메뉴 건너뛰기




Volumn 31, Issue 9, 2015, Pages 1420-1427

Co-expression analysis of high-throughput transcriptome sequencing data with Poisson mixture models

Author keywords

[No Author keywords available]

Indexed keywords

ANIMAL; CELL LINE; CLUSTER ANALYSIS; DROSOPHILA MELANOGASTER; EMBRYOLOGY; GENE EXPRESSION PROFILING; GENETICS; HIGH THROUGHPUT SEQUENCING; HUMAN; LIVER; METABOLISM; POISSON DISTRIBUTION; PROCEDURES; SEQUENCE ANALYSIS; STATISTICAL MODEL;

EID: 84941280707     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btu845     Document Type: Article
Times cited : (60)

References (46)
  • 1
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders, S. and Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biol., 11, 1-28.
    • (2010) Genome Biol. , vol.11 , pp. 1-28
    • Anders, S.1    Huber, W.2
  • 2
    • 84999366093 scopus 로고    scopus 로고
    • Statistical design and analysis of RNASeq data
    • Auer, P.L. and Doerge, R.W. (2010). Statistical design and analysis of RNASeq data. Genetics, 185, 1-12.
    • (2010) Genetics , vol.185 , pp. 1-12
    • Auer, P.L.1    Doerge, R.W.2
  • 3
    • 84857218267 scopus 로고    scopus 로고
    • Differential expression-the next generation and beyond
    • Auer, P.L. et al. (2012). Differential expression-the next generation and beyond. Brief. Funct. Genomics, 11, 57-62.
    • (2012) Brief. Funct. Genomics , vol.11 , pp. 57-62
    • Auer, P.L.1
  • 4
    • 85028124957 scopus 로고    scopus 로고
    • Slope heuristics: Overview and implementation
    • Baudry, J.-P. et al. (2012). Slope heuristics: overview and implementation. Stat. Comp., 22, 455-470.
    • (2012) Stat. Comp. , vol.22 , pp. 455-470
    • Baudry, J.-P.1
  • 5
    • 0037469122 scopus 로고    scopus 로고
    • Choosing starting values for the em algorithm for getting the highest likelihood in multivariate Gaussian mixture models
    • Biernacki, C. et al. (2003). Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models. Comp. Stat. Data Anal., 41, 561-575.
    • (2003) Comp. Stat. Data Anal. , vol.41 , pp. 561-575
    • Biernacki, C.1
  • 6
  • 7
    • 33847613502 scopus 로고    scopus 로고
    • Minimal penalties for Gaussian model selection
    • Birgé, L. and Massart, P. (2006). Minimal penalties for Gaussian model selection. Probab. Thoery Relat. Fields, 138, 33-73.
    • (2006) Probab. Thoery Relat. Fields , vol.138 , pp. 33-73
    • Birgé, L.1    Massart, P.2
  • 8
    • 3142555412 scopus 로고    scopus 로고
    • Clustering analysis of SAGE data using a Poisson approach
    • Cai, L. et al. (2004). Clustering analysis of SAGE data using a Poisson approach. Genome Biol., 5, R51.
    • (2004) Genome Biol. , vol.5 , pp. R51
    • Cai, L.1
  • 10
    • 0001626339 scopus 로고
    • A classification EMalgorithm for clustering and two stochastic versions
    • Celeux, G. and Govaert, G. (1992). A classification EMalgorithm for clustering and two stochastic versions. Comp. Stat. Data Anal., 14, 315-332.
    • (1992) Comp. Stat. Data Anal. , vol.14 , pp. 315-332
    • Celeux, G.1    Govaert, G.2
  • 11
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • Dempster, A. P. et al. (1977). Maximum likelihood from incomplete data via the EM algorithm. J. Royal Stat. Soc. Series B (Methodological), 39, 1-38.
    • (1977) J. Royal Stat. Soc. Series B (Methodological) , vol.39 , pp. 1-38
    • Dempster, A.P.1
  • 12
    • 84887791432 scopus 로고    scopus 로고
    • A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis
    • Dillies, M.-A. et al. (2013). A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief. Bioinform., 14, 671-83.
    • (2013) Brief. Bioinform. , vol.14 , pp. 671-683
    • Dillies, M.-A.1
  • 13
    • 0032441150 scopus 로고    scopus 로고
    • Cluster analysis and display of genome-wide expression patterns
    • Eisen, M. B. et al. (1998). Cluster analysis and display of genome-wide expression patterns. PNAS, 95, 14863-14868.
    • (1998) PNAS , vol.95 , pp. 14863-14868
    • Eisen, M.B.1
  • 14
    • 81055124271 scopus 로고    scopus 로고
    • ReCount: A multi-experiment resource of analysisready RNA-seq gene count datasets
    • Frazee, A.C. et al. (2011). ReCount: A multi-experiment resource of analysisready RNA-seq gene count datasets. BMC Bioinformatics, 12.
    • (2011) BMC Bioinformatics , vol.12
    • Frazee, A.C.1
  • 15
    • 79953043801 scopus 로고    scopus 로고
    • The development transcriptome of Drosophila melanogaster
    • Graveley, B.R. et al. (2011). The development transcriptome of Drosophila melanogaster. Nature, 471, 473-479.
    • (2011) Nature , vol.471 , pp. 473-479
    • Graveley, B.R.1
  • 16
    • 0000008146 scopus 로고
    • Comparing partitions
    • Hubert, L. and Arabie, P. (1985). Comparing partitions. J. Classif., 2, 193-218.
    • (1985) J. Classif. , vol.2 , pp. 193-218
    • Hubert, L.1    Arabie, P.2
  • 17
    • 13844276694 scopus 로고    scopus 로고
    • Cluster analysis for gene expression data: A survey
    • Jiang, D. et al. (2004). Cluster analysis for gene expression data: A survey. IEEE Trans. Knowl. Data Eng., 16, 1370-1386.
    • (2004) IEEE Trans. Knowl. Data Eng. , vol.16 , pp. 1370-1386
    • Jiang, D.1
  • 18
    • 0037238291 scopus 로고    scopus 로고
    • An em algorithm for multivariate Poisson distribution and related models
    • Karlis, D. (2003). An EM algorithm for multivariate Poisson distribution and related models. J. Appl. Stat., 30, 63-77.
    • (2003) J. Appl. Stat. , vol.30 , pp. 63-77
    • Karlis, D.1
  • 19
    • 79959473093 scopus 로고    scopus 로고
    • Characterization and improvement of RNA-Seq precision in quantitative transcript expression profiling
    • (ISMB)
    • Abaj, P. P. et al. (2011). Characterization and improvement of RNA-Seq precision in quantitative transcript expression profiling. Bioinformatics, 27(ISMB), i383-i391.
    • (2011) Bioinformatics , vol.27 , pp. I383-I391
    • Abaj, P.P.1
  • 20
    • 84896735766 scopus 로고    scopus 로고
    • Voom: Precision weights unlock linear model analysis tools for RNA-seq read counts
    • Law, C. et al. (2014). voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol., 15.
    • (2014) Genome Biol , vol.15
    • Law, C.1
  • 21
    • 84863562292 scopus 로고    scopus 로고
    • Normalization, testing, and false discovery rate estimation for RNA-sequencing data
    • Li, J. et al. (2012). Normalization, testing, and false discovery rate estimation for RNA-sequencing data. Biostatistics, 13, 523-538.
    • (2012) Biostatistics , vol.13 , pp. 523-538
    • Li, J.1
  • 23
    • 84858041341 scopus 로고    scopus 로고
    • Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation
    • McCarthy, D. et al. (2012). Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res., 40, 4288-4297.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 4288-4297
    • McCarthy, D.1
  • 25
    • 79957882567 scopus 로고    scopus 로고
    • RNA-seq: Technical variability and sampling
    • McIntyre, L.M. et al. (2011). RNA-seq: technical variability and sampling. BMC Genomics, 12.
    • (2011) BMC Genomics , vol.12
    • McIntyre, L.M.1
  • 28
    • 84862996504 scopus 로고    scopus 로고
    • A systematic comparison and evaluation of high density exon arrays and RNA-seq technology used to unravel the peripheral blood transcriptome of sickle cell disease
    • Naghavachari, N. et al. (2012). A systematic comparison and evaluation of high density exon arrays and RNA-seq technology used to unravel the peripheral blood transcriptome of sickle cell disease. BMC Medical Genomics, 5, 28.
    • (2012) BMC Medical Genomics , vol.5 , pp. 28
    • Naghavachari, N.1
  • 29
    • 65649126066 scopus 로고    scopus 로고
    • Transcript length bias in RNA-seq data confounds systems biology
    • Oshlack, A. and Wakefield, M.J. (2009). Transcript length bias in RNA-seq data confounds systems biology. Biol. Direct, 4.
    • (2009) Biol. Direct , vol.4
    • Oshlack, A.1    Wakefield, M.J.2
  • 30
    • 84944161689 scopus 로고    scopus 로고
    • On the estimation of mixtures of Poisson regression models with large numbers of components
    • Papastamoulis, P. et al. (2014). On the estimation of mixtures of Poisson regression models with large numbers of components. Comp. Stat. Data Anal., doi:10.1016/j.csda.2014.07.005.
    • (2014) Comp. Stat. Data Anal.
    • Papastamoulis, P.1
  • 31
    • 84882714530 scopus 로고    scopus 로고
    • Data-based filtering for replicated high-throughput transcriptome sequencing experiments
    • Rau, A. et al. (2013). Data-based filtering for replicated high-throughput transcriptome sequencing experiments. Bioinformatics, 29, 2146-2152.
    • (2013) Bioinformatics , vol.29 , pp. 2146-2152
    • Rau, A.1
  • 32
    • 75249087100 scopus 로고    scopus 로고
    • EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data
    • Robinson, M. D. et al. (2010). edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139-140.
    • (2010) Bioinformatics , vol.26 , pp. 139-140
    • Robinson, M.D.1
  • 33
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of RNA-seq data
    • Robinson, M. D. and Oshlack, A. (2010). A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol., 11, R25.
    • (2010) Genome Biol , vol.11 , pp. R25
    • Robinson, M.D.1    Oshlack, A.2
  • 34
    • 36448981743 scopus 로고    scopus 로고
    • Moderated statistical tests for assessing differences in tag abundance
    • Robinson, M. D. and Smyth, G. K. (2007). Moderated statistical tests for assessing differences in tag abundance. Bioinformatics, 23, 2881-2887.
    • (2007) Bioinformatics , vol.23 , pp. 2881-2887
    • Robinson, M.D.1    Smyth, G.K.2
  • 35
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978). Estimating the dimension of a model. Ann. Stat., 6, 461-464.
    • (1978) Ann. Stat. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 36
    • 84920550975 scopus 로고    scopus 로고
    • A comprehensive assessment of RNAseq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium
    • SEQC/MAQC-III Consortium
    • SEQC/MAQC-III Consortium (2014). A comprehensive assessment of RNAseq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium. Nat. Biotechnol., 32, 903-914.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 903-914
  • 37
    • 77955214742 scopus 로고    scopus 로고
    • RNA-Seq Atlas of Glycine max: A guide to the soybean transcriptome
    • Severin, A. J. et al. (2010). RNA-Seq Atlas of Glycine max: A guide to the soybean transcriptome. BMC Plant Biol., 10, 160.
    • (2010) BMC Plant Biol , vol.10 , pp. 160
    • Severin, A.J.1
  • 38
    • 84892683120 scopus 로고    scopus 로고
    • Model-based clustering for RNA-seq data
    • Si, Y. et al. (2014). Model-based clustering for RNA-seq data. Bioinformatics, 30, 197-205.
    • (2014) Bioinformatics , vol.30 , pp. 197-205
    • Si, Y.1
  • 39
    • 84874677498 scopus 로고    scopus 로고
    • A comparison of methods for differential expression analysis of RNA-seq data
    • Soneson, C. and Delorenzi, M. (2013). A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinformatics, 14, 91.
    • (2013) BMC Bioinformatics , vol.14 , pp. 91
    • Soneson, C.1    Delorenzi, M.2
  • 40
    • 47649124124 scopus 로고    scopus 로고
    • A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome
    • Sultan, M. et al. (2008). A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science, 15, 956-60.
    • (2008) Science , vol.15 , pp. 956-960
    • Sultan, M.1
  • 41
    • 77952123055 scopus 로고    scopus 로고
    • Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation
    • Trapnell, C. et al. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol., 28, 511-518.
    • (2010) Nat. Biotechnol. , vol.28 , pp. 511-518
    • Trapnell, C.1
  • 42
    • 84912527013 scopus 로고    scopus 로고
    • The concordance between RNA-seq and microarray data depends on chemical treatment and transcript abundance
    • Wang, C. et al. (2014). The concordance between RNA-seq and microarray data depends on chemical treatment and transcript abundance. Nat. Biotechnol., 32, 926-932.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 926-932
    • Wang, C.1
  • 43
    • 84944178665 scopus 로고
    • Hierarchical grouping to optimize an objective function
    • Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc., 58, 236-244.
    • (1963) J. Am. Stat. Assoc. , vol.58 , pp. 236-244
    • Ward, J.H.1
  • 44
    • 84867897914 scopus 로고    scopus 로고
    • Classification and clustering of sequencing data using a Poisson model
    • Witten, D. M. (2011). Classification and clustering of sequencing data using a Poisson model. Ann. Appl. Stat., 5, 2493-2518.
    • (2011) Ann. Appl. Stat. , vol.5 , pp. 2493-2518
    • Witten, D.M.1
  • 45
    • 0034782618 scopus 로고    scopus 로고
    • Model-based clustering and data transformations for gene expression data
    • Yeung, K. Y. et al. (2001). Model-based clustering and data transformations for gene expression data. Bioinformatics, 17, 977-987.
    • (2001) Bioinformatics , vol.17 , pp. 977-987
    • Yeung, K.Y.1
  • 46
    • 84903146127 scopus 로고    scopus 로고
    • Robustly detecting differential expression in RNA sequencing data using observation weights
    • Zhou, X. et al. (2014). Robustly detecting differential expression in RNA sequencing data using observation weights. Nucleic Acids Res., 42, e91.
    • (2014) Nucleic Acids Res. , vol.42 , pp. e91
    • Zhou, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.