메뉴 건너뛰기




Volumn 31, Issue 13, 2015, Pages 2131-2140

SimSeq: A nonparametric approach to simulation of RNA-sequence datasets

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; BINOMIAL DISTRIBUTION; BIOLOGY; COMPUTER PROGRAM; GENE EXPRESSION PROFILING; HIGH THROUGHPUT SEQUENCING; HUMAN; NONPARAMETRIC TEST; PROCEDURES; SEQUENCE ALIGNMENT; SEQUENCE ANALYSIS;

EID: 84936777677     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btv124     Document Type: Article
Times cited : (45)

References (28)
  • 1
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders,S. and Huber,W. (2010) Differential expression analysis for sequence count data. Genome Biol., 11, R106.
    • (2010) Genome Biol. , vol.11 , pp. R106
    • Anders, S.1    Huber, W.2
  • 2
    • 0034069495 scopus 로고    scopus 로고
    • Gene ontology: Tool for the unification of biology
    • Ashburner,M. et al. (2000) Gene ontology: tool for the unification of biology. Nat. Genet., 25, 25-29.
    • (2000) Nat. Genet. , vol.25 , pp. 25-29
    • Ashburner, M.1
  • 3
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Benjamini,Y. and Hochberg,Y. (1995) Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B, 57, 289-300.
    • (1995) J. R. Stat. Soc. B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 4
    • 79953034289 scopus 로고    scopus 로고
    • Evaluating gene expression in c57bl/6j and dba/2j mouse striatum using RNA-seq and microarrays
    • Bottomly,D. et al. (2011) Evaluating gene expression in c57bl/6j and dba/2j mouse striatum using rna-seq and microarrays. PLoS One, 6, e17820.
    • (2011) PLoS One , vol.6 , pp. e17820
    • Bottomly, D.1
  • 5
    • 77949481052 scopus 로고    scopus 로고
    • Evaluation of statisticalmethods for normalization and differential expression inmRNA-Seq experiments
    • Bullard,J. et al. (2010) Evaluation of statisticalmethods for normalization and differential expression inmRNA-Seq experiments.BMC Bioinformatics, 11, 94.
    • (2010) BMC Bioinformatics , vol.11 , pp. 94
    • Bullard, J.1
  • 6
    • 84907700231 scopus 로고    scopus 로고
    • Error estimates for the analysis of differential expression from RNA-seq count data
    • Burden,C. et al. (2014) Error estimates for the analysis of differential expression from RNA-seq count data. Peer J. 2, e576.
    • (2014) Peer J. , vol.2 , pp. e576
    • Burden, C.1
  • 7
    • 84887791432 scopus 로고    scopus 로고
    • A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis
    • Dillies,M.-A. et al. (2013) A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief. Bioinform., 14, 671-683.
    • (2013) Brief. Bioinform. , vol.14 , pp. 671-683
    • Dillies, M.-A.1
  • 8
    • 46249095552 scopus 로고    scopus 로고
    • Evaluating statistical methods using plasmode data sets in the age of massive public databases: An illustration using false discovery rates
    • Gadbury,G.L. et al. (2008) Evaluating statistical methods using plasmode data sets in the age of massive public databases: an illustration using false discovery rates. PLoS Genet., 4, e1000098.
    • (2008) PLoS Genet. , vol.4 , pp. e1000098
    • Gadbury, G.L.1
  • 9
    • 84869036699 scopus 로고    scopus 로고
    • Modelling and simulating generic RNA-Seq experiments with the flux simulator
    • Griebel,T. et al. (2012) Modelling and simulating generic RNA-Seq experiments with the flux simulator. Nucleic Acids Res., 40, 10073-10083.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 10073-10083
    • Griebel, T.1
  • 10
    • 84896735766 scopus 로고    scopus 로고
    • Voom: Precision weights unlock linear model analysis tools for RNA-seq read counts
    • Law,C.W. et al. (2014) Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol., 15, R29.
    • (2014) Genome Biol. , vol.15 , pp. R29
    • Law, C.W.1
  • 11
    • 79961123152 scopus 로고    scopus 로고
    • RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome
    • Li,B. and Dewey,C. (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12, 323.
    • (2011) BMC Bioinformatics , vol.12 , pp. 323
    • Li, B.1    Dewey, C.2
  • 12
    • 84886557480 scopus 로고    scopus 로고
    • Finding consistent patterns: A nonparametric approach for identifying differential expression in RNA-Seq data
    • Li,J. and Tibshirani,R. (2013) Finding consistent patterns: A nonparametric approach for identifying differential expression in RNA-Seq data. Stat. Methods Med. Res., 22, 519-536.
    • (2013) Stat. Methods Med. Res. , vol.22 , pp. 519-536
    • Li, J.1    Tibshirani, R.2
  • 13
    • 78651280884 scopus 로고    scopus 로고
    • A hidden Markov model approach to testing multiple hypotheses on a tree-transformed gene ontology graph
    • Liang,K. and Nettleton,D. (2010) A hidden Markov model approach to testing multiple hypotheses on a tree-transformed gene ontology graph. J. Am. Stat. Assoc., 105, 1444-1454.
    • (2010) J. Am. Stat. Assoc. , vol.105 , pp. 1444-1454
    • Liang, K.1    Nettleton, D.2
  • 14
    • 84924629414 scopus 로고    scopus 로고
    • Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2
    • Love,M.I. et al. (2014) Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol., 15, 550.
    • (2014) Genome Biol. , vol.15 , pp. 550
    • Love, M.I.1
  • 15
    • 84879198972 scopus 로고    scopus 로고
    • Detecting differential expression in RNA-sequence data using quasi-likelihood with shrunken dispersion estimates
    • Lund,S. et al. (2012) Detecting differential expression in RNA-sequence data using quasi-likelihood with shrunken dispersion estimates. Stat. Appl. Genet. Mol. Biol., 11, 8.
    • (2012) Stat. Appl. Genet. Mol. Biol. , vol.11 , pp. 8
    • Lund, S.1
  • 16
    • 84858041341 scopus 로고    scopus 로고
    • Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation
    • McCarthy,D.J. et al. (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res., 40, 4288-4297.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 4288-4297
    • McCarthy, D.J.1
  • 17
    • 38349182215 scopus 로고    scopus 로고
    • Identification of differentially expressed gene categories in microarray studies using nonparametric multivariate analysis
    • Nettleton,D. et al. (2008) Identification of differentially expressed gene categories in microarray studies using nonparametric multivariate analysis. Bioinformatics, 24, 192-201.
    • (2008) Bioinformatics , vol.24 , pp. 192-201
    • Nettleton, D.1
  • 18
    • 84885962211 scopus 로고    scopus 로고
    • Evaluating statistical analysis models for RNA sequencing experiments
    • Reeb,P.D. and Steibel,J.P. (2013) Evaluating statistical analysis models for RNA sequencing experiments. Front. Genet., 4, 178.
    • (2013) Front. Genet. , vol.4 , pp. 178
    • Reeb, P.D.1    Steibel, J.P.2
  • 19
    • 84920570629 scopus 로고    scopus 로고
    • SubSeq: Determining appropriate sequencing depth through efficient read subsampling
    • Robinson,D.G. and Storey,J.D. (2014) subSeq: Determining appropriate sequencing depth through efficient read subsampling. Bioinformatics, 30, 3424-3426.
    • (2014) Bioinformatics , vol.30 , pp. 3424-3426
    • Robinson, D.G.1    Storey, J.D.2
  • 20
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of RNA-seq data
    • Robinson,M.D. and Oshlack,A. (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol., 11, R25.
    • (2010) Genome Biol. , vol.11 , pp. R25
    • Robinson, M.D.1    Oshlack, A.2
  • 21
    • 36448981743 scopus 로고    scopus 로고
    • Moderated statistical tests for assessing differences in tag abundance
    • Robinson,M.D. and Smyth,G.K. (2007) Moderated statistical tests for assessing differences in tag abundance. Bioinformatics, 23, 2881-2887.
    • (2007) Bioinformatics , vol.23 , pp. 2881-2887
    • Robinson, M.D.1    Smyth, G.K.2
  • 22
    • 41149085992 scopus 로고    scopus 로고
    • Small-sample estimation of negative binomial dispersion, with applications to SAGE data
    • Robinson,M.D. and Smyth,G.K. (2008) Small-sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics, 9, 321-332.
    • (2008) Biostatistics , vol.9 , pp. 321-332
    • Robinson, M.D.1    Smyth, G.K.2
  • 23
    • 75249087100 scopus 로고    scopus 로고
    • EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data
    • Robinson,M.D. et al. (2010) edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139-140.
    • (2010) Bioinformatics , vol.26 , pp. 139-140
    • Robinson, M.D.1
  • 24
    • 84874677498 scopus 로고    scopus 로고
    • A comparison of methods for differential expression analysis of RNA-seq data
    • Soneson,C. and Delorenzi,M. (2013) A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinformatics, 14, 91.
    • (2013) BMC Bioinformatics , vol.14 , pp. 91
    • Soneson, C.1    Delorenzi, M.2
  • 25
    • 0036020892 scopus 로고    scopus 로고
    • A direct approach to false discovery rates
    • Storey,J.D. (2002) A direct approach to false discovery rates. J. R. Stat. Soc. B, 64, 479-498.
    • (2002) J. R. Stat. Soc. B , vol.64 , pp. 479-498
    • Storey, J.D.1
  • 26
    • 45449097447 scopus 로고    scopus 로고
    • Fdrtool: A versatile R package for estimating local and tail area-based false discovery rates
    • Strimmer,K. (2008a) fdrtool: A versatile R package for estimating local and tail area-based false discovery rates. Bioinformatics, 24, 1461-1462.
    • (2008) Bioinformatics , vol.24 , pp. 1461-1462
    • Strimmer, K.1
  • 27
    • 47749156020 scopus 로고    scopus 로고
    • A unified approach to false discovery rate estimation
    • Strimmer,K. (2008b) A unified approach to false discovery rate estimation. BMC Bioinformatics, 9, 303.
    • (2008) BMC Bioinformatics , vol.9 , pp. 303
    • Strimmer, K.1
  • 28
    • 84879890360 scopus 로고    scopus 로고
    • Comprehensive molecular characterization of clear cell renal cell carcinoma
    • The Cancer Genome Atlas Research Network (2013) Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature, 499, 43-49.
    • (2013) Nature , vol.499 , pp. 43-49
    • The Cancer Genome Atlas Research Network1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.