메뉴 건너뛰기




Volumn 16, Issue 1, 2013, Pages 59-70

Comparison of software packages for detecting differential expression in RNA-seq studies

Author keywords

Differential expression; Gene expression; RNA seq

Indexed keywords

TRANSCRIPTOME;

EID: 84928199480     PISSN: 14675463     EISSN: 14774054     Source Type: Journal    
DOI: 10.1093/bib/bbt086     Document Type: Article
Times cited : (294)

References (28)
  • 1
    • 79957842166 scopus 로고    scopus 로고
    • Computational methods for transcriptome annotation and quantification using RNA-seq
    • Garber M, Grabherr MG, Guttman M, Trapnell C. Computational methods for transcriptome annotation and quantification using RNA-seq. Nat Methods 2011;8:469-77.
    • (2011) Nat Methods , vol.8 , pp. 469-477
    • Garber, M.1    Grabherr, M.G.2    Guttman, M.3    Trapnell, C.4
  • 2
    • 46249106990 scopus 로고    scopus 로고
    • Mapping and quantifying mammalian transcriptomes by RNA-Seq
    • Mortazavi A, Williams BA, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008;5:621-8.
    • (2008) Nat Methods , vol.5 , pp. 621-628
    • Mortazavi, A.1    Williams, B.A.2    McCue, K.3
  • 3
    • 50649089207 scopus 로고    scopus 로고
    • RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays
    • Marioni JC, Mason CE, Mane SM, et al. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. GenomeRes 2008;18:1509-17.
    • (2008) GenomeRes , vol.18 , pp. 1509-1517
    • Marioni, J.C.1    Mason, C.E.2    Mane, S.M.3
  • 4
    • 75249087100 scopus 로고    scopus 로고
    • edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
    • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010;26:139-40.
    • (2010) Bioinformatics , vol.26 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 5
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol 2010;11:R106.
    • (2010) Genome Biol , vol.11 , pp. R106
    • Anders, S.1    Huber, W.2
  • 6
    • 77955298482 scopus 로고    scopus 로고
    • BaySeq: empirical Bayesian methods for identifying differential expression in sequence count data
    • Hardcastle TJ, Kelly KA. BaySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics 2010;11:422.
    • (2010) BMC Bioinformatics , vol.11 , pp. 422
    • Hardcastle, T.J.1    Kelly, K.A.2
  • 7
    • 83055192078 scopus 로고    scopus 로고
    • Differential expression in RNA-seq: a matter of depth
    • Tarazona S, García-Alcalde F, Dopazo J, et al. Differential expression in RNA-seq: a matter of depth. Genome Res 2011;21:2213-23.
    • (2011) Genome Res , vol.21 , pp. 2213-2223
    • Tarazona, S.1    García-Alcalde, F.2    Dopazo, J.3
  • 8
    • 84886557480 scopus 로고    scopus 로고
    • Finding consistent patterns: a nonparametric approach for identifying differential expression in RNA-Seq data
    • Li J, Tibshirani R. Finding consistent patterns: a nonparametric approach for identifying differential expression in RNA-Seq data. StatMethodsMed Res 2013;22:519-23.
    • (2013) StatMethodsMed Res , vol.22 , pp. 519-523
    • Li, J.1    Tibshirani, R.2
  • 9
    • 4544341015 scopus 로고    scopus 로고
    • Linear models and empirical bayes methods for assessing differential expression in microarray experiments
    • Article 3
    • Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl GenetMol Biol 2004;3:Article 3.
    • (2004) Stat Appl GenetMol Biol , vol.3
    • Smyth, G.K.1
  • 10
    • 84872198346 scopus 로고    scopus 로고
    • Differential analysis of gene regulation at transcript resolution with RNA-seq
    • Trapnell C, Hendrickson DG, Sauvageau M, et al. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 2013;31:46-53.
    • (2013) Nat Biotechnol , vol.31 , pp. 46-53
    • Trapnell, C.1    Hendrickson, D.G.2    Sauvageau, M.3
  • 11
    • 84876263777 scopus 로고    scopus 로고
    • EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments
    • Leng N, Dawson JA, Thomson JA, et al. EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics 2013;29:1035-43.
    • (2013) Bioinformatics , vol.29 , pp. 1035-1043
    • Leng, N.1    Dawson, J.A.2    Thomson, J.A.3
  • 12
    • 84858606519 scopus 로고    scopus 로고
    • A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data
    • Kvam VM, Liu P, Si Y. A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data. AmJ Bot 2012;99:248-56.
    • (2012) AmJ Bot , vol.99 , pp. 248-256
    • Kvam, V.M.1    Liu, P.2    Si, Y.3
  • 13
    • 77949481052 scopus 로고    scopus 로고
    • Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments
    • Bullard JH, Purdom E, Hansen KD, Dudoit S. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 2010;11:94.
    • (2010) BMC Bioinformatics , vol.11 , pp. 94
    • Bullard, J.H.1    Purdom, E.2    Hansen, K.D.3    Dudoit, S.4
  • 14
    • 84859885816 scopus 로고    scopus 로고
    • Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks
    • Trapnell C, Roberts A, Goff L, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 2012;7:562-78.
    • (2012) Nat Protoc , vol.7 , pp. 562-578
    • Trapnell, C.1    Roberts, A.2    Goff, L.3
  • 15
    • 0001677717 scopus 로고
    • Controlling the false dicovery rate-a practical and powerful approach to multiple testing
    • Benjamini Y, Hochbergh Y. Controlling the false dicovery rate-a practical and powerful approach to multiple testing. JRStat Soc BMethodol 1995;57:289-300.
    • (1995) JRStat Soc BMethodol , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochbergh, Y.2
  • 16
    • 84874677498 scopus 로고    scopus 로고
    • A comparison of methods for differential expression analysis of RNA-seq data
    • Soneson C, Delorenzi M. A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinformatics 2013;14:91.
    • (2013) BMC Bioinformatics , vol.14 , pp. 91
    • Soneson, C.1    Delorenzi, M.2
  • 17
    • 84869014474 scopus 로고    scopus 로고
    • A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in Saccharomyces cerevisiae
    • Nookaew I, Papini M, Pornputtapong N, et al. A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in Saccharomyces cerevisiae. Nucleic Acids Res 2012;40:10084-97.
    • (2012) Nucleic Acids Res , vol.40 , pp. 10084-10097
    • Nookaew, I.1    Papini, M.2    Pornputtapong, N.3
  • 18
    • 78650539308 scopus 로고    scopus 로고
    • From RNA-seq reads to differential expression results
    • Oshlack A, Robinson MD, Young MD. From RNA-seq reads to differential expression results. GenomeBiol 2010;11:220.
    • (2010) GenomeBiol , vol.11 , pp. 220
    • Oshlack, A.1    Robinson, M.D.2    Young, M.D.3
  • 19
    • 84887791432 scopus 로고    scopus 로고
    • A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis
    • Dillies MA, Rau A, Aubert J, et al. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief Bioinform 2013;14:671-83.
    • (2013) Brief Bioinform , vol.14 , pp. 671-683
    • Dillies, M.A.1    Rau, A.2    Aubert, J.3
  • 21
    • 79953034289 scopus 로고    scopus 로고
    • Evaluating gene expression in C57BL/6J and DBA/2J mouse striatum using RNA-Seq and microarrays
    • Bottomly D, Walter NA, Hunter JE, et al. Evaluating gene expression in C57BL/6J and DBA/2J mouse striatum using RNA-Seq and microarrays. PLoS One 2011;6:e17820.
    • (2011) PLoS One , vol.6 , pp. e17820
    • Bottomly, D.1    Walter, N.A.2    Hunter, J.E.3
  • 22
    • 77950460661 scopus 로고    scopus 로고
    • Understanding mechanisms underlying human gene expression variation with RNA sequencing
    • Pickrell JK, Marioni JC, Pai AA, et al. Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature 2010;464:768-72.
    • (2010) Nature , vol.464 , pp. 768-772
    • Pickrell, J.K.1    Marioni, J.C.2    Pai, A.A.3
  • 24
    • 84862783734 scopus 로고    scopus 로고
    • RNA-Seq quantification of the human small airway epithelium transcriptome
    • Hackett NR, Butler MW, Shaykhiev R, et al. RNA-Seq quantification of the human small airway epithelium transcriptome. BMCGenomics 2012;13:82.
    • (2012) BMCGenomics , vol.13 , pp. 82
    • Hackett, N.R.1    Butler, M.W.2    Shaykhiev, R.3
  • 25
    • 77953095629 scopus 로고    scopus 로고
    • Independent filtering increases detection power for high-throughput experiments
    • Bourgon R, Gentleman R, Huber W. Independent filtering increases detection power for high-throughput experiments. ProcNatl Acad SciUSA. 2010;107:9546-51.
    • (2010) ProcNatl Acad SciUSA. , vol.107 , pp. 9546-9551
    • Bourgon, R.1    Gentleman, R.2    Huber, W.3
  • 26
    • 84882714530 scopus 로고    scopus 로고
    • Data-based filtering for replicated high-throughput transcriptome sequencing experiments
    • Rau A, Gallopin M, Celeux G, Jaffrézic F. Data-based filtering for replicated high-throughput transcriptome sequencing experiments. Bioinformatics 2013;29:2146-52.
    • (2013) Bioinformatics , vol.29 , pp. 2146-2152
    • Rau, A.1    Gallopin, M.2    Celeux, G.3    Jaffrézic, F.4
  • 27
    • 51749123784 scopus 로고    scopus 로고
    • Apparently low reproducibility of true differential expression discoveries in microarray studies
    • Zhang M, Yao C, Guo Z, et al. Apparently low reproducibility of true differential expression discoveries in microarray studies. Bioinformatics 2008;24:2057-63.
    • (2008) Bioinformatics , vol.24 , pp. 2057-2063
    • Zhang, M.1    Yao, C.2    Guo, Z.3
  • 28
    • 69249105669 scopus 로고    scopus 로고
    • Optimized detection of differential expression in global profiling experiments: case studies in clinical transcriptomic and quantitative proteomic datasets
    • Elo LL, Hiissa J, Tuimala J, et al. Optimized detection of differential expression in global profiling experiments: case studies in clinical transcriptomic and quantitative proteomic datasets. Brief Bioinform 2009;10:547-55.
    • (2009) Brief Bioinform , vol.10 , pp. 547-555
    • Elo, L.L.1    Hiissa, J.2    Tuimala, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.