메뉴 건너뛰기




Volumn 13, Issue , 2015, Pages 469-477

Dynamics in Transcriptomics: Advancements in RNA-seq Time Course and Downstream Analysis

Author keywords

Bioinformatics; Clustering; Differential gene expression; RNA seq; Time course analysis; Transcriptomics

Indexed keywords

RNA;

EID: 84948757285     PISSN: None     EISSN: 20010370     Source Type: Journal    
DOI: 10.1016/j.csbj.2015.08.004     Document Type: Review
Times cited : (67)

References (131)
  • 1
    • 0026674886 scopus 로고
    • Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction
    • P. Liang, and A.B. Pardee Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction Science 257 1992 967 971 10.1126/science.1354393
    • (1992) Science , vol.257 , pp. 967-971
    • Liang, P.1    Pardee, A.B.2
  • 2
    • 0028806048 scopus 로고
    • Quantitative monitoring of gene expression patterns with a complementary DNA microarray
    • M. Schena, D. Shalon, R.W. Davis, and P.O. Brown Quantitative monitoring of gene expression patterns with a complementary DNA microarray Science 270 1995 467 470 10.1126/science.270.5235.467
    • (1995) Science , vol.270 , pp. 467-470
    • Schena, M.1    Shalon, D.2    Davis, R.W.3    Brown, P.O.4
  • 4
    • 0034130561 scopus 로고    scopus 로고
    • Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays
    • S. Brenner, M. Johnson, J. Bridgham, G. Golda, D.H. Lloyd, D. Johnson, and et al. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays Nat Biotechnol 18 2000 630 634 10.1038/76469
    • (2000) Nat Biotechnol , vol.18 , pp. 630-634
    • Brenner, S.1    Johnson, M.2    Bridgham, J.3    Golda, G.4    Lloyd, D.H.5    Johnson, D.6
  • 5
    • 9144233601 scopus 로고    scopus 로고
    • Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage
    • T. Shiraki, S. Kondo, S. Katayama, K. Waki, T. Kasukawa, H. Kawaji, and et al. Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage Pnas 100 2003 15776 15781 10.1073/pnas.2136655100
    • (2003) Pnas , vol.100 , pp. 15776-15781
    • Shiraki, T.1    Kondo, S.2    Katayama, S.3    Waki, K.4    Kasukawa, T.5    Kawaji, H.6
  • 6
    • 10744233914 scopus 로고    scopus 로고
    • A tiling resolution DNA microarray with complete coverage of the human genome
    • A.S. Ishkanian, C.A. Malloff, S.K. Watson, R.J. deLeeuw, B. Chi, B.P. Coe, and et al. A tiling resolution DNA microarray with complete coverage of the human genome Nat Genet 36 2004 299 303 10.1038/ng1307
    • (2004) Nat Genet , vol.36 , pp. 299-303
    • Ishkanian, A.S.1    Malloff, C.A.2    Watson, S.K.3    Deleeuw, R.J.4    Chi, B.5    Coe, B.P.6
  • 7
    • 45549088326 scopus 로고    scopus 로고
    • The transcriptional landscape of the yeast genome defined by RNA sequencing
    • U. Nagalakshmi, Z. Wang, K. Waern, C. Shou, D. Raha, M. Gerstein, and et al. The transcriptional landscape of the yeast genome defined by RNA sequencing Science 320 2008 1341 1344 10.1126/science.1154819
    • (2008) Science , vol.320 , pp. 1341-1344
    • Nagalakshmi, U.1    Wang, Z.2    Waern, K.3    Shou, C.4    Raha, D.5    Gerstein, M.6
  • 8
    • 85028165246 scopus 로고    scopus 로고
    • Ten years of next-generation sequencing technology
    • E.L. van Dijk, H. Auger, Y. Jaszczyszyn, and C. Thermes Ten years of next-generation sequencing technology Trends Genet 30 2014 418 426 10.1016/j.tig.2014.07.001
    • (2014) Trends Genet , vol.30 , pp. 418-426
    • Van Dijk, E.L.1    Auger, H.2    Jaszczyszyn, Y.3    Thermes, C.4
  • 9
    • 57749195712 scopus 로고    scopus 로고
    • RNA-Seq: A revolutionary tool for transcriptomics
    • Z. Wang, M. Gerstein, and M. Snyder RNA-Seq: a revolutionary tool for transcriptomics Nat Rev Genet 10 2009 57 63 10.1038/nrg2484
    • (2009) Nat Rev Genet , vol.10 , pp. 57-63
    • Wang, Z.1    Gerstein, M.2    Snyder, M.3
  • 10
    • 79960869305 scopus 로고    scopus 로고
    • A comparison of analog and Next-Generation transcriptomic tools for mammalian studies
    • N.C. Roy, E. Altermann, Z.A. Park, and W.C. McNabb A comparison of analog and Next-Generation transcriptomic tools for mammalian studies Brief Funct Genomics 10 2011 135 150 10.1093/bfgp/elr005
    • (2011) Brief Funct Genomics , vol.10 , pp. 135-150
    • Roy, N.C.1    Altermann, E.2    Park, Z.A.3    McNabb, W.C.4
  • 11
    • 50649089207 scopus 로고    scopus 로고
    • RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays
    • J.C. Marioni, C.E. Mason, S.M. Mane, M. Stephens, and Y. Gilad RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays Genome Res 18 2008 1509 1517 10.1101/gr.079558.108
    • (2008) Genome Res , vol.18 , pp. 1509-1517
    • Marioni, J.C.1    Mason, C.E.2    Mane, S.M.3    Stephens, M.4    Gilad, Y.5
  • 12
    • 62249203564 scopus 로고    scopus 로고
    • Transcriptomics: The digital generation
    • N. Blow Transcriptomics: the digital generation Nature 2009 1 4
    • (2009) Nature , pp. 1-4
    • Blow, N.1
  • 13
    • 67449141880 scopus 로고    scopus 로고
    • RNA-Seq - Quantitative measurement of expression through massively parallel RNA-sequencing
    • B.T. Wilhelm, and J.-R. Landry RNA-Seq - quantitative measurement of expression through massively parallel RNA-sequencing Methods 48 2009 249 257 10.1016/j.ymeth.2009.03.016
    • (2009) Methods , vol.48 , pp. 249-257
    • Wilhelm, B.T.1    Landry, J.-R.2
  • 14
    • 78649449778 scopus 로고    scopus 로고
    • A comparison between ribo-minus RNA-sequencing and polyA-selected RNA-sequencing
    • P. Cui, Q. Lin, F. Ding, C. Xin, W. Gong, L. Zhang, and et al. A comparison between ribo-minus RNA-sequencing and polyA-selected RNA-sequencing Genomics 96 2010 259 265 10.1016/j.ygeno.2010.07.010
    • (2010) Genomics , vol.96 , pp. 259-265
    • Cui, P.1    Lin, Q.2    Ding, F.3    Xin, C.4    Gong, W.5    Zhang, L.6
  • 15
    • 84904730587 scopus 로고    scopus 로고
    • Comparison of RNA-Seq by poly (A) capture, ribosomal RNA depletion, and DNA microarray for expression profiling
    • W. Zhao, X. He, K.A. Hoadley, J.S. Parker, D.N. Hayes, and C.M. Perou Comparison of RNA-Seq by poly (A) capture, ribosomal RNA depletion, and DNA microarray for expression profiling BMC Genomics 15 2014 1 11 10.1186/1471-2164-15-419
    • (2014) BMC Genomics , vol.15 , pp. 1-11
    • Zhao, W.1    He, X.2    Hoadley, K.A.3    Parker, J.S.4    Hayes, D.N.5    Perou, C.M.6
  • 16
    • 84863887694 scopus 로고    scopus 로고
    • Studying and modelling dynamic biological processes using time-series gene expression data
    • Z. Bar-Joseph, A. Gitter, and I. Simon Studying and modelling dynamic biological processes using time-series gene expression data Nat Rev Genet 13 2012 552 564 10.1038/nrg3244
    • (2012) Nat Rev Genet , vol.13 , pp. 552-564
    • Bar-Joseph, Z.1    Gitter, A.2    Simon, I.3
  • 17
    • 84876517726 scopus 로고    scopus 로고
    • Time series expression analyses using RNA-seq: A statistical approach
    • S. Oh, S. Song, G. Grabowski, H. Zhao, and J.P. Noonan Time series expression analyses using RNA-seq: a statistical approach BioMed Res Int 2013 1 16 10.1155/2013/203681
    • (2013) BioMed Res Int , pp. 1-16
    • Oh, S.1    Song, S.2    Grabowski, G.3    Zhao, H.4    Noonan, J.P.5
  • 18
    • 84897689088 scopus 로고    scopus 로고
    • The analytical landscape of static and temporal dynamics in transcriptome data
    • S. Oh, S. Song, N. Dasgupta, and G. Grabowski The analytical landscape of static and temporal dynamics in transcriptome data Front Genet 2014 1 12 10.3389/fgene.2014.00035/abstract
    • (2014) Front Genet , pp. 1-12
    • Oh, S.1    Song, S.2    Dasgupta, N.3    Grabowski, G.4
  • 19
    • 84920550975 scopus 로고    scopus 로고
    • A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium
    • Z. Su, P.P. Labaj, S. Li, J. Thierry-Mieg, D. Thierry-Mieg, W. Shi, and et al. A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium Nat Biotechnol 32 2014 903 914 10.1038/nbt.2957
    • (2014) Nat Biotechnol , vol.32 , pp. 903-914
    • Su, Z.1    Labaj, P.P.2    Li, S.3    Thierry-Mieg, J.4    Thierry-Mieg, D.5    Shi, W.6
  • 20
    • 84908513108 scopus 로고    scopus 로고
    • Next generation sequencing technology: Advances and applications
    • H.P.J. Buermans, and J.T. Dunnen den Next generation sequencing technology: advances and applications BBA Mol Basis Dis 1842 2014 1932 1941 10.1016/j.bbadis.2014.06.015
    • (2014) BBA Mol Basis Dis , vol.1842 , pp. 1932-1941
    • Buermans, H.P.J.1    Dunnen Den, J.T.2
  • 21
    • 8444245968 scopus 로고    scopus 로고
    • Temporal aggregation bias and inference of causal regulatory networks
    • S.D. Bay, L. Chrisman, A. Pohorille, and J. Shrager Temporal aggregation bias and inference of causal regulatory networks J Comput Biol 11 2004 971 985 10.1089/cmb.2004.11.971
    • (2004) J Comput Biol , vol.11 , pp. 971-985
    • Bay, S.D.1    Chrisman, L.2    Pohorille, A.3    Shrager, J.4
  • 22
    • 84889049862 scopus 로고    scopus 로고
    • Sample size calculation based on exact test for assessing differential expression analysis in RNA-seq data
    • C.-I. Li, P.-F. Su, and Y. Shyr Sample size calculation based on exact test for assessing differential expression analysis in RNA-seq data BMC Bioinforma 2013 1 7 10.1186/1471-2105-14-357
    • (2013) BMC Bioinforma , pp. 1-7
    • Li, C.-I.1    Su, P.-F.2    Shyr, Y.3
  • 24
    • 84908127503 scopus 로고    scopus 로고
    • Power analysis and sample size estimation for RNA-Seq differential expression
    • T. Ching, S. Huang, and L.X. Garmire Power analysis and sample size estimation for RNA-Seq differential expression RNA 20 2014 1684 1696 10.1261/rna.046011.114
    • (2014) RNA , vol.20 , pp. 1684-1696
    • Ching, T.1    Huang, S.2    Garmire, L.X.3
  • 25
    • 84943587934 scopus 로고    scopus 로고
    • Good laboratory practice for clinical next-generation sequencing informatics pipelines
    • A.S. Gargis, L. Kalman, D.P. Bick, C. da Silva, D.P. Dimmock, B.H. Funke, and et al. Good laboratory practice for clinical next-generation sequencing informatics pipelines Nat Biotechnol 33 2015 689 693 10.1038/nbt.3237
    • (2015) Nat Biotechnol , vol.33 , pp. 689-693
    • Gargis, A.S.1    Kalman, L.2    Bick, D.P.3    Da Silva, C.4    Dimmock, D.P.5    Funke, B.H.6
  • 26
    • 84874677498 scopus 로고    scopus 로고
    • A comparison of methods for differential expression analysis of RNA-seq data
    • 1-1
    • C. Soneson, and M. Delorenzi A comparison of methods for differential expression analysis of RNA-seq data BMC Bioinforma 14 2013 10.1186/1471-2105-14-91 [1-1]
    • (2013) BMC Bioinforma , vol.14
    • Soneson, C.1    Delorenzi, M.2
  • 27
    • 84893242996 scopus 로고    scopus 로고
    • RNA-seq differential expression studies: More sequence or more replication?
    • Y. Liu, J. Zhou, and K.P. White RNA-seq differential expression studies: more sequence or more replication? Bioinformatics 2014 1 4 10.1093/bioinformatics/btt688/-/DC1
    • (2014) Bioinformatics , pp. 1-4
    • Liu, Y.1    Zhou, J.2    White, K.P.3
  • 28
    • 46249088370 scopus 로고    scopus 로고
    • Lumi: A pipeline for processing Illumina microarray
    • P. Du, W.A. Kibbe, and S.M. Lin lumi: a pipeline for processing Illumina microarray Bioinformatics 24 2008 1547 1548 10.1093/bioinformatics/btn224
    • (2008) Bioinformatics , vol.24 , pp. 1547-1548
    • Du, P.1    Kibbe, W.A.2    Lin, S.M.3
  • 29
    • 1342288026 scopus 로고    scopus 로고
    • Affy - Analysis of Affymetrix GeneChip data at the probe level
    • L. Gautier, L. Cope, B.M. Bolstad, and R.A. Irizarry affy - analysis of Affymetrix GeneChip data at the probe level Bioinformatics 20 2004 307 315 10.1093/bioinformatics/btg405
    • (2004) Bioinformatics , vol.20 , pp. 307-315
    • Gautier, L.1    Cope, L.2    Bolstad, B.M.3    Irizarry, R.A.4
  • 30
    • 75249087100 scopus 로고    scopus 로고
    • EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data
    • M.D. Robinson, D.J. McCarthy, and G.K. Smyth edgeR: a Bioconductor package for differential expression analysis of digital gene expression data Bioinformatics 26 2009 139 140 10.1093/bioinformatics/btp616
    • (2009) Bioinformatics , vol.26 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 31
    • 84924629414 scopus 로고    scopus 로고
    • Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
    • M.I. Love, W. Huber, and S. Anders Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 Genome Biol 15 2014 550 10.1186/s13059-014-0550-8
    • (2014) Genome Biol , vol.15 , pp. 550
    • Love, M.I.1    Huber, W.2    Anders, S.3
  • 32
    • 84887791432 scopus 로고    scopus 로고
    • A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis
    • M.-A. Dillies, A. Rau, J. Aubert, C. Hennequet-Antier, M. Jeanmougin, N. Servant, and et al. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis Brief Bioinform 14 2013 671 683 10.1093/bib/bbs046
    • (2013) Brief Bioinform , vol.14 , pp. 671-683
    • Dillies, M.-A.1    Rau, A.2    Aubert, J.3    Hennequet-Antier, C.4    Jeanmougin, M.5    Servant, N.6
  • 33
    • 84877934435 scopus 로고    scopus 로고
    • Shrinkage estimation of dispersion in Negative Binomial models for RNA-seq experiments with small sample size
    • D. Yu, W. Huber, and O. Vitek Shrinkage estimation of dispersion in Negative Binomial models for RNA-seq experiments with small sample size Bioinformatics 2013 1 8 10.1093/bioinformatics/btt143/-/DC1
    • (2013) Bioinformatics , pp. 1-8
    • Yu, D.1    Huber, W.2    Vitek, O.3
  • 34
    • 84903146127 scopus 로고    scopus 로고
    • Robustly detecting differential expression in RNA sequencing data using observation weights
    • e91-1
    • X. Zhou, H. Lindsay, and M.D. Robinson Robustly detecting differential expression in RNA sequencing data using observation weights Nar 42 2014 10.1093/nar/gku310 [e91-1]
    • (2014) Nar , vol.42
    • Zhou, X.1    Lindsay, H.2    Robinson, M.D.3
  • 36
    • 84883067293 scopus 로고    scopus 로고
    • NPEBseq: Nonparametric empirical Bayesian- based procedure for differential expression analysis of RNA-seq data
    • 1-1
    • Y. Bi, and R.V. Davuluri NPEBseq: nonparametric empirical Bayesian- based procedure for differential expression analysis of RNA-seq data BMC Bioinforma 14 2013 10.1186/1471-2105-14-262 [1-1]
    • (2013) BMC Bioinforma , vol.14
    • Bi, Y.1    Davuluri, R.V.2
  • 37
    • 84964316110 scopus 로고    scopus 로고
    • LFCseq: A nonparametric approach for differential expression analysis of RNA-seq data
    • B. Lin, L.-F. Zhang, and X. Chen LFCseq: a nonparametric approach for differential expression analysis of RNA-seq data BMC Genomics 15 2014 S7 10.1186/1471-2164-15-S10-S7
    • (2014) BMC Genomics , vol.15 , pp. S7
    • Lin, B.1    Zhang, L.-F.2    Chen, X.3
  • 38
    • 84928199480 scopus 로고    scopus 로고
    • Comparison of software packages for detecting differential expression in RNA-seq studies
    • F. Seyednasrollah, A. Laiho, and L.L. Elo Comparison of software packages for detecting differential expression in RNA-seq studies Brief Bioinform 16 2013 59 70 10.1093/bib/bbt086
    • (2013) Brief Bioinform , vol.16 , pp. 59-70
    • Seyednasrollah, F.1    Laiho, A.2    Elo, L.L.3
  • 39
    • 84883644707 scopus 로고    scopus 로고
    • Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data
    • F. Rapaport, R. Khanin, Y. Liang, M. Pirun, A. Krek, P. Zumbo, and et al. Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data Genome Biol 14 2013 R95 10.1186/gb-2013-14-9-r95
    • (2013) Genome Biol , vol.14 , pp. R95
    • Rapaport, F.1    Khanin, R.2    Liang, Y.3    Pirun, M.4    Krek, A.5    Zumbo, P.6
  • 40
    • 0037339264 scopus 로고    scopus 로고
    • Clustering of time-course gene expression data using a mixed-effects model with B-splines
    • Y. Luan, and H. Li Clustering of time-course gene expression data using a mixed-effects model with B-splines Bioinformatics 19 2003 474 482 10.1093/bioinformatics/btg014
    • (2003) Bioinformatics , vol.19 , pp. 474-482
    • Luan, Y.1    Li, H.2
  • 41
    • 24644519314 scopus 로고    scopus 로고
    • Significance analysis of time course microarray experiments
    • J.D. Storey, W. Xiao, J.T. Leek, R.G. Tompkins, and R.W. Davis Significance analysis of time course microarray experiments Pnas 102 2005 12837 12842 10.1073/pnas.0504609102
    • (2005) Pnas , vol.102 , pp. 12837-12842
    • Storey, J.D.1    Xiao, W.2    Leek, J.T.3    Tompkins, R.G.4    Davis, R.W.5
  • 42
    • 33750414249 scopus 로고    scopus 로고
    • A multivariate empirical Bayes statistic for replicated microarray time course data
    • Y.C. Tai, and T.P. Speed A multivariate empirical Bayes statistic for replicated microarray time course data Ann Stat 34 2006 2387 2412 10.1214/009053606000000759
    • (2006) Ann Stat , vol.34 , pp. 2387-2412
    • Tai, Y.C.1    Speed, T.P.2
  • 43
    • 77950803115 scopus 로고    scopus 로고
    • A robust Bayesian two-sample test for detecting intervals of differential gene expression in microarray time series
    • O. Stegle, K.J. Denby, E.J. Cooke, D.L. Wild, Z. Ghahramani, and K.M. Borgwardt A robust Bayesian two-sample test for detecting intervals of differential gene expression in microarray time series J Comput Biol 17 2010 355 367 10.1089/cmb.2009.0175
    • (2010) J Comput Biol , vol.17 , pp. 355-367
    • Stegle, O.1    Denby, K.J.2    Cooke, E.J.3    Wild, D.L.4    Ghahramani, Z.5    Borgwardt, K.M.6
  • 44
    • 79956211692 scopus 로고    scopus 로고
    • A simple approach to ranking differentially expressed gene expression time courses through gaussian process regression
    • A.A. Kalaitzis, and N.D. Lawrence A simple approach to ranking differentially expressed gene expression time courses through gaussian process regression BMC Bioinforma 12 2011 180 10.1186/1471-2105-12-180
    • (2011) BMC Bioinforma , vol.12 , pp. 180
    • Kalaitzis, A.A.1    Lawrence, N.D.2
  • 45
    • 84928994187 scopus 로고    scopus 로고
    • Detecting time periods of differential gene expression using Gaussian processes: An application to endothelial cells exposed to radiotherapy dose fraction
    • M. Heinonen, O. Guipaud, F. Miliat, V. Buard, B. Micheau, G. Tarlet, and et al. Detecting time periods of differential gene expression using Gaussian processes: an application to endothelial cells exposed to radiotherapy dose fraction Bioinformatics 2015 1 8 10.1093/bioinformatics/btu699/-/DC1
    • (2015) Bioinformatics , pp. 1-8
    • Heinonen, M.1    Guipaud, O.2    Miliat, F.3    Buard, V.4    Micheau, B.5    Tarlet, G.6
  • 46
    • 28644452470 scopus 로고    scopus 로고
    • Clustering short time series gene expression data
    • J. Ernst, G.J. Nau, and Z. Bar-Joseph Clustering short time series gene expression data Bioinformatics 21 2005 i159 i168 10.1093/bioinformatics/bti1022
    • (2005) Bioinformatics , vol.21 , pp. i159-i168
    • Ernst, J.1    Nau, G.J.2    Bar-Joseph, Z.3
  • 47
    • 33646147811 scopus 로고    scopus 로고
    • MaSigPro: A method to identify significantly differential expression profiles in time-course microarray experiments
    • A. Conesa, M.J. Nueda, A. Ferrer, and M. Talon maSigPro: a method to identify significantly differential expression profiles in time-course microarray experiments Bioinformatics 22 2006 1096 1102 10.1093/bioinformatics/btl056
    • (2006) Bioinformatics , vol.22 , pp. 1096-1102
    • Conesa, A.1    Nueda, M.J.2    Ferrer, A.3    Talon, M.4
  • 48
    • 74049143556 scopus 로고    scopus 로고
    • An improved empirical bayes approach to estimating differential gene expression in microarray time-course data: BETR (Bayesian Estimation of Temporal Regulation)
    • M.J. Aryee, J.A. Gutiérrez-Pabello, I. Kramnik, T. Maiti, and J. Quackenbush An improved empirical bayes approach to estimating differential gene expression in microarray time-course data: BETR (Bayesian Estimation of Temporal Regulation) BMC Bioinforma 10 2009 409 10.1186/1471-2105-10-409
    • (2009) BMC Bioinforma , vol.10 , pp. 409
    • Aryee, M.J.1    Gutiérrez-Pabello, J.A.2    Kramnik, I.3    Maiti, T.4    Quackenbush, J.5
  • 49
    • 84255204447 scopus 로고    scopus 로고
    • TIALA - Time series alignment analysis
    • G. Jäger, F. Battke, and K. Nieselt TIALA - time series alignment analysis IEEE 2011 10.1109/BioVis.2011.6094048
    • (2011) IEEE
    • Jäger, G.1    Battke, F.2    Nieselt, K.3
  • 50
    • 78651067356 scopus 로고    scopus 로고
    • A platform for processing expression of short time series (PESTS)
    • A. Sinha, and M. Markatou A platform for processing expression of short time series (PESTS) BMC Bioinforma 12 2011 13 10.1186/1471-2105-12-13
    • (2011) BMC Bioinforma , vol.12 , pp. 13
    • Sinha, A.1    Markatou, M.2
  • 53
    • 84907546454 scopus 로고    scopus 로고
    • Next maSigPro: Updating maSigPro bioconductor package for RNA-seq time series
    • M.J. Nueda, S. Tarazona, and A. Conesa Next maSigPro: updating maSigPro bioconductor package for RNA-seq time series Bioinformatics 30 2014 2598 2602 10.1093/bioinformatics/btu333
    • (2014) Bioinformatics , vol.30 , pp. 2598-2602
    • Nueda, M.J.1    Tarazona, S.2    Conesa, A.3
  • 54
    • 84902476492 scopus 로고    scopus 로고
    • Methods for time series analysis of RNA-seq data with application to human Th17 cell differentiation
    • T. Äijö, V. Butty, Z. Chen, V. Salo, S. Tripathi, C.B. Burge, and et al. Methods for time series analysis of RNA-seq data with application to human Th17 cell differentiation Bioinformatics 2014 1 8 10.1093/bioinformatics/btu274/-/DC1
    • (2014) Bioinformatics , pp. 1-8
    • Äijö, T.1    Butty, V.2    Chen, Z.3    Salo, V.4    Tripathi, S.5    Burge, C.B.6
  • 55
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • S. Anders, and W. Huber Differential expression analysis for sequence count data Genome Biol 11 2010 R106 10.1186/gb-2010-11-10-r106
    • (2010) Genome Biol , vol.11 , pp. R106
    • Anders, S.1    Huber, W.2
  • 56
    • 0003414592 scopus 로고    scopus 로고
    • 3rd ed. Oxford University Press New York, USA
    • H. Jeffreys The theory of probability 3rd ed. 1998 Oxford University Press New York, USA
    • (1998) The Theory of Probability
    • Jeffreys, H.1
  • 57
    • 84901395362 scopus 로고    scopus 로고
    • Time-series RNA-seq analysis package (TRAP) and its application to the analysis of rice, Oryza sativa L. ssp. Japonica, upon drought stress
    • K. Jo, H.-B. Kwon, and S. Kim Time-series RNA-seq analysis package (TRAP) and its application to the analysis of rice, Oryza sativa L. ssp. Japonica, upon drought stress Methods 67 2014 364 372 10.1016/j.ymeth.2014.02.001
    • (2014) Methods , vol.67 , pp. 364-372
    • Jo, K.1    Kwon, H.-B.2    Kim, S.3
  • 58
    • 65449136284 scopus 로고    scopus 로고
    • TopHat: Discovering splice junctions with RNA-Seq
    • C. Trapnell, L. Pachter, and S.L. Salzberg TopHat: discovering splice junctions with RNA-Seq Bioinformatics 25 2009 1105 1111 10.1093/bioinformatics/btp120
    • (2009) Bioinformatics , vol.25 , pp. 1105-1111
    • Trapnell, C.1    Pachter, L.2    Salzberg, S.L.3
  • 59
    • 84859885816 scopus 로고    scopus 로고
    • Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks
    • C. Trapnell, A. Roberts, L. Goff, G. Pertea, D. Kim, D.R. Kelley, and et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks Nat Protoc 7 2012 562 578 10.1038/nprot.2012.016
    • (2012) Nat Protoc , vol.7 , pp. 562-578
    • Trapnell, C.1    Roberts, A.2    Goff, L.3    Pertea, G.4    Kim, D.5    Kelley, D.R.6
  • 61
    • 84948732059 scopus 로고    scopus 로고
    • KEGG: Kyoto encyclopedia of genes and genomes
    • M. Kanehisa, and S. Goto KEGG: Kyoto encyclopedia of genes and genomes Nar 1999 1 4
    • (1999) Nar , pp. 1-4
    • Kanehisa, M.1    Goto, S.2
  • 62
    • 84891760956 scopus 로고    scopus 로고
    • Data, information, knowledge and principle: Back to metabolism in KEGG
    • M. Kanehisa, S. Goto, Y. Sato, M. Kawashima, M. Furumichi, and M. Tanabe Data, information, knowledge and principle: back to metabolism in KEGG Nar 42 2013 D199 D205 10.1093/nar/gkt1076
    • (2013) Nar , vol.42 , pp. D199-D205
    • Kanehisa, M.1    Goto, S.2    Sato, Y.3    Kawashima, M.4    Furumichi, M.5    Tanabe, M.6
  • 64
    • 84927722997 scopus 로고    scopus 로고
    • SMARTS: Reconstructing disease response networks from multiple individuals using time series gene expression data
    • A. Wise, and Z. Bar-Joseph SMARTS: reconstructing disease response networks from multiple individuals using time series gene expression data Bioinformatics 2014 1 8 10.1093/bioinformatics/btu800/-/DC1
    • (2014) Bioinformatics , pp. 1-8
    • Wise, A.1    Bar-Joseph, Z.2
  • 65
    • 84864921682 scopus 로고    scopus 로고
    • DREM 2.0: Improved reconstruction of dynamic regulatory networks from time-series expression data
    • M.H. Schulz, W.E. Devanny, A. Gitter, S. Zhong, J. Ernst, and Z. Bar-Joseph DREM 2.0: improved reconstruction of dynamic regulatory networks from time-series expression data BMC Syst Biol 6 2012 104 109 10.1186/1752-0509-6-104
    • (2012) BMC Syst Biol , vol.6 , pp. 104-109
    • Schulz, M.H.1    Devanny, W.E.2    Gitter, A.3    Zhong, S.4    Ernst, J.5    Bar-Joseph, Z.6
  • 66
    • 84939501639 scopus 로고    scopus 로고
    • EBSeq-HMM: A Bayesian approach for identifying gene-expression changes in ordered RNA-seq experiments
    • btv193-8
    • N. Leng, Y. Li, B.E. Mcintosh, B.K. Nguyen, B. Duffin, S. Tian, and et al. EBSeq-HMM: a Bayesian approach for identifying gene-expression changes in ordered RNA-seq experiments Bioinformatics 2015 10.1093/bioinformatics/btv193 [btv193-8]
    • (2015) Bioinformatics
    • Leng, N.1    Li, Y.2    McIntosh, B.E.3    Nguyen, B.K.4    Duffin, B.5    Tian, S.6
  • 67
    • 84876263777 scopus 로고    scopus 로고
    • EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments
    • N. Leng, J.A. Dawson, J.A. Thomson, V. Ruotti, A.I. Rissman, B.M.G. Smits, and et al. EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments Bioinformatics 29 2013 1035 1043 10.1093/bioinformatics/btt087
    • (2013) Bioinformatics , vol.29 , pp. 1035-1043
    • Leng, N.1    Dawson, J.A.2    Thomson, J.A.3    Ruotti, V.4    Rissman, A.I.5    Smits, B.M.G.6
  • 68
    • 84941269781 scopus 로고    scopus 로고
    • Cluster analysis of RNA-sequencing data
    • S. Datta, D. Nettleton, Springer International Publishing Cham
    • P. Liu, and Y. Si Cluster analysis of RNA-sequencing data S. Datta, D. Nettleton, Statistical analysis of next generation sequencing data 2014 Springer International Publishing Cham 191 217 10.1007/978-3-319-07212-8-10
    • (2014) Statistical Analysis of Next Generation Sequencing Data , pp. 191-217
    • Liu, P.1    Si, Y.2
  • 69
    • 34547160731 scopus 로고    scopus 로고
    • Clustering time-series gene expression data using smoothing spline derivatives
    • S. Déjean, P.G.P. Martin, A. Baccini, and P. Besse Clustering time-series gene expression data using smoothing spline derivatives EURASIP J Bioinforma Syst Biol 2007 1 10 10.1155/2007/70561
    • (2007) EURASIP J Bioinforma Syst Biol , pp. 1-10
    • Déjean, S.1    Martin, P.G.P.2    Baccini, A.3    Besse, P.4
  • 70
    • 38849136740 scopus 로고    scopus 로고
    • TimeClust: A clustering tool for gene expression time series
    • P. Magni, F. Ferrazzi, L. Sacchi, and R. Bellazzi TimeClust: a clustering tool for gene expression time series Bioinformatics 24 2008 430 432 10.1093/bioinformatics/btm605
    • (2008) Bioinformatics , vol.24 , pp. 430-432
    • Magni, P.1    Ferrazzi, F.2    Sacchi, L.3    Bellazzi, R.4
  • 71
    • 79959422007 scopus 로고    scopus 로고
    • An integrative clustering and modeling algorithm for dynamical gene expression data
    • J. Sivriver, N. Habib, and N. Friedman An integrative clustering and modeling algorithm for dynamical gene expression data Bioinformatics 27 2011 i392 i400 10.1093/bioinformatics/btr250
    • (2011) Bioinformatics , vol.27 , pp. i392-i400
    • Sivriver, J.1    Habib, N.2    Friedman, N.3
  • 72
    • 84883634438 scopus 로고    scopus 로고
    • Hierarchical Bayesian modelling of gene expression time series across irregularly sampled replicates and clusters
    • J. Hensman, N.D. Lawrence, and M. Rattray Hierarchical Bayesian modelling of gene expression time series across irregularly sampled replicates and clusters BMC Bioinforma 14 2013 252 10.1186/1471-2105-14-252
    • (2013) BMC Bioinforma , vol.14 , pp. 252
    • Hensman, J.1    Lawrence, N.D.2    Rattray, M.3
  • 73
    • 84948740469 scopus 로고    scopus 로고
    • Fuzzy clustering of time series gene expression data with cubic-spline
    • Y. Wang, M. Angelova, and A. Ali Fuzzy clustering of time series gene expression data with cubic-spline Jbm 01 2013 16 21 10.4236/jbm.2013.13004
    • (2013) Jbm , vol.1 , pp. 16-21
    • Wang, Y.1    Angelova, M.2    Ali, A.3
  • 74
    • 61449172037 scopus 로고    scopus 로고
    • Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
    • D.W. Huang, B.T. Sherman, and R.A. Lempicki Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources Nat Protoc 4 2008 44 57 10.1038/nprot.2008.211
    • (2008) Nat Protoc , vol.4 , pp. 44-57
    • Huang, D.W.1    Sherman, B.T.2    Lempicki, R.A.3
  • 75
    • 84880617636 scopus 로고    scopus 로고
    • WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): Update 2013
    • J. Wang, D. Duncan, Z. Shi, and B. Zhang WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013 Nar 41 2013 W77 W83 10.1093/nar/gkt439
    • (2013) Nar , vol.41 , pp. W77-W83
    • Wang, J.1    Duncan, D.2    Shi, Z.3    Zhang, B.4
  • 76
    • 84892511644 scopus 로고    scopus 로고
    • Large-scale gene function analysis with the PANTHER classification system
    • H. Mi, A. Muruganujan, J.T. Casagrande, and P.D. Thomas Large-scale gene function analysis with the PANTHER classification system Nat Protoc 8 2013 1551 1566 10.1038/nprot.2013.092
    • (2013) Nat Protoc , vol.8 , pp. 1551-1566
    • Mi, H.1    Muruganujan, A.2    Casagrande, J.T.3    Thomas, P.D.4
  • 77
    • 84929623935 scopus 로고    scopus 로고
    • Functional Gene Networks: R/Bioc package to generate and analyse gene networks derived from functional enrichment and clustering
    • btu864-3
    • S. Aibar, C. Fontanillo, C. Droste, and J. Las Rivas De Functional Gene Networks: R/Bioc package to generate and analyse gene networks derived from functional enrichment and clustering Bioinformatics 2015 10.1093/bioinformatics/btu864 [btu864-3]
    • (2015) Bioinformatics
    • Aibar, S.1    Fontanillo, C.2    Droste, C.3    De, L.R.J.4
  • 78
    • 27144509163 scopus 로고    scopus 로고
    • A network-based analysis of systemic inflammation in humans
    • S.E. Calvano, W. Xiao, D.R. Richards, R.M. Felciano, H.V. Baker, R.J. Cho, and et al. A network-based analysis of systemic inflammation in humans Nature 437 2005 1032 1037 10.1038/nature03985
    • (2005) Nature , vol.437 , pp. 1032-1037
    • Calvano, S.E.1    Xiao, W.2    Richards, D.R.3    Felciano, R.M.4    Baker, H.V.5    Cho, R.J.6
  • 80
    • 84876515907 scopus 로고    scopus 로고
    • STRING v9.1: Protein-protein interaction networks, with increased coverage and integration
    • A. Franceschini, D. Szklarczyk, S. Frankild, M. Kuhn, M. Simonovic, A. Roth, and et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration Nar 41 2012 D808 D815 10.1093/nar/gks1094
    • (2012) Nar , vol.41 , pp. D808-D815
    • Franceschini, A.1    Szklarczyk, D.2    Frankild, S.3    Kuhn, M.4    Simonovic, M.5    Roth, A.6
  • 82
    • 84861123691 scopus 로고    scopus 로고
    • Ten years of pathway analysis: Current approaches and outstanding challenges
    • P. Khatri, M. Sirota, and A.J. Butte Ten years of pathway analysis: current approaches and outstanding challenges PLoS Comput Biol 8 2012 e1002375 10.1371/journal.pcbi.1002375
    • (2012) PLoS Comput Biol , vol.8
    • Khatri, P.1    Sirota, M.2    Butte, A.J.3
  • 84
    • 84929612129 scopus 로고    scopus 로고
    • A review on bioinformatics enrichment analysis tools towards functional analysis of high throughput gene set data
    • L.S. Jing, F.F.M. Shah, M.S. Mohamad, K. Morrthy, S. Deris, Z. Zakaria, and et al. A review on bioinformatics enrichment analysis tools towards functional analysis of high throughput gene set data Curr Proteomics 12 2015 14 27 10.1186/1471-2105-10-48
    • (2015) Curr Proteomics , vol.12 , pp. 14-27
    • Jing, L.S.1    Shah, F.F.M.2    Mohamad, M.S.3    Morrthy, K.4    Deris, S.5    Zakaria, Z.6
  • 85
    • 84858041341 scopus 로고    scopus 로고
    • Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation
    • D.J. McCarthy, Y. Chen, and G.K. Smyth Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation Nar 40 2012 4288 4297 10.1093/nar/gks042
    • (2012) Nar , vol.40 , pp. 4288-4297
    • McCarthy, D.J.1    Chen, Y.2    Smyth, G.K.3
  • 86
    • 84897676848 scopus 로고    scopus 로고
    • GIIRA - RNA-Seq driven gene finding incorporating ambiguous reads
    • F. Zickmann, M.S. Lindner, and B.Y. Renard GIIRA - RNA-Seq driven gene finding incorporating ambiguous reads Bioinformatics 2014 1 8 10.1093/bioinformatics/btt577/-/DC1
    • (2014) Bioinformatics , pp. 1-8
    • Zickmann, F.1    Lindner, M.S.2    Renard, B.Y.3
  • 87
    • 84897722947 scopus 로고    scopus 로고
    • ORMAN: Optimal resolution of ambiguous RNA-Seq multimappings in the presence of novel isoforms
    • P. Dao, I. Numanagic, Y.-Y. Lin, F. Hach, E. Karakoc, N. Donmez, and et al. ORMAN: optimal resolution of ambiguous RNA-Seq multimappings in the presence of novel isoforms Bioinformatics 2014 1 8 10.1093/bioinformatics/btt591/-/DC1
    • (2014) Bioinformatics , pp. 1-8
    • Dao, P.1    Numanagic, I.2    Lin, Y.-Y.3    Hach, F.4    Karakoc, E.5    Donmez, N.6
  • 88
    • 84929142752 scopus 로고    scopus 로고
    • Rcount: Simple and flexible RNA-Seq read counting
    • M.W. Schmid, and U. Grossniklaus Rcount: simple and flexible RNA-Seq read counting Bioinformatics 31 2015 436 437 10.1093/bioinformatics/btu680
    • (2015) Bioinformatics , vol.31 , pp. 436-437
    • Schmid, M.W.1    Grossniklaus, U.2
  • 89
    • 84925245615 scopus 로고    scopus 로고
    • WemIQ: An accurate and robust isoform quantification method for RNA-seq data
    • J. Zhang, C.C.J. Kuo, and L. Chen WemIQ: an accurate and robust isoform quantification method for RNA-seq data Bioinformatics 2015 1 8 10.1093/bioinformatics/btu757/-/DC1
    • (2015) Bioinformatics , pp. 1-8
    • Zhang, J.1    Kuo, C.C.J.2    Chen, L.3
  • 90
    • 84941635324 scopus 로고    scopus 로고
    • A robust approach for identifying differentially abundant features in metagenomic samples
    • M.B. Sohn, R. Du, and L. An A robust approach for identifying differentially abundant features in metagenomic samples Bioinformatics 31 2015 2269 2275 10.1093/bioinformatics/btv165
    • (2015) Bioinformatics , vol.31 , pp. 2269-2275
    • Sohn, M.B.1    Du, R.2    An, L.3
  • 91
    • 84912527013 scopus 로고    scopus 로고
    • The concordance between RNA-seq and microarray data depends on chemical treatment and transcript abundance
    • C. Wang, B. Gong, P.R. Bushel, J. Thierry-Mieg, D. Thierry-Mieg, J. Xu, and et al. The concordance between RNA-seq and microarray data depends on chemical treatment and transcript abundance Nat Biotechnol 32 2014 926 932 10.1038/nbt.3001
    • (2014) Nat Biotechnol , vol.32 , pp. 926-932
    • Wang, C.1    Gong, B.2    Bushel, P.R.3    Thierry-Mieg, J.4    Thierry-Mieg, D.5    Xu, J.6
  • 92
    • 84909587930 scopus 로고    scopus 로고
    • Detecting and correcting systematic variation in large-scale RNA sequencing data
    • S. Li, P.P. Labaj, P. Zumbo, P. Sykacek, W. Shi, L. Shi, and et al. Detecting and correcting systematic variation in large-scale RNA sequencing data Nat Biotechnol 32 2014 888 895 10.1038/nbt.3000
    • (2014) Nat Biotechnol , vol.32 , pp. 888-895
    • Li, S.1    Labaj, P.P.2    Zumbo, P.3    Sykacek, P.4    Shi, W.5    Shi, L.6
  • 93
    • 84874912212 scopus 로고    scopus 로고
    • A new shrinkage estimator for dispersion improves differential expression detection in RNA-seq data
    • H. Wu, C. Wang, and Z. Wu A new shrinkage estimator for dispersion improves differential expression detection in RNA-seq data Biostatistics 14 2013 232 243 10.1093/biostatistics/kxs033
    • (2013) Biostatistics , vol.14 , pp. 232-243
    • Wu, H.1    Wang, C.2    Wu, Z.3
  • 94
    • 84964693495 scopus 로고    scopus 로고
    • Improving the accuracy of expression data analysis in time course experiments using resampling
    • W. Walter, B. Striberny, E. Gaquerel, I.T. Baldwin, S.-G. Kim, and I. Heiland Improving the accuracy of expression data analysis in time course experiments using resampling BMC Bioinforma 15 2014 1 9 10.1186/s12859-014-0352-8
    • (2014) BMC Bioinforma , vol.15 , pp. 1-9
    • Walter, W.1    Striberny, B.2    Gaquerel, E.3    Baldwin, I.T.4    Kim, S.-G.5    Heiland, I.6
  • 95
    • 84943644188 scopus 로고    scopus 로고
    • EdgeRun: An R package for sensitive, functionally relevant differential expression discovery using an unconditional exact test
    • E. Dimont, J. Shi, R. Kirchner, and W. Hide edgeRun: an R package for sensitive, functionally relevant differential expression discovery using an unconditional exact test Bioinformatics 2015 1 2 10.1101/002832
    • (2015) Bioinformatics , pp. 1-2
    • Dimont, E.1    Shi, J.2    Kirchner, R.3    Hide, W.4
  • 96
    • 84945184668 scopus 로고    scopus 로고
    • Systematic integration of RNA-Seq statistical algorithms for accurate detection of differential gene expression patterns
    • e25-5
    • P. Moulos, and P. Hatzis Systematic integration of RNA-Seq statistical algorithms for accurate detection of differential gene expression patterns Nar 43 2015 10.1093/nar/gku1273 [e25-5]
    • (2015) Nar , vol.43
    • Moulos, P.1    Hatzis, P.2
  • 97
    • 84865790047 scopus 로고    scopus 로고
    • An integrated encyclopedia of DNA elements in the human genome
    • The ENCODE Project Consortium An integrated encyclopedia of DNA elements in the human genome Nature 488 2012 57 74 10.1038/nature11247
    • (2012) Nature , vol.488 , pp. 57-74
  • 98
  • 99
    • 84925031191 scopus 로고    scopus 로고
    • Methods of integrating data to uncover genotype-phenotype interactions
    • M.D. Ritchie, E.R. Holzinger, R. Li, S.A. Pendergrass, and D. Kim Methods of integrating data to uncover genotype-phenotype interactions Nat Rev Genet 16 2015 85 97 10.1038/nrg3868
    • (2015) Nat Rev Genet , vol.16 , pp. 85-97
    • Ritchie, M.D.1    Holzinger, E.R.2    Li, R.3    Pendergrass, S.A.4    Kim, D.5
  • 100
    • 84855945426 scopus 로고    scopus 로고
    • Integrating heterogeneous high-throughput data for meta-dimensional pharmacogenomics and disease-related studies
    • E.R. Holzinger, and M.D. Ritchie Integrating heterogeneous high-throughput data for meta-dimensional pharmacogenomics and disease-related studies Pharmacogenomics 13 2012 213 222 10.2217/pgs.11.145
    • (2012) Pharmacogenomics , vol.13 , pp. 213-222
    • Holzinger, E.R.1    Ritchie, M.D.2
  • 101
    • 79959930131 scopus 로고    scopus 로고
    • ChIP-Array: Combinatory analysis of ChIP-seq/chip and microarray gene expression data to discover direct/indirect targets of a transcription factor
    • J. Qin, M.J. Li, P. Wang, M.Q. Zhang, and J. Wang ChIP-Array: combinatory analysis of ChIP-seq/chip and microarray gene expression data to discover direct/indirect targets of a transcription factor Nar 39 2011 W430 W436 10.1093/nar/gkr332
    • (2011) Nar , vol.39 , pp. W430-W436
    • Qin, J.1    Li, M.J.2    Wang, P.3    Zhang, M.Q.4    Wang, J.5
  • 102
    • 84862963292 scopus 로고    scopus 로고
    • Discovering transcription factor regulatory targets using gene expression and binding data
    • M. Maienschein-Cline, J. Zhou, K.P. White, R. Sciammas, and A.R. Dinner Discovering transcription factor regulatory targets using gene expression and binding data Bioinformatics 28 2012 206 213 10.1093/bioinformatics/btr628
    • (2012) Bioinformatics , vol.28 , pp. 206-213
    • Maienschein-Cline, M.1    Zhou, J.2    White, K.P.3    Sciammas, R.4    Dinner, A.R.5
  • 103
    • 38149065301 scopus 로고    scopus 로고
    • Transcription factor target prediction using multiple short expression time series from Arabidopsis thaliana
    • 454-16
    • H. Redestig, D. Weicht, J. Selbig, and M.A. Hannah Transcription factor target prediction using multiple short expression time series from Arabidopsis thaliana BMC Bioinforma 8 2007 10.1186/1471-2105-8-454 [454-16]
    • (2007) BMC Bioinforma , vol.8
    • Redestig, H.1    Weicht, D.2    Selbig, J.3    Hannah, M.A.4
  • 104
    • 77952328474 scopus 로고    scopus 로고
    • Model-based method for transcription factor target identification with limited data
    • A. Honkela, C. Girardot, E.H. Gustafson, Y.-H. Liu, E.E.M. Furlong, N.D. Lawrence, and et al. Model-based method for transcription factor target identification with limited data Pnas 107 2010 7793 7798 10.1073/pnas.0914285107
    • (2010) Pnas , vol.107 , pp. 7793-7798
    • Honkela, A.1    Girardot, C.2    Gustafson, E.H.3    Liu, Y.-H.4    Furlong, E.E.M.5    Lawrence, N.D.6
  • 106
    • 84906246053 scopus 로고    scopus 로고
    • Metaseq: A Python package for integrative genome-wide analysis reveals relationships between chromatin insulators and associated nuclear mRNA
    • R.K. Dale, L.H. Matzat, and E.P. Lei metaseq: a Python package for integrative genome-wide analysis reveals relationships between chromatin insulators and associated nuclear mRNA Nar 42 2014 9158 9170 10.1093/nar/gku644
    • (2014) Nar , vol.42 , pp. 9158-9170
    • Dale, R.K.1    Matzat, L.H.2    Lei, E.P.3
  • 107
    • 84888374584 scopus 로고    scopus 로고
    • Target analysis by integration of transcriptome and ChIP-seq data with BETA
    • S. Wang, H. Sun, J. Ma, C. Zang, C. Wang, J. Wang, and et al. Target analysis by integration of transcriptome and ChIP-seq data with BETA Nat Protoc 8 2013 2502 2515 10.1038/nprot.2013.150
    • (2013) Nat Protoc , vol.8 , pp. 2502-2515
    • Wang, S.1    Sun, H.2    Ma, J.3    Zang, C.4    Wang, C.5    Wang, J.6
  • 108
    • 84898016349 scopus 로고    scopus 로고
    • CMGRN: A web server for constructing multilevel gene regulatory networks using ChIP-seq and gene expression data
    • D. Guan, J. Shao, Y. Deng, P. Wang, Z. Zhao, Y. Liang, and et al. CMGRN: a web server for constructing multilevel gene regulatory networks using ChIP-seq and gene expression data Bioinformatics 2014 1 3 10.1093/bioinformatics/btt761/-/DC1
    • (2014) Bioinformatics , pp. 1-3
    • Guan, D.1    Shao, J.2    Deng, Y.3    Wang, P.4    Zhao, Z.5    Liang, Y.6
  • 109
    • 84899806626 scopus 로고    scopus 로고
    • ISMARA: Automated modeling of genomic signals as a democracy of regulatory motifs
    • P.J. Balwierz, M. Pachkov, P. Arnold, A.J. Gruber, M. Zavolan, and E. van Nimwegen ISMARA: automated modeling of genomic signals as a democracy of regulatory motifs Genome Res 24 2014 869 884 10.1101/gr.169508.113
    • (2014) Genome Res , vol.24 , pp. 869-884
    • Balwierz, P.J.1    Pachkov, M.2    Arnold, P.3    Gruber, A.J.4    Zavolan, M.5    Van Nimwegen, E.6
  • 110
    • 83255166557 scopus 로고    scopus 로고
    • EpiRegNet: Constructing epigenetic regulatory network from high throughput gene expression data for humans
    • L.Y. Wang, P. Wang, M.J. Li, J. Qin, X. Wang, M.Q. Zhang, and et al. EpiRegNet: constructing epigenetic regulatory network from high throughput gene expression data for humans Epigenetics 6 2014 1505 1512 10.4161/epi.6.12.18176
    • (2014) Epigenetics , vol.6 , pp. 1505-1512
    • Wang, L.Y.1    Wang, P.2    Li, M.J.3    Qin, J.4    Wang, X.5    Zhang, M.Q.6
  • 111
    • 84874854709 scopus 로고    scopus 로고
    • Integrated analysis of transcriptomic and proteomic data
    • S. Haider, and R. Pal Integrated analysis of transcriptomic and proteomic data Curr Genomics 14 2013 91 110 10.2174/1389202911314020003
    • (2013) Curr Genomics , vol.14 , pp. 91-110
    • Haider, S.1    Pal, R.2
  • 112
    • 84928412434 scopus 로고    scopus 로고
    • Methods for integration of transcriptomic data in genome-scale metabolic models
    • M.K. Kim, and D.S. Lun Methods for integration of transcriptomic data in genome-scale metabolic models Csbj 11 2014 59 65 10.1016/j.csbj.2014.08.009
    • (2014) Csbj , vol.11 , pp. 59-65
    • Kim, M.K.1    Lun, D.S.2
  • 113
    • 84936753964 scopus 로고    scopus 로고
    • Pattern recognition methods to relate time profiles of gene expression with phenotypic data: A comparative study
    • D.M. Hendrickx, D.G.J. Jennen, J.J. Briede, R. Cavill, T.M. de Kok, and J.C.S. Kleinjans Pattern recognition methods to relate time profiles of gene expression with phenotypic data: a comparative study Bioinformatics 2015 1 8 10.1093/bioinformatics/btv108/-/DC1
    • (2015) Bioinformatics , pp. 1-8
    • Hendrickx, D.M.1    Jennen, D.G.J.2    Briede, J.J.3    Cavill, R.4    De Kok, T.M.5    Kleinjans, J.C.S.6
  • 114
    • 67349140996 scopus 로고    scopus 로고
    • Cluster analysis and display of genome-wide expression patterns
    • M.B. Eisen, P.T. Spellman, P.O. Brown, and D. Botstein Cluster analysis and display of genome-wide expression patterns Pnas 1998 1 6
    • (1998) Pnas , pp. 1-6
    • Eisen, M.B.1    Spellman, P.T.2    Brown, P.O.3    Botstein, D.4
  • 115
    • 70349469700 scopus 로고    scopus 로고
    • Comprehensive analysis of microRNA-mRNA co-expression in circadian rhythm
    • 638-10
    • Y.-J. Na, J.H. Sung, S.C. Lee, Y.-J. Lee, Y.J. Choi, W.-Y. Park, and et al. Comprehensive analysis of microRNA-mRNA co-expression in circadian rhythm Exp Mol Med 41 2009 10.3858/emm.2009.41.9.070 [638-10]
    • (2009) Exp Mol Med , vol.41
    • Na, Y.-J.1    Sung, J.H.2    Lee, S.C.3    Lee, Y.-J.4    Choi, Y.J.5    Park, W.-Y.6
  • 116
    • 79960892858 scopus 로고    scopus 로고
    • Link-based quantitative methods to identify differentially coexpressed genes and gene pairs
    • H. Yu, B.-H. Liu, Z.-Q. Ye, C. Li, Y.-X. Li, and Y.-Y. Li Link-based quantitative methods to identify differentially coexpressed genes and gene pairs BMC Bioinforma 12 2011 315 10.1186/1471-2105-12-315
    • (2011) BMC Bioinforma , vol.12 , pp. 315
    • Yu, H.1    Liu, B.-H.2    Ye, Z.-Q.3    Li, C.4    Li, Y.-X.5    Li, Y.-Y.6
  • 117
    • 84891944062 scopus 로고    scopus 로고
    • Analysis of time-resolved gene expression measurements across individuals
    • L.L. Elo, and B. Schwikowski Analysis of time-resolved gene expression measurements across individuals PLoS One 2013 1 8 10.1371/journal.pone.0082340.g001
    • (2013) PLoS One , pp. 1-8
    • Elo, L.L.1    Schwikowski, B.2
  • 118
    • 84882667537 scopus 로고    scopus 로고
    • Differential gene expression analysis using coexpression and RNA-Seq data
    • E.-W. Yang, T. Girke, and T. Jiang Differential gene expression analysis using coexpression and RNA-Seq data Bioinformatics 2013 1 9 10.1093/bioinformatics/btt363/-/DC1
    • (2013) Bioinformatics , pp. 1-9
    • Yang, E.-W.1    Girke, T.2    Jiang, T.3
  • 119
    • 84941280707 scopus 로고    scopus 로고
    • Co-expression analysis of high-throughput transcriptome sequencing data with Poisson mixture models
    • A. Rau, C. Maugis-Rabusseau, M.-L. Martin-Magniette, and G. Celeux Co-expression analysis of high-throughput transcriptome sequencing data with Poisson mixture models Bioinformatics 2015 1 8 10.1093/bioinformatics/btu845/-/DC1
    • (2015) Bioinformatics , pp. 1-8
    • Rau, A.1    Maugis-Rabusseau, C.2    Martin-Magniette, M.-L.3    Celeux, G.4
  • 120
    • 84866487453 scopus 로고    scopus 로고
    • Integration of expression data in genome-scale metabolic network reconstructions
    • J.A. Papin, and A.S. Blazier Integration of expression data in genome-scale metabolic network reconstructions Front. Physiol. 2012 1 7 10.3389/fphys.2012.00299/abstract
    • (2012) Front. Physiol. , pp. 1-7
    • Papin, J.A.1    Blazier, A.S.2
  • 121
    • 79959403670 scopus 로고    scopus 로고
    • Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq
    • S. Islam, U. Kjällquist, A. Moliner, P. Zajac, J.-B. Fan, P. Lönnerberg, and et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq Genome Res 21 2011 1160 1167 10.1101/gr.110882.110
    • (2011) Genome Res , vol.21 , pp. 1160-1167
    • Islam, S.1    Kjällquist, U.2    Moliner, A.3    Zajac, P.4    Fan, J.-B.5    Lönnerberg, P.6
  • 122
    • 84866953427 scopus 로고    scopus 로고
    • CEL-Seq: Single-cell RNA-Seq by multiplexed linear amplification
    • T. Hashimshony, F. Wagner, N. Sher, and I. Yanai CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification Cell Rep 2 2012 666 673 10.1016/j.celrep.2012.08.003
    • (2012) Cell Rep , vol.2 , pp. 666-673
    • Hashimshony, T.1    Wagner, F.2    Sher, N.3    Yanai, I.4
  • 123
    • 84864880991 scopus 로고    scopus 로고
    • Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells
    • D. Ramsköld, S. Luo, Y.-C. Wang, R. Li, Q. Deng, O.R. Faridani, and et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells Nat Biotechnol 30 2012 777 782 10.1038/nbt.2282
    • (2012) Nat Biotechnol , vol.30 , pp. 777-782
    • Ramsköld, D.1    Luo, S.2    Wang, Y.-C.3    Li, R.4    Deng, Q.5    Faridani, O.R.6
  • 124
    • 84876085773 scopus 로고    scopus 로고
    • Quartz-Seq: A highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity
    • Y. Sasagawa, I. Nikaido, T. Hayashi, H. Danno, K.D. Uno, T. Imai, and et al. Quartz-Seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity Genome Biol 14 2013 R31 10.1186/gb-2013-14-4-r31
    • (2013) Genome Biol , vol.14 , pp. R31
    • Sasagawa, Y.1    Nikaido, I.2    Hayashi, T.3    Danno, H.4    Uno, K.D.5    Imai, T.6
  • 125
    • 84900517167 scopus 로고    scopus 로고
    • Microfluidic single-cell whole-transcriptome sequencing
    • A.M. Streets, X. Zhang, C. Cao, Y. Pang, X. Wu, L. Xiong, and et al. Microfluidic single-cell whole-transcriptome sequencing Pnas 111 2014 7048 7053 10.1073/pnas.1402030111
    • (2014) Pnas , vol.111 , pp. 7048-7053
    • Streets, A.M.1    Zhang, X.2    Cao, C.3    Pang, Y.4    Wu, X.5    Xiong, L.6
  • 126
    • 27144548491 scopus 로고    scopus 로고
    • The External RNA Controls Consortium: A progress report
    • The External RNA Controls Consortium The External RNA Controls Consortium: a progress report Nat Methods 2005 1 4 10.1038/nmeth1005-731
    • (2005) Nat Methods , pp. 1-4
  • 127
    • 27844529344 scopus 로고    scopus 로고
    • Proposed methods for testing and selecting the ERCC external RNA controls
    • 150-18
    • The External RNA Controls Consortium Proposed methods for testing and selecting the ERCC external RNA controls BMC Genomics 6 2005 10.1186/1471-2164-6-150 [150-18]
    • (2005) BMC Genomics , vol.6
  • 128
    • 84936803955 scopus 로고    scopus 로고
    • Normalization and noise reduction for single cell RNA-seq experiments
    • B. Ding, L. Zheng, Y. Zhu, N. Li, H. Jia, R. Ai, and et al. Normalization and noise reduction for single cell RNA-seq experiments Bioinformatics 31 2015 2225 2227 10.1093/bioinformatics/btv122
    • (2015) Bioinformatics , vol.31 , pp. 2225-2227
    • Ding, B.1    Zheng, L.2    Zhu, Y.3    Li, N.4    Jia, H.5    Ai, R.6
  • 130
    • 84936777677 scopus 로고    scopus 로고
    • SimSeq: A nonparametric approach to simulation of RNA-sequence datasets
    • S. Benidt, and D. Nettleton SimSeq: a nonparametric approach to simulation of RNA-sequence datasets Bioinformatics 31 2015 2131 2140 10.1093/bioinformatics/btv124
    • (2015) Bioinformatics , vol.31 , pp. 2131-2140
    • Benidt, S.1    Nettleton, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.