메뉴 건너뛰기




Volumn 15, Issue , 2014, Pages

LFCseq: A nonparametric approach for differential expression analysis of RNA-seq data

Author keywords

[No Author keywords available]

Indexed keywords

DATA ANALYSIS; EXPERIMENTAL MODEL; GENE EXPRESSION REGULATION; LOSS OF FUNCTION MUTATION; PROBABILITY; STATISTICAL MODEL; ALGORITHM; COMPUTER PROGRAM; COMPUTER SIMULATION; GENE EXPRESSION PROFILING; GENETICS; HEK293 CELL LINE; HUMAN; POISSON DISTRIBUTION; PROCEDURES; SEQUENCE ANALYSIS; TUMOR CELL LINE;

EID: 84964316110     PISSN: None     EISSN: 14712164     Source Type: Journal    
DOI: 10.1186/1471-2164-15-S10-S7     Document Type: Article
Times cited : (14)

References (27)
  • 1
  • 2
    • 78751570979 scopus 로고    scopus 로고
    • Rna sequencing: advances, challenges and opportunities
    • Ozsolak F, Milos PM: Rna sequencing: advances, challenges and opportunities. Nature Reviews Genetics 2011, 12:87-98.
    • (2011) Nature Reviews Genetics , vol.12 , pp. 87-98
    • Ozsolak, F.1    Milos, P.M.2
  • 7
    • 84863562292 scopus 로고    scopus 로고
    • Normalization, testing, and false discovery rate estimation for rna-sequencing data
    • Li J, Witten DM, Johnstone IM, Tibshirani R: Normalization, testing, and false discovery rate estimation for rna-sequencing data. Biostatistics 2011, 13:523-538.
    • (2011) Biostatistics , vol.13 , pp. 523-538
    • Li, J.1    Witten, D.M.2    Johnstone, I.M.3    Tibshirani, R.4
  • 8
    • 84867897914 scopus 로고    scopus 로고
    • Classification and clustering of sequencing data using a poisson model
    • Witten DM: Classification and clustering of sequencing data using a poisson model. Annals of Applied Statistics 2011, 5:2265-2687.
    • (2011) Annals of Applied Statistics , vol.5 , pp. 2265-2687
    • Witten, D.M.1
  • 9
    • 36448981743 scopus 로고    scopus 로고
    • Moderated statistical tests for assessing differences in tag abundance
    • Robinson MD, Smyth GK: Moderated statistical tests for assessing differences in tag abundance. Bioinformatics 2007, 23:2881-2887.
    • (2007) Bioinformatics , vol.23 , pp. 2881-2887
    • Robinson, M.D.1    Smyth, G.K.2
  • 10
    • 75249087100 scopus 로고    scopus 로고
    • edger: a bioconductor package for differential expression analysis of digital gene expression data
    • Robinson MD, McCarthy DJ, Smyth GK: edger: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26:139-140.
    • (2010) Bioinformatics , vol.26 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 11
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biology 2010, 11:106.
    • (2010) Genome Biology , vol.11 , pp. 106
    • Anders, S.1    Huber, W.2
  • 12
    • 84877934435 scopus 로고    scopus 로고
    • Shrinkage estimation of dispersion in negative binomial models for rna-seq experiments with small sample size
    • Yu D, Huber W, Vitek O: Shrinkage estimation of dispersion in negative binomial models for rna-seq experiments with small sample size. Bioinformatics 2013, 29:1275-1282.
    • (2013) Bioinformatics , vol.29 , pp. 1275-1282
    • Yu, D.1    Huber, W.2    Vitek, O.3
  • 14
    • 77955298482 scopus 로고    scopus 로고
    • bayseq: Empirical bayesian methods for identifying differential expression in sequence count data
    • Hardcastle TJ, Kelly KA: bayseq: Empirical bayesian methods for identifying differential expression in sequence count data. BMC Bioinformactics 2010, 11:422.
    • (2010) BMC Bioinformactics , vol.11 , pp. 422
    • Hardcastle, T.J.1    Kelly, K.A.2
  • 16
    • 84886557480 scopus 로고    scopus 로고
    • Finding consistent patterns: A nonparametric approach for identifying differential expression in rna-seq data
    • Li J, Tibshirani R: Finding consistent patterns: A nonparametric approach for identifying differential expression in rna-seq data. Statistical Methods in Medical Research 2013, 22:519-536.
    • (2013) Statistical Methods in Medical Research , vol.22 , pp. 519-536
    • Li, J.1    Tibshirani, R.2
  • 17
    • 84882667537 scopus 로고    scopus 로고
    • Differential gene expression analysis using coexpression and rna-seq data
    • Yang EW, Girke T, Jiang T: Differential gene expression analysis using coexpression and rna-seq data. Bioinformatics 2013, 29:2153-2161.
    • (2013) Bioinformatics , vol.29 , pp. 2153-2161
    • Yang, E.W.1    Girke, T.2    Jiang, T.3
  • 18
    • 84874677498 scopus 로고    scopus 로고
    • A comparison of methods for differential expression analysis of rna-seq data
    • Soneson C, Delorenzi M: A comparison of methods for differential expression analysis of rna-seq data. BMC Bioinformatics 2013, 14:91.
    • (2013) BMC Bioinformatics , vol.14 , pp. 91
    • Soneson, C.1    Delorenzi, M.2
  • 21
    • 77949481052 scopus 로고    scopus 로고
    • Evaluation of statistical methods for normalization and differential expression in mrna-seq experiments
    • Bullard JH, Purdom E, Hansen KD, Dudoit S: Evaluation of statistical methods for normalization and differential expression in mrna-seq experiments. BMC Bioinformatics 2010, 11:94.
    • (2010) BMC Bioinformatics , vol.11 , pp. 94
    • Bullard, J.H.1    Purdom, E.2    Hansen, K.D.3    Dudoit, S.4
  • 22
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of rna-seq data
    • Robinson MD, Oshlack A: A scaling normalization method for differential expression analysis of rna-seq data. Genome Biology 2010, 11:25.
    • (2010) Genome Biology , vol.11 , pp. 25
    • Robinson, M.D.1    Oshlack, A.2
  • 23
    • 79953034289 scopus 로고    scopus 로고
    • Evaluating gene expression in c57bl/6j and dba/2j mouse striatum using rna-seq and microarrays
    • Bottomly D, Walter NAR, Huner JE: Evaluating gene expression in c57bl/6j and dba/2j mouse striatum using rna-seq and microarrays. Plos One 2011, 6:17820.
    • (2011) Plos One , vol.6 , pp. 17820
    • Bottomly, D.1    Walter, N.A.R.2    Huner, J.E.3
  • 24
    • 33748491517 scopus 로고    scopus 로고
    • The microarray quality control (maqc) project shows interand intraplatform reproducibility of gene expression measurements
    • Shi L, Reid L, Jones W: The microarray quality control (maqc) project shows interand intraplatform reproducibility of gene expression measurements. Nature Biotechnology 2006, 24:1151-1161.
    • (2006) Nature Biotechnology , vol.24 , pp. 1151-1161
    • Shi, L.1    Reid, L.2    Jones, W.3
  • 25
    • 77957663917 scopus 로고    scopus 로고
    • Alternative expression analysis by rna sequencing
    • Griffith M, Griffith O, Mwenifumbo J: Alternative expression analysis by rna sequencing. Nature Methods 2010, 7:843-847.
    • (2010) Nature Methods , vol.7 , pp. 843-847
    • Griffith, M.1    Griffith, O.2    Mwenifumbo, J.3
  • 27
    • 84989315567 scopus 로고
    • Controlling the false discovery rate: a practical and powerful approach to multiple testing
    • Series B
    • Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society 1995, Series B 57:289-300.
    • (1995) Journal of the Royal Statistical Society , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.