메뉴 건너뛰기




Volumn 42, Issue 11, 2014, Pages

Robustly detecting differential expression in RNA sequencing data using observation weights

Author keywords

[No Author keywords available]

Indexed keywords

ANALYTIC METHOD; ARTICLE; CONTROLLED STUDY; DATA ANALYSIS; FALSE DISCOVERY PLOT; GENE EXPRESSION; GENERALIZED LINEAR MODEL; INTERMETHOD COMPARISON; MATHEMATICAL COMPUTING; NEGATIVE BINOMIAL MODEL; PLOTS AND CURVES; POWER CURVE; PRIORITY JOURNAL; RECEIVER OPERATING CHARACTERISTIC; RNA SEQUENCE; SIMULATION; STATISTICAL MODEL;

EID: 84903146127     PISSN: 03051048     EISSN: 13624962     Source Type: Journal    
DOI: 10.1093/nar/gku310     Document Type: Article
Times cited : (319)

References (40)
  • 1
    • 57749195712 scopus 로고    scopus 로고
    • RNA-Seq: A revolutionary tool for transcriptomics
    • Wang, Z., Gerstein, M. and Snyder, M. (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet., 10, 57-63.
    • (2009) Nat. Rev. Genet. , vol.10 , pp. 57-63
    • Wang, Z.1    Gerstein, M.2    Snyder, M.3
  • 3
    • 79961123152 scopus 로고    scopus 로고
    • RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome
    • Li, B. and Dewey, C.N. (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12, 323.
    • (2011) BMC Bioinformatics , vol.12 , pp. 323
    • Li, B.1    Dewey, C.N.2
  • 5
    • 81055124271 scopus 로고    scopus 로고
    • ReCount: A multi-experiment resource of analysis-ready RNA-seq gene count datasets
    • Frazee, A.C., Langmead, B. and Leek, J.T. (2011) ReCount: a multi-experiment resource of analysis-ready RNA-seq gene count datasets. BMC Bioinformatics, 12, 449.
    • (2011) BMC Bioinformatics , vol.12 , pp. 449
    • Frazee, A.C.1    Langmead, B.2    Leek, J.T.3
  • 6
    • 84874677498 scopus 로고    scopus 로고
    • A comparison of methods for differential expression analysis of RNA-seq data
    • Soneson, C. and Delorenzi, M. (2013) A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinformatics, 14, 91.
    • (2013) BMC Bioinformatics , vol.14 , pp. 91
    • Soneson, C.1    Delorenzi, M.2
  • 8
    • 84858041341 scopus 로고    scopus 로고
    • Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation
    • McCarthy, D.J., Chen, Y. and Smyth, G.K. (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res., 40, 1-10.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 1-10
    • McCarthy, D.J.1    Chen, Y.2    Smyth, G.K.3
  • 9
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders, S. and Huber, W. (2010) Differential expression analysis for sequence count data. Genome Biol., 11, R106.
    • (2010) Genome Biol. , vol.11
    • Anders, S.1    Huber, W.2
  • 11
    • 84896735766 scopus 로고    scopus 로고
    • Voom: Precision weights unlock linear model analysis tools for RNA-seq read counts
    • Law, C.W., Chen, Y., Shi, W. and Smyth, G.K. (2014) Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol., 15, R29.
    • (2014) Genome Biol. , vol.15
    • Law, C.W.1    Chen, Y.2    Shi, W.3    Smyth, G.K.4
  • 13
    • 75249087100 scopus 로고    scopus 로고
    • EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data
    • Robinson, M.D., McCarthy, D.J. and Smyth, G.K. (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139-140.
    • (2010) Bioinformatics , vol.26 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 15
    • 77955298482 scopus 로고    scopus 로고
    • BaySeq: Empirical Bayesian methods for identifying differential expression in sequence count data
    • Hardcastle, T.J. and Kelly, K.A. (2010) baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics, 11, 422.
    • (2010) BMC Bioinformatics , vol.11 , pp. 422
    • Hardcastle, T.J.1    Kelly, K.A.2
  • 16
    • 84874912212 scopus 로고    scopus 로고
    • A new shrinkage estimator for dispersion improves differential expression detection in RNA-seq data
    • Wu, H., Wang, C. and Wu, Z. (2013) A new shrinkage estimator for dispersion improves differential expression detection in RNA-seq data. Biostatistics, 14, 232-243.
    • (2013) Biostatistics , vol.14 , pp. 232-243
    • Wu, H.1    Wang, C.2    Wu, Z.3
  • 17
    • 0001645443 scopus 로고
    • On robustness in the logistic regression model
    • Carroll, R.J. and Pederson, S. (1993) On robustness in the logistic regression model. J. R. Stat. Soc. Ser. B, 84, 693-706.
    • (1993) J. R. Stat. Soc. Ser. B , vol.84 , pp. 693-706
    • Carroll, R.J.1    Pederson, S.2
  • 18
    • 0442312206 scopus 로고    scopus 로고
    • Robust inference for generalized linear models
    • Cantoni, E. and Ronchetti, E. (2001) Robust inference for generalized linear models. J. Am. Stat. Assoc., 96, 1022-1030.
    • (2001) J. Am. Stat. Assoc. , vol.96 , pp. 1022-1030
    • Cantoni, E.1    Ronchetti, E.2
  • 20
    • 0036473684 scopus 로고    scopus 로고
    • Robust model selection in regression via weighted likelihood methodology
    • Agostinelli, C. (2002) Robust model selection in regression via weighted likelihood methodology. Stat. Probab. Lett., 56, 289-300.
    • (2002) Stat. Probab. Lett. , vol.56 , pp. 289-300
    • Agostinelli, C.1
  • 21
    • 0002738159 scopus 로고
    • Parameter orthogonality and approximate conditional inference
    • Cox, D.R. and Reid, N. (1987) Parameter orthogonality and approximate conditional inference. J. R. Stat. Soc. Ser. B Methodol., 49, 1-39.
    • (1987) J. R. Stat. Soc. Ser. B Methodol. , vol.49 , pp. 1-39
    • Cox, D.R.1    Reid, N.2
  • 22
    • 41149085992 scopus 로고    scopus 로고
    • Small-sample estimation of negative binomial dispersion with applications to SAGE data
    • Robinson, M.D. and Smyth, G.K. (2008) Small-sample estimation of negative binomial dispersion with applications to SAGE data. Biostatistics, 9, 321-332.
    • (2008) Biostatistics , vol.9 , pp. 321-332
    • Robinson, M.D.1    Smyth, G.K.2
  • 23
    • 36448981743 scopus 로고    scopus 로고
    • Moderated statistical tests for assessing differences in tag abundance
    • Robinson, M.D. and Smyth, G.K. (2007) Moderated statistical tests for assessing differences in tag abundance. Bioinformatics, 23, 2881-2887.
    • (2007) Bioinformatics , vol.23 , pp. 2881-2887
    • Robinson, M.D.1    Smyth, G.K.2
  • 24
    • 33745697199 scopus 로고    scopus 로고
    • Robust regression
    • Fox, J. (2002) Robust Regression. Behav. Res. Methods, 1, 1-8.
    • (2002) Behav. Res. Methods , vol.1 , pp. 1-8
    • Fox, J.1
  • 25
    • 77951953494 scopus 로고    scopus 로고
    • Ultra-high throughput sequencing-based small RNA discovery and discrete statistical biomarker analysis in a collection of cervical tumours and matched controls
    • Witten, D., Tibshirani, R., Gu, S.G., Fire, A. and Lui, W.-O. (2010) Ultra-high throughput sequencing-based small RNA discovery and discrete statistical biomarker analysis in a collection of cervical tumours and matched controls. BMC Biol., 8, 58.
    • (2010) BMC Biol. , vol.8 , pp. 58
    • Witten, D.1    Tibshirani, R.2    Gu, S.G.3    Fire, A.4    Lui, W.-O.5
  • 27
    • 84886557480 scopus 로고    scopus 로고
    • Finding consistent patterns: A nonparametric approach for identifying differential expression in RNA-Seq data
    • Li, J. and Tibshirani, R. (2013) Finding consistent patterns: a nonparametric approach for identifying differential expression in RNA-Seq data. Stat. Methods Med. Res., 22, 519-39.
    • (2013) Stat. Methods Med. Res. , vol.22 , pp. 519-539
    • Li, J.1    Tibshirani, R.2
  • 29
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of RNA-seq data
    • Robinson, M.D. and Oshlack, A. (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol., 11, R25.
    • (2010) Genome Biol. , vol.11
    • Robinson, M.D.1    Oshlack, A.2
  • 30
    • 62849120031 scopus 로고    scopus 로고
    • Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations
    • Rue, H.v., Martino, S. and Chopin, N. (2009) Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B: Stat. Methodol., 71, 319-392.
    • (2009) J. R. Stat. Soc. Ser. B: Stat. Methodol. , vol.71 , pp. 319-392
    • Rue, H.V.1    Martino, S.2    Chopin, N.3
  • 33
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B: Methodol., 57, 289-300.
    • (1995) J. R. Stat. Soc. Ser. B: Methodol. , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 35
    • 84858068675 scopus 로고    scopus 로고
    • Removing technical variability in RNA-seq data using conditional quantile normalization
    • Hansen, K.D., Irizarry, R.A. and Wu, Z. (2012) Removing technical variability in RNA-seq data using conditional quantile normalization. Biostatistics, 13, 204-216.
    • (2012) Biostatistics , vol.13 , pp. 204-216
    • Hansen, K.D.1    Irizarry, R.A.2    Wu, Z.3
  • 36
    • 75649102520 scopus 로고    scopus 로고
    • Sex-specific and lineage-specific alternative splicing in primates
    • Blekhman, R., Marioni, J.C., Zumbo, P., Stephens, M. and Gilad, Y. (2010) Sex-specific and lineage-specific alternative splicing in primates. Genome Res., 20, 180-189.
    • (2010) Genome Res. , vol.20 , pp. 180-189
    • Blekhman, R.1    Marioni, J.C.2    Zumbo, P.3    Stephens, M.4    Gilad, Y.5
  • 39
    • 84885962211 scopus 로고    scopus 로고
    • Evaluating statistical analysis models for RNA sequencing experiments
    • Reeb, P. and Steibel, J. (2013) Evaluating statistical analysis models for RNA sequencing experiments. Front. Genet., 4, 178 .
    • (2013) Front. Genet. , vol.4 , pp. 178
    • Reeb, P.1    Steibel, J.2
  • 40
    • 84879225342 scopus 로고    scopus 로고
    • Higher order asymptotics for negative binomial regression inferences from RNA-sequencing data
    • Di, Y., Sarah, C.E., Daniel, W.S., Kimbrel, J.A. and Chang, J.H. (2013) Higher order asymptotics for negative binomial regression inferences from RNA-sequencing data.Stat. App. Genet. Mol. Biol., 12 , 49-70 .
    • (2013) Stat. App. Genet. Mol. Biol. , vol.12 , pp. 49-70
    • Di, Y.1    Sarah, C.E.2    Daniel, W.S.3    Kimbrel, J.A.4    Chang, J.H.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.