메뉴 건너뛰기




Volumn 8, Issue 12, 2013, Pages

Analysis of time-resolved gene expression measurements across individuals

Author keywords

[No Author keywords available]

Indexed keywords

BIOLOGICAL MARKER;

EID: 84891944062     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0082340     Document Type: Article
Times cited : (6)

References (50)
  • 1
    • 33846978695 scopus 로고    scopus 로고
    • Relative impact of nucleotide and copy number variation on gene expression phenotypes
    • Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, et al. (2007) Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315:848-853.
    • (2007) Science , vol.315 , pp. 848-853
    • Stranger, B.E.1    Forrest, M.S.2    Dunning, M.3    Ingle, C.E.4    Beazley, C.5
  • 6
    • 77950458649 scopus 로고    scopus 로고
    • Transcriptome genetics using second generation sequencing in a Caucasian population
    • Montgomery SB, Sammeth M, Gutierrez-Arcelus M, Lach RP, Ingle C, et al. (2010) Transcriptome genetics using second generation sequencing in a Caucasian population. Nature 464:773-777.
    • (2010) Nature , vol.464 , pp. 773-777
    • Montgomery, S.B.1    Sammeth, M.2    Gutierrez-Arcelus, M.3    Lach, R.P.4    Ingle, C.5
  • 7
    • 46249094886 scopus 로고    scopus 로고
    • Alignment and classification of time series gene expression in clinical studies
    • DOI 10.1093/bioinformatics/btn152
    • Lin TH, Kaminski N, Bar-Joseph Z (2008) Alignment and classification of time series gene expression in clinical studies. Bioinformatics 24:i147-155. (Pubitemid 351911668)
    • (2008) Bioinformatics , vol.24 , Issue.13
    • Lin, T.-H.1    Kaminski, N.2    Bar-Joseph, Z.3
  • 8
    • 77951941265 scopus 로고    scopus 로고
    • Estimating replicate time shifts using Gaussian process regression
    • Liu Q, Lin KK, Andersen B, Smyth P, Ihler A (2010) Estimating replicate time shifts using Gaussian process regression. Bioinformatics 26:770-776.
    • (2010) Bioinformatics , vol.26 , pp. 770-776
    • Liu, Q.1    Lin, K.K.2    Andersen, B.3    Smyth, P.4    Ihler, A.5
  • 11
    • 28644452470 scopus 로고    scopus 로고
    • Clustering short time series gene expression data
    • DOI 10.1093/bioinformatics/bti1022
    • Ernst J, Nau GJ, Bar-Joseph Z (2005) Clustering short time series gene expression data. Bioinformatics (Oxford, England) 21 Suppl 1:i159-168. (Pubitemid 41794486)
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL. 1
    • Ernst, J.1    Nau, G.J.2    Bar-Joseph, Z.3
  • 12
    • 84863887694 scopus 로고    scopus 로고
    • Studying and modelling dynamic biological processes using time-series gene expression data
    • Bar-Joseph Z, Gitter A, Simon I (2012) Studying and modelling dynamic biological processes using time-series gene expression data. Nat Rev Genet 13:552-564.
    • (2012) Nat Rev Genet , vol.13 , pp. 552-564
    • Bar-Joseph, Z.1    Gitter, A.2    Simon, I.3
  • 13
    • 70449370331 scopus 로고    scopus 로고
    • A perspective on challenges and issues in biomarker development and drug and biomarker codevelopment
    • Taube SE, Clark GM, Dancey JE, McShane LM, Sigman CC, et al. (2009) A perspective on challenges and issues in biomarker development and drug and biomarker codevelopment. J Natl Cancer Inst 101:1453-1463.
    • (2009) J Natl Cancer Inst , vol.101 , pp. 1453-1463
    • Taube, S.E.1    Clark, G.M.2    Dancey, J.E.3    McShane, L.M.4    Sigman, C.C.5
  • 14
    • 79953202811 scopus 로고    scopus 로고
    • Use of risk reclassification with multiple biomarkers improves mortality prediction in acute lung injury
    • Calfee CS, Ware LB, Glidden DV, Eisner MD, Parsons PE, et al. (2011) Use of risk reclassification with multiple biomarkers improves mortality prediction in acute lung injury. Crit Care Med 39:711-717.
    • (2011) Crit Care Med , vol.39 , pp. 711-717
    • Calfee, C.S.1    Ware, L.B.2    Glidden, D.V.3    Eisner, M.D.4    Parsons, P.E.5
  • 15
    • 70350447504 scopus 로고    scopus 로고
    • Are multiple biomarker testing strategies ready for prime time in heart failure?
    • Lee DS, Tu JV (2009) Are multiple biomarker testing strategies ready for prime time in heart failure? Circ Heart Fail 2:387-388.
    • (2009) Circ Heart Fail , vol.2 , pp. 387-388
    • Lee, D.S.1    Tu, J.V.2
  • 16
    • 77953135586 scopus 로고    scopus 로고
    • What should physicians look for in evaluating prognostic gene-expression signatures?
    • Subramanian J, Simon R (2010) What should physicians look for in evaluating prognostic gene-expression signatures? Nat Rev Clin Oncol 7:327-334.
    • (2010) Nat Rev Clin Oncol , vol.7 , pp. 327-334
    • Subramanian, J.1    Simon, R.2
  • 17
    • 59849125136 scopus 로고    scopus 로고
    • Dynamic modularity in protein interaction networks predicts breast cancer outcome
    • Taylor IW, Linding R, Warde-Farley D, Liu Y, Pesquita C, et al. (2009) Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat Biotechnol 27:199-204.
    • (2009) Nat Biotechnol , vol.27 , pp. 199-204
    • Taylor, I.W.1    Linding, R.2    Warde-Farley, D.3    Liu, Y.4    Pesquita, C.5
  • 19
    • 34548442971 scopus 로고    scopus 로고
    • Weighted gene coexpression network analysis strategies applied to mouse weight
    • DOI 10.1007/s00335-007-9043-3
    • Fuller TF, Ghazalpour A, Aten JE, Drake TA, Lusis AJ, et al. (2007) Weighted gene coexpression network analysis strategies applied to mouse weight. Mamm Genome 18:463-472. (Pubitemid 47360423)
    • (2007) Mammalian Genome , vol.18 , Issue.6-7 , pp. 463-472
    • Fuller, T.F.1    Ghazalpour, A.2    Aten, J.E.3    Drake, T.A.4    Lusis, A.J.5    Horvath, S.6
  • 20
    • 60549111634 scopus 로고    scopus 로고
    • WGCNA: An R package for weighted correlation network analysis
    • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559.
    • (2008) BMC Bioinformatics , vol.9 , pp. 559
    • Langfelder, P.1    Horvath, S.2
  • 21
    • 23944458138 scopus 로고    scopus 로고
    • A general framework for weighted gene coexpression network analysis
    • Zhang B, Horvath S (2005) A general framework for weighted gene coexpression network analysis. Stat Appl Genet Mol Biol 4: Article17.
    • (2005) Stat Appl Genet Mol Biol , vol.4
    • Zhang, B.1    Horvath, S.2
  • 22
    • 79960892858 scopus 로고    scopus 로고
    • Link-based quantitative methods to identify differentially coexpressed genes and gene pairs
    • Yu H, Liu B-H, Ye Z-Q, Li C, Li Y-X, et al. (2011) Link-based quantitative methods to identify differentially coexpressed genes and gene pairs. BMC Bioinformatics 12:315.
    • (2011) BMC Bioinformatics , vol.12 , pp. 315
    • Yu, H.1    Liu, B.-H.2    Ye, Z.-Q.3    Li, C.4    Li, Y.-X.5
  • 23
    • 70349668879 scopus 로고    scopus 로고
    • Inferring the transcriptional landscape of bovine skeletal muscle by integrating co-expression networks
    • Hudson NJ, Reverter A, Wang Y, Greenwood PL, Dalrymple BP (2009) Inferring the transcriptional landscape of bovine skeletal muscle by integrating co-expression networks. PLoS One 4:e7249.
    • (2009) PLoS One , vol.4
    • Hudson, N.J.1    Reverter, A.2    Wang, Y.3    Greenwood, P.L.4    Dalrymple, B.P.5
  • 24
    • 79960657553 scopus 로고    scopus 로고
    • Gene coexpression network analysis as a source of functional annotation for rice genes
    • Childs KL, Davidson RM, Buell CR (2011) Gene coexpression network analysis as a source of functional annotation for rice genes. PLoS One 6:e22196.
    • (2011) PLoS One , vol.6
    • Childs, K.L.1    Davidson, R.M.2    Buell, C.R.3
  • 26
    • 68849107852 scopus 로고    scopus 로고
    • Longitudinal system-based analysis of transcriptional responses to type I interferons
    • Pappas DJ, Coppola G, Gabatto PA, Gao F, Geschwind DH, et al. (2009) Longitudinal system-based analysis of transcriptional responses to type I interferons. Physiol Genomics 38:362-371.
    • (2009) Physiol Genomics , vol.38 , pp. 362-371
    • Pappas, D.J.1    Coppola, G.2    Gabatto, P.A.3    Gao, F.4    Geschwind, D.H.5
  • 27
    • 77957319820 scopus 로고    scopus 로고
    • DiffCoEx: A simple and sensitive method to find differentially coexpressed gene modules
    • Tesson BM, Breitling R, Jansen RC (2010) DiffCoEx: a simple and sensitive method to find differentially coexpressed gene modules. BMC Bioinformatics 11:497.
    • (2010) BMC Bioinformatics , vol.11 , pp. 497
    • Tesson, B.M.1    Breitling, R.2    Jansen, R.C.3
  • 28
    • 4544341015 scopus 로고    scopus 로고
    • Linear models and empirical bayes methods for assessing differential expression in microarray experiments
    • Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: Article3.
    • (2004) Stat Appl Genet Mol Biol , vol.3
    • Smyth, G.K.1
  • 29
    • 70349882120 scopus 로고    scopus 로고
    • Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses
    • Amit I, Garber M, Chevrier N, Leite AP, Donner Y, et al. (2009) Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. Science 326:257-263.
    • (2009) Science , vol.326 , pp. 257-263
    • Amit, I.1    Garber, M.2    Chevrier, N.3    Leite, A.P.4    Donner, Y.5
  • 30
    • 54949145764 scopus 로고    scopus 로고
    • A genome wide analysis of the response to uncapped telomeres in budding yeast reveals a novel role for the NAD+ biosynthetic gene BNA2 in chromosome end protection
    • Greenall A, Lei G, Swan DC, James K, Wang L, et al. (2008) A genome wide analysis of the response to uncapped telomeres in budding yeast reveals a novel role for the NAD+ biosynthetic gene BNA2 in chromosome end protection. Genome Biol 9:R146.
    • (2008) Genome Biol , vol.9
    • Greenall, A.1    Lei, G.2    Swan, D.C.3    James, K.4    Wang, L.5
  • 31
    • 79955574694 scopus 로고    scopus 로고
    • Quantitative fitness analysis shows that NMD proteins and many other protein complexes suppress or enhance distinct telomere cap defects
    • Addinall SG, Holstein EM, Lawless C, Yu M, Chapman K, et al. (2011) Quantitative fitness analysis shows that NMD proteins and many other protein complexes suppress or enhance distinct telomere cap defects. PLoS Genet 7:e1001362.
    • (2011) PLoS Genet , vol.7
    • Addinall, S.G.1    Holstein, E.M.2    Lawless, C.3    Yu, M.4    Chapman, K.5
  • 32
    • 77953881949 scopus 로고    scopus 로고
    • Genomewide profiling of interleukin-4 and STAT6 transcription factor regulation of human Th2 cell programming
    • Elo LL, Järvenpää H, Tuomela S, Raghav S, Ahlfors H, et al. (2010) Genomewide profiling of interleukin-4 and STAT6 transcription factor regulation of human Th2 cell programming. Immunity 32:852-862.
    • (2010) Immunity , vol.32 , pp. 852-862
    • Elo, L.L.1    Järvenpää, H.2    Tuomela, S.3    Raghav, S.4    Ahlfors, H.5
  • 34
    • 53549131262 scopus 로고    scopus 로고
    • Lymphoid enhancer factor interacts with GATA-3 and controls its function in T helper type 2 cells
    • Hossain MB, Hosokawa H, Hasegawa A, Watarai H, Taniguchi M, et al. (2008) Lymphoid enhancer factor interacts with GATA-3 and controls its function in T helper type 2 cells. Immunology 125:377-386.
    • (2008) Immunology , vol.125 , pp. 377-386
    • Hossain, M.B.1    Hosokawa, H.2    Hasegawa, A.3    Watarai, H.4    Taniguchi, M.5
  • 35
    • 79960358631 scopus 로고    scopus 로고
    • SOCS2 regulates T helper type 2 differentiation and the generation of type 2 allergic responses
    • Knosp CA, Carroll HP, Elliott J, Saunders SP, Nel HJ, et al. (2011) SOCS2 regulates T helper type 2 differentiation and the generation of type 2 allergic responses. J Exp Med 208:1523-1531.
    • (2011) J Exp Med , vol.208 , pp. 1523-1531
    • Knosp, C.A.1    Carroll, H.P.2    Elliott, J.3    Saunders, S.P.4    Nel, H.J.5
  • 36
    • 0034327808 scopus 로고    scopus 로고
    • Mouse inducible costimulatory molecule (ICOS) expression is enhanced by CD28 costimulation and regulates differentiation of CD4+ T cells
    • McAdam AJ, Chang TT, Lumelsky AE, Greenfield EA, Boussiotis VA, et al. (2000) Mouse inducible costimulatory molecule (ICOS) expression is enhanced by CD28 costimulation and regulates differentiation of CD4+ T cells. J Immunol 165:5035-5040.
    • (2000) J Immunol , vol.165 , pp. 5035-5040
    • McAdam, A.J.1    Chang, T.T.2    Lumelsky, A.E.3    Greenfield, E.A.4    Boussiotis, V.A.5
  • 37
    • 78751701435 scopus 로고    scopus 로고
    • The transcription factor STAT3 is required for T helper 2 cell development
    • Stritesky GL, Muthukrishnan R, Sehra S, Goswami R, Pham D, et al. (2011) The transcription factor STAT3 is required for T helper 2 cell development. Immunity 34:39-49.
    • (2011) Immunity , vol.34 , pp. 39-49
    • Stritesky, G.L.1    Muthukrishnan, R.2    Sehra, S.3    Goswami, R.4    Pham, D.5
  • 38
    • 0030810155 scopus 로고    scopus 로고
    • The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells
    • Zheng W, Flavell RA (1997) The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89:587-596. (Pubitemid 27511769)
    • (1997) Cell , vol.89 , Issue.4 , pp. 587-596
    • Zheng, W.-P.1    Flavell, R.A.2
  • 39
    • 84879604583 scopus 로고    scopus 로고
    • Global Chromatin State Analysis Reveals Lineage-Specific Enhancers during the Initiation of Human T helper 1 and T helper 2 Cell Polarization
    • Hawkins RD, Larjo A, Tripathi SK, Wagner U, Luu Y, et al. (2013) Global Chromatin State Analysis Reveals Lineage-Specific Enhancers during the Initiation of Human T helper 1 and T helper 2 Cell Polarization. Immunity 38:1271-1284.
    • (2013) Immunity , vol.38 , pp. 1271-1284
    • Hawkins, R.D.1    Larjo, A.2    Tripathi, S.K.3    Wagner, U.4    Luu, Y.5
  • 40
    • 33846897658 scopus 로고    scopus 로고
    • Selective activation of Fyn/PI3K and p38 MAPK regulates IL-4 production in BMMC under nontoxic stress condition
    • Frossi B, Rivera J, Hirsch E, Pucillo C (2007) Selective activation of Fyn/PI3K and p38 MAPK regulates IL-4 production in BMMC under nontoxic stress condition. J Immunol 178:2549-2555. (Pubitemid 46233457)
    • (2007) Journal of Immunology , vol.178 , Issue.4 , pp. 2549-2555
    • Frossi, B.1    Rivera, J.2    Hirsch, E.3    Pucillo, C.4
  • 42
    • 68949098307 scopus 로고    scopus 로고
    • Signed weighted gene co-expression network analysis of transcriptional regulation in murine embryonic stem cells
    • Mason MJ, Fan G, Plath K, Zhou Q, Horvath S (2009) Signed weighted gene co-expression network analysis of transcriptional regulation in murine embryonic stem cells. BMC Genomics 10:327.
    • (2009) BMC Genomics , vol.10 , pp. 327
    • Mason, M.J.1    Fan, G.2    Plath, K.3    Zhou, Q.4    Horvath, S.5
  • 43
    • 77957813589 scopus 로고    scopus 로고
    • DCGL: An R package for identifying differentially coexpressed genes and links from gene expression microarray data
    • Liu BH, Yu H, Tu K, Li C, Li YX, et al. (2010) DCGL: an R package for identifying differentially coexpressed genes and links from gene expression microarray data. Bioinformatics 26:2637-2638.
    • (2010) Bioinformatics , vol.26 , pp. 2637-2638
    • Liu, B.H.1    Yu, H.2    Tu, K.3    Li, C.4    Li, Y.X.5
  • 44
    • 52749089141 scopus 로고    scopus 로고
    • The prediction of interferon treatment effects based on time series microarray gene expression profiles
    • Huang T, Tu K, Shyr Y, Wei CC, Xie L, et al. (2008) The prediction of interferon treatment effects based on time series microarray gene expression profiles. J Transl Med 6:44.
    • (2008) J Transl Med , vol.6 , pp. 44
    • Huang, T.1    Tu, K.2    Shyr, Y.3    Wei, C.C.4    Xie, L.5
  • 45
    • 77953246485 scopus 로고    scopus 로고
    • Analysing time course microarray data using Bioconductor: A case study using yeast2 Affymetrix arrays
    • Gillespie CS, Lei G, Boys RJ, Greenall A, Wilkinson DJ (2010) Analysing time course microarray data using Bioconductor: a case study using yeast2 Affymetrix arrays. BMC Res Notes 3:81.
    • (2010) BMC Res Notes , vol.3 , pp. 81
    • Gillespie, C.S.1    Lei, G.2    Boys, R.J.3    Greenall, A.4    Wilkinson, D.J.5
  • 46
    • 54949084810 scopus 로고    scopus 로고
    • A genomewide suppressor and enhancer analysis of cdc13-1 reveals varied cellular processes influencing telomere capping in Saccharomyces cerevisiae
    • Addinall SG, Downey M, Yu M, Zubko MK, Dewar J, et al. (2008) A genomewide suppressor and enhancer analysis of cdc13-1 reveals varied cellular processes influencing telomere capping in Saccharomyces cerevisiae. Genetics 180:2251-2266.
    • (2008) Genetics , vol.180 , pp. 2251-2266
    • Addinall, S.G.1    Downey, M.2    Yu, M.3    Zubko, M.K.4    Dewar, J.5
  • 48
    • 33845259378 scopus 로고    scopus 로고
    • Statistical analysis of an RNA titration series evaluates microarray precision and sensitivity on a whole-array basis
    • Holloway AJ, Oshlack A, Diyagama DS, Bowtell DD, Smyth GK (2006) Statistical analysis of an RNA titration series evaluates microarray precision and sensitivity on a whole-array basis. BMC Bioinformatics 7:511.
    • (2006) BMC Bioinformatics , vol.7 , pp. 511
    • Holloway, A.J.1    Oshlack, A.2    Diyagama, D.S.3    Bowtell, D.D.4    Smyth, G.K.5
  • 49
    • 77953095629 scopus 로고    scopus 로고
    • Independent filtering increases detection power for high-throughput experiments
    • Bourgon R, Gentleman R, Huber W (2010) Independent filtering increases detection power for high-throughput experiments. Proc Natl Acad Sci U S A 107:9546-9551.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 9546-9551
    • Bourgon, R.1    Gentleman, R.2    Huber, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.