphorylation and enhances PPARgamma activity and insulin sensitivity
-
Li P., et al. Adipocyte NCoR knockout decreases PPARgamma phosphorylation and enhances PPARgamma activity and insulin sensitivity. Cell 2011, 147:815-826.
-
(2011)
Cell
, vol.147
, pp. 815-826
-
-
Li, P.1
-
92
-
-
84944880405
-
Hepatic insulin resistance following chronic activation of the CREB coactivator CRTC2
-
Hogan M.F., et al. Hepatic insulin resistance following chronic activation of the CREB coactivator CRTC2. J. Biol. Chem. 2015, 290:25997-26006.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 25997-26006
-
-
Hogan, M.F.1
-
93
-
-
14844328611
-
Tissue-specific regulation of metabolic pathways through the transcriptional coactivator PGC1-alpha
-
Puigserver P. Tissue-specific regulation of metabolic pathways through the transcriptional coactivator PGC1-alpha. Int. J. Obes. (Lond.) 2005, 29(Suppl. 1):S5-S9.
-
(2005)
Int. J. Obes. (Lond.)
, vol.29
, pp. S5-S9
-
-
Puigserver, P.1
-
94
-
-
0035957375
-
Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1
-
Michael L.F., et al. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc. Natl. Acad. Sci. U.S.A. 2001, 98:3820-3825.
-
(2001)
Proc. Natl. Acad. Sci. U.S.A.
, vol.98
, pp. 3820-3825
-
-
Michael, L.F.1
-
95
-
-
0037326196
-
Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator
-
Puigserver P., Spiegelman B.M. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr. Rev. 2003, 24:78-90.
-
(2003)
Endocr. Rev.
, vol.24
, pp. 78-90
-
-
Puigserver, P.1
Spiegelman, B.M.2
-
96
-
-
61749095297
-
SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes
-
Yoshizaki T., et al. SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes. Mol. Cell. Biol. 2009, 29:1363-1374.
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 1363-1374
-
-
Yoshizaki, T.1
-
97
-
-
80555142897
-
Sirt1 enhances skeletal muscle insulin sensitivity in mice during caloric restriction
-
Schenk S., et al. Sirt1 enhances skeletal muscle insulin sensitivity in mice during caloric restriction. J. Clin. Invest. 2011, 121:4281-4288.
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 4281-4288
-
-
Schenk, S.1
-
98
-
-
79955661493
-
Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver
-
Li Y., et al. Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver. FASEB J. 2011, 25:1664-1679.
-
(2011)
FASEB J.
, vol.25
, pp. 1664-1679
-
-
Li, Y.1
-
99
-
-
77349087078
-
SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity
-
Yoshizaki T., et al. SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity. Am. J. Physiol. Endocrinol. Metab. 2010, 298:E419-E428.
-
(2010)
Am. J. Physiol. Endocrinol. Metab.
, vol.298
, pp. E419-E428
-
-
Yoshizaki, T.1
|