메뉴 건너뛰기




Volumn 25, Issue 10, 2015, Pages 611-622

Clipping or Extracting: Two Ways to Membrane Protein Degradation

Author keywords

AAA ATPase p97 VCP Cdc48; Endoplasmic reticulum associated protein degradation; Intramembrane proteolysis protease; Organellar protein homeostasis

Indexed keywords

ADENOSINE TRIPHOSPHATASE; GAMMA SECRETASE; HEME OXYGENASE 1; MEMBRANE PROTEIN; NUCLEAR RESPIRATORY FACTOR 1; PEPTIDASE; PRESENILIN 1; PRESENILIN 2; SIGNAL PEPTIDE PEPTIDASE; UBIQUITIN PROTEIN LIGASE E3; UNCLASSIFIED DRUG; CDC48 PROTEIN; CELL CYCLE PROTEIN; PROTEASOME; UBIQUITIN;

EID: 84942087481     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2015.07.003     Document Type: Review
Times cited : (70)

References (111)
  • 1
    • 79959481888 scopus 로고    scopus 로고
    • Protein folding and modification in the mammalian endoplasmic reticulum
    • Braakman I., Bulleid N.J. Protein folding and modification in the mammalian endoplasmic reticulum. Annu. Rev. Biochem. 2011, 80:71-99.
    • (2011) Annu. Rev. Biochem. , vol.80 , pp. 71-99
    • Braakman, I.1    Bulleid, N.J.2
  • 2
    • 84909962081 scopus 로고    scopus 로고
    • Quality control of inner nuclear membrane proteins by the Asi complex
    • Foresti O., et al. Quality control of inner nuclear membrane proteins by the Asi complex. Science 2014, 346:751-755.
    • (2014) Science , vol.346 , pp. 751-755
    • Foresti, O.1
  • 3
    • 84922218720 scopus 로고    scopus 로고
    • Protein quality control at the inner nuclear membrane
    • Khmelinskii A., et al. Protein quality control at the inner nuclear membrane. Nature 2014, 516:410-413.
    • (2014) Nature , vol.516 , pp. 410-413
    • Khmelinskii, A.1
  • 4
    • 84931577157 scopus 로고    scopus 로고
    • Mitochondrial proteases and protein quality control in ageing and longevity
    • Hamon M.P., et al. Mitochondrial proteases and protein quality control in ageing and longevity. Ageing Res. Rev. 2015, 23:56-66.
    • (2015) Ageing Res. Rev. , vol.23 , pp. 56-66
    • Hamon, M.P.1
  • 5
    • 84910673082 scopus 로고    scopus 로고
    • Identification of candidate substrates for the Golgi Tul1 E3 ligase using quantitative diGly proteomics in yeast
    • Tong Z., et al. Identification of candidate substrates for the Golgi Tul1 E3 ligase using quantitative diGly proteomics in yeast. Mol. Cell. Proteomics 2014, 13:2871-2882.
    • (2014) Mol. Cell. Proteomics , vol.13 , pp. 2871-2882
    • Tong, Z.1
  • 6
    • 77955607650 scopus 로고    scopus 로고
    • Peripheral protein quality control removes unfolded CFTR from the plasma membrane
    • Okiyoneda T., et al. Peripheral protein quality control removes unfolded CFTR from the plasma membrane. Science 2010, 329:805-810.
    • (2010) Science , vol.329 , pp. 805-810
    • Okiyoneda, T.1
  • 7
    • 84901801108 scopus 로고    scopus 로고
    • Organellophagy: eliminating cellular building blocks via selective autophagy
    • Okamoto K. Organellophagy: eliminating cellular building blocks via selective autophagy. J. Cell Biol. 2014, 205:435-445.
    • (2014) J. Cell Biol. , vol.205 , pp. 435-445
    • Okamoto, K.1
  • 8
    • 0035818999 scopus 로고    scopus 로고
    • The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol
    • Ye Y., et al. The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 2001, 414:652-656.
    • (2001) Nature , vol.414 , pp. 652-656
    • Ye, Y.1
  • 9
    • 0038487228 scopus 로고    scopus 로고
    • Function of the p97-Ufd1-Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains
    • Ye Y., et al. Function of the p97-Ufd1-Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains. J. Cell Biol. 2003, 162:71-84.
    • (2003) J. Cell Biol. , vol.162 , pp. 71-84
    • Ye, Y.1
  • 10
    • 78149429951 scopus 로고    scopus 로고
    • A stress-responsive system for mitochondrial protein degradation
    • Heo J.M., et al. A stress-responsive system for mitochondrial protein degradation. Mol. Cell 2010, 40:465-480.
    • (2010) Mol. Cell , vol.40 , pp. 465-480
    • Heo, J.M.1
  • 11
    • 78650729600 scopus 로고    scopus 로고
    • Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin
    • Tanaka A., et al. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 2010, 191:1367-1380.
    • (2010) J. Cell Biol. , vol.191 , pp. 1367-1380
    • Tanaka, A.1
  • 12
    • 84904540152 scopus 로고    scopus 로고
    • Msp1/ATAD1 maintains mitochondrial function by facilitating the degradation of mislocalized tail-anchored proteins
    • Chen Y.C., et al. Msp1/ATAD1 maintains mitochondrial function by facilitating the degradation of mislocalized tail-anchored proteins. EMBO J. 2014, 33:1548-1564.
    • (2014) EMBO J. , vol.33 , pp. 1548-1564
    • Chen, Y.C.1
  • 13
    • 84901837721 scopus 로고    scopus 로고
    • The conserved AAA-ATPase Msp1 confers organelle specificity to tail-anchored proteins
    • Okreglak V., Walter P. The conserved AAA-ATPase Msp1 confers organelle specificity to tail-anchored proteins. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:8019-8024.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 8019-8024
    • Okreglak, V.1    Walter, P.2
  • 14
    • 84891347210 scopus 로고    scopus 로고
    • Der1 promotes movement of misfolded proteins through the endoplasmic reticulum membrane
    • Mehnert M., et al. Der1 promotes movement of misfolded proteins through the endoplasmic reticulum membrane. Nat. Cell Biol. 2014, 16:77-86.
    • (2014) Nat. Cell Biol. , vol.16 , pp. 77-86
    • Mehnert, M.1
  • 15
    • 84898729879 scopus 로고    scopus 로고
    • Cleaning up in the endoplasmic reticulum: ubiquitin in charge
    • Christianson J.C., Ye Y. Cleaning up in the endoplasmic reticulum: ubiquitin in charge. Nat. Struct. Mol. Biol. 2014, 21:325-335.
    • (2014) Nat. Struct. Mol. Biol. , vol.21 , pp. 325-335
    • Christianson, J.C.1    Ye, Y.2
  • 16
    • 84865298998 scopus 로고    scopus 로고
    • Finding the will and the way of ERAD substrate retrotranslocation
    • Hampton R.Y., Sommer T. Finding the will and the way of ERAD substrate retrotranslocation. Curr. Opin. Cell Biol. 2012, 24:460-466.
    • (2012) Curr. Opin. Cell Biol. , vol.24 , pp. 460-466
    • Hampton, R.Y.1    Sommer, T.2
  • 17
    • 84896270715 scopus 로고    scopus 로고
    • Quality control: ER-associated degradation: protein quality control and beyond
    • Ruggiano A., et al. Quality control: ER-associated degradation: protein quality control and beyond. J. Cell Biol. 2014, 204:869-879.
    • (2014) J. Cell Biol. , vol.204 , pp. 869-879
    • Ruggiano, A.1
  • 18
    • 33749353475 scopus 로고    scopus 로고
    • P97 functions as an auxiliary factor to facilitate TM domain extraction during CFTR ER-associated degradation
    • Carlson E.J., et al. p97 functions as an auxiliary factor to facilitate TM domain extraction during CFTR ER-associated degradation. EMBO J. 2006, 25:4557-4566.
    • (2006) EMBO J. , vol.25 , pp. 4557-4566
    • Carlson, E.J.1
  • 19
    • 80051669175 scopus 로고    scopus 로고
    • Intramembrane proteolysis in regulated protein trafficking
    • Lemberg M.K. Intramembrane proteolysis in regulated protein trafficking. Traffic 2011, 12:1109-1118.
    • (2011) Traffic , vol.12 , pp. 1109-1118
    • Lemberg, M.K.1
  • 20
    • 84921369563 scopus 로고    scopus 로고
    • The roles of PINK1, Parkin, and mitochondrial fidelity in Parkinson's disease
    • Pickrell A.M., Youle R.J. The roles of PINK1, Parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 2015, 85:257-273.
    • (2015) Neuron , vol.85 , pp. 257-273
    • Pickrell, A.M.1    Youle, R.J.2
  • 22
    • 84864279894 scopus 로고    scopus 로고
    • New lives for old: evolution of pseudoenzyme function illustrated by iRhoms
    • Adrain C., Freeman M. New lives for old: evolution of pseudoenzyme function illustrated by iRhoms. Nat. Rev. Mol. Cell Biol. 2012, 13:489-498.
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , pp. 489-498
    • Adrain, C.1    Freeman, M.2
  • 23
    • 84876806705 scopus 로고    scopus 로고
    • Sampling the membrane: function of rhomboid-family proteins
    • Lemberg M.K. Sampling the membrane: function of rhomboid-family proteins. Trends Cell Biol. 2013, 23:210-217.
    • (2013) Trends Cell Biol. , vol.23 , pp. 210-217
    • Lemberg, M.K.1
  • 24
    • 84923099296 scopus 로고    scopus 로고
    • Mechanisms of integral membrane protein insertion and folding
    • Cymer F., et al. Mechanisms of integral membrane protein insertion and folding. J. Mol. Biol. 2014, 427:999-1022.
    • (2014) J. Mol. Biol. , vol.427 , pp. 999-1022
    • Cymer, F.1
  • 25
    • 0034885052 scopus 로고    scopus 로고
    • AAA+ superfamily ATPases: common structure--diverse function
    • Ogura T., Wilkinson A.J. AAA+ superfamily ATPases: common structure--diverse function. Genes Cells 2001, 6:575-597.
    • (2001) Genes Cells , vol.6 , pp. 575-597
    • Ogura, T.1    Wilkinson, A.J.2
  • 26
    • 0033639076 scopus 로고    scopus 로고
    • Membrane protein degradation by AAA proteases in mitochondria: extraction of substrates from either membrane surface
    • Leonhard K., et al. Membrane protein degradation by AAA proteases in mitochondria: extraction of substrates from either membrane surface. Mol. Cell 2000, 5:629-638.
    • (2000) Mol. Cell , vol.5 , pp. 629-638
    • Leonhard, K.1
  • 27
    • 0034268493 scopus 로고    scopus 로고
    • Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing
    • Hoppe T., et al. Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 2000, 102:577-586.
    • (2000) Cell , vol.102 , pp. 577-586
    • Hoppe, T.1
  • 28
    • 77957341511 scopus 로고    scopus 로고
    • Proteasomal degradation is transcriptionally controlled by TCF11 via an ERAD-dependent feedback loop
    • Steffen J., et al. Proteasomal degradation is transcriptionally controlled by TCF11 via an ERAD-dependent feedback loop. Mol. Cell 2010, 40:147-158.
    • (2010) Mol. Cell , vol.40 , pp. 147-158
    • Steffen, J.1
  • 29
    • 80053299005 scopus 로고    scopus 로고
    • Cdc48: a power machine in protein degradation
    • Stolz A., et al. Cdc48: a power machine in protein degradation. Trends Biochem. Sci. 2011, 36:515-523.
    • (2011) Trends Biochem. Sci. , vol.36 , pp. 515-523
    • Stolz, A.1
  • 30
    • 79954525510 scopus 로고    scopus 로고
    • Yeast SREBP cleavage activation requires the Golgi Dsc E3 ligase complex
    • Stewart E.V., et al. Yeast SREBP cleavage activation requires the Golgi Dsc E3 ligase complex. Mol. Cell 2011, 42:160-171.
    • (2011) Mol. Cell , vol.42 , pp. 160-171
    • Stewart, E.V.1
  • 31
    • 21744460209 scopus 로고    scopus 로고
    • Ufd1 exhibits the AAA-ATPase fold with two distinct ubiquitin interaction sites
    • Park S., et al. Ufd1 exhibits the AAA-ATPase fold with two distinct ubiquitin interaction sites. Structure 2005, 13:995-1005.
    • (2005) Structure , vol.13 , pp. 995-1005
    • Park, S.1
  • 32
    • 84907059487 scopus 로고    scopus 로고
    • The VCP/p97 system at a glance: connecting cellular function to disease pathogenesis
    • Meyer H., Weihl C.C. The VCP/p97 system at a glance: connecting cellular function to disease pathogenesis. J. Cell Sci. 2014, 127:3877-3883.
    • (2014) J. Cell Sci. , vol.127 , pp. 3877-3883
    • Meyer, H.1    Weihl, C.C.2
  • 33
    • 84908072286 scopus 로고    scopus 로고
    • Key steps in ERAD of luminal ER proteins reconstituted with purified components
    • Stein A., et al. Key steps in ERAD of luminal ER proteins reconstituted with purified components. Cell 2014, 158:1375-1388.
    • (2014) Cell , vol.158 , pp. 1375-1388
    • Stein, A.1
  • 34
    • 0034681260 scopus 로고    scopus 로고
    • Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans
    • Brown M.S., et al. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 2000, 100:391-398.
    • (2000) Cell , vol.100 , pp. 391-398
    • Brown, M.S.1
  • 35
    • 33846490396 scopus 로고    scopus 로고
    • M-AAA protease-driven membrane dislocation allows intramembrane cleavage by rhomboid in mitochondria
    • Tatsuta T., et al. m-AAA protease-driven membrane dislocation allows intramembrane cleavage by rhomboid in mitochondria. EMBO J. 2007, 26:325-335.
    • (2007) EMBO J. , vol.26 , pp. 325-335
    • Tatsuta, T.1
  • 36
    • 33846541511 scopus 로고    scopus 로고
    • Rhomboid protease AarA mediates quorum-sensing in Providencia stuartii by activating TatA of the twin-arginine translocase
    • Stevenson L.G., et al. Rhomboid protease AarA mediates quorum-sensing in Providencia stuartii by activating TatA of the twin-arginine translocase. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:1003-1008.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 1003-1008
    • Stevenson, L.G.1
  • 37
    • 0037102509 scopus 로고    scopus 로고
    • DegS and YaeL participate sequentially in the cleavage of RseA to activate the sigma(E)-dependent extracytoplasmic stress response
    • Alba B.M., et al. DegS and YaeL participate sequentially in the cleavage of RseA to activate the sigma(E)-dependent extracytoplasmic stress response. Genes Dev. 2002, 16:2156-2168.
    • (2002) Genes Dev. , vol.16 , pp. 2156-2168
    • Alba, B.M.1
  • 38
    • 0037102458 scopus 로고    scopus 로고
    • YaeL (EcfE) activates the sigma(E) pathway of stress response through a site-2 cleavage of anti-sigma(E), RseA
    • Kanehara K., et al. YaeL (EcfE) activates the sigma(E) pathway of stress response through a site-2 cleavage of anti-sigma(E), RseA. Genes Dev. 2002, 16:2147-2155.
    • (2002) Genes Dev. , vol.16 , pp. 2147-2155
    • Kanehara, K.1
  • 39
    • 84865389259 scopus 로고    scopus 로고
    • Ubiquitin-dependent intramembrane rhomboid protease promotes ERAD of membrane proteins
    • Fleig L., et al. Ubiquitin-dependent intramembrane rhomboid protease promotes ERAD of membrane proteins. Mol. Cell 2012, 47:558-569.
    • (2012) Mol. Cell , vol.47 , pp. 558-569
    • Fleig, L.1
  • 40
    • 0036809216 scopus 로고    scopus 로고
    • Requirements for signal peptide peptidase-catalyzed intramembrane proteolysis
    • Lemberg M.K., Martoglio B. Requirements for signal peptide peptidase-catalyzed intramembrane proteolysis. Mol. Cell 2002, 10:735-744.
    • (2002) Mol. Cell , vol.10 , pp. 735-744
    • Lemberg, M.K.1    Martoglio, B.2
  • 41
    • 84929514064 scopus 로고    scopus 로고
    • Understanding intramembrane proteolysis: from protein dynamics to reaction kinetics
    • Langosch D., et al. Understanding intramembrane proteolysis: from protein dynamics to reaction kinetics. Trends Biochem. Sci. 2015, 40:318-327.
    • (2015) Trends Biochem. Sci. , vol.40 , pp. 318-327
    • Langosch, D.1
  • 42
    • 0037150672 scopus 로고    scopus 로고
    • Identification of signal peptide peptidase, a presenilin-type aspartic protease
    • Weihofen A., et al. Identification of signal peptide peptidase, a presenilin-type aspartic protease. Science 2002, 296:2215-2218.
    • (2002) Science , vol.296 , pp. 2215-2218
    • Weihofen, A.1
  • 43
    • 54949110552 scopus 로고    scopus 로고
    • Proteomic profiling of gamma-secretase substrates and mapping of substrate requirements
    • Hemming M.L., et al. Proteomic profiling of gamma-secretase substrates and mapping of substrate requirements. PLoS Biol. 2008, 6:e257.
    • (2008) PLoS Biol. , vol.6 , pp. e257
    • Hemming, M.L.1
  • 44
    • 0030298339 scopus 로고    scopus 로고
    • Sterol resistance in CHO cells traced to point mutation in SREBP cleavage-activating protein
    • Hua X., et al. Sterol resistance in CHO cells traced to point mutation in SREBP cleavage-activating protein. Cell 1996, 87:415-426.
    • (1996) Cell , vol.87 , pp. 415-426
    • Hua, X.1
  • 45
    • 0035913906 scopus 로고    scopus 로고
    • Regulated intracellular ligand transport and proteolysis control EGF signal activation in Drosophila
    • Lee J.R., et al. Regulated intracellular ligand transport and proteolysis control EGF signal activation in Drosophila. Cell 2001, 107:161-171.
    • (2001) Cell , vol.107 , pp. 161-171
    • Lee, J.R.1
  • 46
    • 63649164073 scopus 로고    scopus 로고
    • Trafficking, a key player in regulated intramembrane proteolysis
    • Sannerud R., Annaert W. Trafficking, a key player in regulated intramembrane proteolysis. Semin. Cell Dev. Biol. 2009, 20:183-190.
    • (2009) Semin. Cell Dev. Biol. , vol.20 , pp. 183-190
    • Sannerud, R.1    Annaert, W.2
  • 47
    • 84922219279 scopus 로고    scopus 로고
    • Signal peptide peptidase functions in ERAD to cleave the unfolded protein response regulator XBP1u
    • Chen C., et al. Signal peptide peptidase functions in ERAD to cleave the unfolded protein response regulator XBP1u. EMBO J. 2014, 33:2492-2506.
    • (2014) EMBO J. , vol.33 , pp. 2492-2506
    • Chen, C.1
  • 48
    • 2142710081 scopus 로고    scopus 로고
    • Alternative topogenesis of Mgm1 and mitochondrial morphology depend on ATP and a functional import motor
    • Herlan M., et al. Alternative topogenesis of Mgm1 and mitochondrial morphology depend on ATP and a functional import motor. J. Cell Biol. 2004, 165:167-173.
    • (2004) J. Cell Biol. , vol.165 , pp. 167-173
    • Herlan, M.1
  • 49
    • 0032185770 scopus 로고    scopus 로고
    • Molecular identification of the sterol-regulated luminal protease that cleaves SREBPs and controls lipid composition of animal cells
    • Sakai J., et al. Molecular identification of the sterol-regulated luminal protease that cleaves SREBPs and controls lipid composition of animal cells. Mol. Cell 1998, 2:505-514.
    • (1998) Mol. Cell , vol.2 , pp. 505-514
    • Sakai, J.1
  • 50
    • 0032574993 scopus 로고    scopus 로고
    • Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain
    • Schroeter E.H., et al. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 1998, 393:382-386.
    • (1998) Nature , vol.393 , pp. 382-386
    • Schroeter, E.H.1
  • 51
    • 84918808671 scopus 로고    scopus 로고
    • Shedding of glycan-modifying enzymes by signal peptide peptidase-like 3 (SPPL3) regulates cellular N-glycosylation
    • Voss M., et al. Shedding of glycan-modifying enzymes by signal peptide peptidase-like 3 (SPPL3) regulates cellular N-glycosylation. EMBO J. 2014, 33:2890-2905.
    • (2014) EMBO J. , vol.33 , pp. 2890-2905
    • Voss, M.1
  • 52
    • 0033535504 scopus 로고    scopus 로고
    • A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain
    • De Strooper B., et al. A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature 1999, 398:518-522.
    • (1999) Nature , vol.398 , pp. 518-522
    • De Strooper, B.1
  • 53
    • 2942557122 scopus 로고    scopus 로고
    • Gamma-secretase: proteasome of the membrane?
    • Kopan R., Ilagan M.X. Gamma-secretase: proteasome of the membrane?. Nat. Rev. Mol. Cell Biol. 2004, 5:499-504.
    • (2004) Nat. Rev. Mol. Cell Biol. , vol.5 , pp. 499-504
    • Kopan, R.1    Ilagan, M.X.2
  • 54
    • 80455164551 scopus 로고    scopus 로고
    • Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant alpha-1 antitrypsin from the endoplasmic reticulum
    • Greenblatt E.J., et al. Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant alpha-1 antitrypsin from the endoplasmic reticulum. Nat. Struct. Mol. Biol. 2011, 18:1147-1152.
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 1147-1152
    • Greenblatt, E.J.1
  • 55
    • 84862064898 scopus 로고    scopus 로고
    • Exosome-related multi-pass transmembrane protein TSAP6 is a target of rhomboid protease RHBDD1-induced proteolysis
    • Wan C., et al. Exosome-related multi-pass transmembrane protein TSAP6 is a target of rhomboid protease RHBDD1-induced proteolysis. PLoS ONE 2012, 7:e37452.
    • (2012) PLoS ONE , vol.7 , pp. e37452
    • Wan, C.1
  • 56
    • 84878791679 scopus 로고    scopus 로고
    • Rhomboid domain containing 1 inhibits cell apoptosis by upregulating AP-1 activity and its downstream target Bcl-3
    • Ren X., et al. Rhomboid domain containing 1 inhibits cell apoptosis by upregulating AP-1 activity and its downstream target Bcl-3. FEBS Lett. 2013, 587:1793-1798.
    • (2013) FEBS Lett. , vol.587 , pp. 1793-1798
    • Ren, X.1
  • 57
    • 0035576260 scopus 로고    scopus 로고
    • Intramembrane proteolysis of signal peptides: an essential step in the generation of HLA-E epitopes
    • Lemberg M.K., et al. Intramembrane proteolysis of signal peptides: an essential step in the generation of HLA-E epitopes. J. Immunol. 2001, 167:6441-6446.
    • (2001) J. Immunol. , vol.167 , pp. 6441-6446
    • Lemberg, M.K.1
  • 58
    • 77951226758 scopus 로고    scopus 로고
    • Signal peptide peptidase (SPP) assembles with substrates and misfolded membrane proteins into distinct oligomeric complexes
    • Schrul B., et al. Signal peptide peptidase (SPP) assembles with substrates and misfolded membrane proteins into distinct oligomeric complexes. Biochem. J. 2010, 427:523-534.
    • (2010) Biochem. J. , vol.427 , pp. 523-534
    • Schrul, B.1
  • 59
    • 69949171887 scopus 로고    scopus 로고
    • The TRC8 E3 ligase ubiquitinates MHC class I molecules before dislocation from the ER
    • Stagg H.R., et al. The TRC8 E3 ligase ubiquitinates MHC class I molecules before dislocation from the ER. J. Cell Biol. 2009, 186:685-692.
    • (2009) J. Cell Biol. , vol.186 , pp. 685-692
    • Stagg, H.R.1
  • 60
    • 33745207334 scopus 로고    scopus 로고
    • Signal peptide peptidase is required for dislocation from the endoplasmic reticulum
    • Loureiro J., et al. Signal peptide peptidase is required for dislocation from the endoplasmic reticulum. Nature 2006, 441:894-897.
    • (2006) Nature , vol.441 , pp. 894-897
    • Loureiro, J.1
  • 61
    • 75049084045 scopus 로고    scopus 로고
    • Protein disulphide isomerase is required for signal peptide peptidase-mediated protein degradation
    • Lee S.O., et al. Protein disulphide isomerase is required for signal peptide peptidase-mediated protein degradation. EMBO J. 2010, 29:363-375.
    • (2010) EMBO J. , vol.29 , pp. 363-375
    • Lee, S.O.1
  • 62
    • 84903147836 scopus 로고    scopus 로고
    • Cleavage by signal peptide peptidase is required for the degradation of selected tail-anchored proteins
    • Boname J.M., et al. Cleavage by signal peptide peptidase is required for the degradation of selected tail-anchored proteins. J. Cell Biol. 2014, 205:847-862.
    • (2014) J. Cell Biol. , vol.205 , pp. 847-862
    • Boname, J.M.1
  • 63
    • 84936135347 scopus 로고    scopus 로고
    • Signal peptide peptidase-mediated nuclear localization of heme oxygenase-1 promotes cancer cell proliferation and invasion independent of its enzymatic activity
    • Hsu F.F., et al. Signal peptide peptidase-mediated nuclear localization of heme oxygenase-1 promotes cancer cell proliferation and invasion independent of its enzymatic activity. Oncogene 2015, 34:2360-2370.
    • (2015) Oncogene , vol.34 , pp. 2360-2370
    • Hsu, F.F.1
  • 64
    • 79955663580 scopus 로고    scopus 로고
    • Regulated intramembrane proteolysis - lessons from amyloid precursor protein processing
    • Lichtenthaler S.F., et al. Regulated intramembrane proteolysis - lessons from amyloid precursor protein processing. J. Neurochem. 2011, 117:779-796.
    • (2011) J. Neurochem. , vol.117 , pp. 779-796
    • Lichtenthaler, S.F.1
  • 65
    • 84885092137 scopus 로고    scopus 로고
    • Mechanism, specificity, and physiology of signal peptide peptidase (SPP) and SPP-like proteases
    • Voss M., et al. Mechanism, specificity, and physiology of signal peptide peptidase (SPP) and SPP-like proteases. Biochim. Biophys. Acta 2013, 1828:2828-2839.
    • (2013) Biochim. Biophys. Acta , vol.1828 , pp. 2828-2839
    • Voss, M.1
  • 66
    • 84919466648 scopus 로고    scopus 로고
    • The yeast ER-intramembrane protease Ypf1 refines nutrient sensing by regulating transporter abundance
    • Avci D., et al. The yeast ER-intramembrane protease Ypf1 refines nutrient sensing by regulating transporter abundance. Mol. Cell 2014, 56:630-640.
    • (2014) Mol. Cell , vol.56 , pp. 630-640
    • Avci, D.1
  • 67
    • 84871826750 scopus 로고    scopus 로고
    • Targeting the ERAD pathway via inhibition of signal peptide peptidase for antiparasitic therapeutic design
    • Harbut M.B., et al. Targeting the ERAD pathway via inhibition of signal peptide peptidase for antiparasitic therapeutic design. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:21486-21491.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 21486-21491
    • Harbut, M.B.1
  • 68
    • 64749083589 scopus 로고    scopus 로고
    • Protein quality control as a strategy for cellular regulation: lessons from ubiquitin-mediated regulation of the sterol pathway
    • Hampton R.Y., Garza R.M. Protein quality control as a strategy for cellular regulation: lessons from ubiquitin-mediated regulation of the sterol pathway. Chem. Rev. 2009, 109:1561-1574.
    • (2009) Chem. Rev. , vol.109 , pp. 1561-1574
    • Hampton, R.Y.1    Garza, R.M.2
  • 69
    • 79959888488 scopus 로고    scopus 로고
    • RNF170 protein, an endoplasmic reticulum membrane ubiquitin ligase, mediates inositol 1,4,5-trisphosphate receptor ubiquitination and degradation
    • Lu J.P., et al. RNF170 protein, an endoplasmic reticulum membrane ubiquitin ligase, mediates inositol 1,4,5-trisphosphate receptor ubiquitination and degradation. J. Biol. Chem. 2011, 286:24426-24433.
    • (2011) J. Biol. Chem. , vol.286 , pp. 24426-24433
    • Lu, J.P.1
  • 70
    • 0346101770 scopus 로고    scopus 로고
    • Insig-dependent ubiquitination and degradation of mammalian 3-hydroxy-3-methylglutaryl-CoA reductase stimulated by sterols and geranylgeraniol
    • Sever N., et al. Insig-dependent ubiquitination and degradation of mammalian 3-hydroxy-3-methylglutaryl-CoA reductase stimulated by sterols and geranylgeraniol. J. Biol. Chem. 2003, 278:52479-52490.
    • (2003) J. Biol. Chem. , vol.278 , pp. 52479-52490
    • Sever, N.1
  • 71
    • 24944591120 scopus 로고    scopus 로고
    • Gp78, a membrane-anchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase
    • Song B.L., et al. Gp78, a membrane-anchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase. Mol. Cell 2005, 19:829-840.
    • (2005) Mol. Cell , vol.19 , pp. 829-840
    • Song, B.L.1
  • 72
    • 84855510314 scopus 로고    scopus 로고
    • Sterol-induced degradation of HMG CoA reductase depends on interplay of two Insigs and two ubiquitin ligases, gp78 and Trc8
    • Jo Y., et al. Sterol-induced degradation of HMG CoA reductase depends on interplay of two Insigs and two ubiquitin ligases, gp78 and Trc8. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:20503-20508.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 20503-20508
    • Jo, Y.1
  • 73
    • 84870495262 scopus 로고    scopus 로고
    • Differential regulation of HMG-CoA reductase and Insig-1 by enzymes of the ubiquitin-proteasome system
    • Tsai Y.C., et al. Differential regulation of HMG-CoA reductase and Insig-1 by enzymes of the ubiquitin-proteasome system. Mol. Biol. Cell 2012, 23:4484-4494.
    • (2012) Mol. Biol. Cell , vol.23 , pp. 4484-4494
    • Tsai, Y.C.1
  • 74
    • 0033615648 scopus 로고    scopus 로고
    • A highly conserved signal controls degradation of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase in eukaryotes
    • Gardner R.G., Hampton R.Y. A highly conserved signal controls degradation of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase in eukaryotes. J. Biol. Chem. 1999, 274:31671-31678.
    • (1999) J. Biol. Chem. , vol.274 , pp. 31671-31678
    • Gardner, R.G.1    Hampton, R.Y.2
  • 75
    • 84875412927 scopus 로고    scopus 로고
    • Insulin-induced gene protein (INSIG)-dependent sterol regulation of Hmg2 endoplasmic reticulum-associated degradation (ERAD) in yeast
    • Theesfeld C.L., Hampton R.Y. Insulin-induced gene protein (INSIG)-dependent sterol regulation of Hmg2 endoplasmic reticulum-associated degradation (ERAD) in yeast. J. Biol. Chem. 2013, 288:8519-8530.
    • (2013) J. Biol. Chem. , vol.288 , pp. 8519-8530
    • Theesfeld, C.L.1    Hampton, R.Y.2
  • 76
    • 84881150929 scopus 로고    scopus 로고
    • Deubiquitinases sharpen substrate discrimination during membrane protein degradation from the ER
    • Zhang Z.R., et al. Deubiquitinases sharpen substrate discrimination during membrane protein degradation from the ER. Cell 2013, 154:609-622.
    • (2013) Cell , vol.154 , pp. 609-622
    • Zhang, Z.R.1
  • 77
    • 6944250394 scopus 로고    scopus 로고
    • The Caenorhabditis elegans IMPAS gene, imp-2, is essential for development and is functionally distinct from related presenilins
    • Grigorenko A.P., et al. The Caenorhabditis elegans IMPAS gene, imp-2, is essential for development and is functionally distinct from related presenilins. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:14955-14960.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 14955-14960
    • Grigorenko, A.P.1
  • 78
    • 84930984937 scopus 로고    scopus 로고
    • A ubiquitin-binding CUE domain in presenilin-1 enables interaction with K63-linked polyubiquitin chains
    • Duggan S.P., et al. A ubiquitin-binding CUE domain in presenilin-1 enables interaction with K63-linked polyubiquitin chains. FEBS Lett. 2015, 589:1001-1008.
    • (2015) FEBS Lett. , vol.589 , pp. 1001-1008
    • Duggan, S.P.1
  • 79
    • 84255169603 scopus 로고    scopus 로고
    • Defining human ERAD networks through an integrative mapping strategy
    • Christianson J.C., et al. Defining human ERAD networks through an integrative mapping strategy. Nat. Cell Biol. 2011, 14:93-105.
    • (2011) Nat. Cell Biol. , vol.14 , pp. 93-105
    • Christianson, J.C.1
  • 80
    • 64749087257 scopus 로고    scopus 로고
    • Misfolded membrane proteins are specifically recognized by the transmembrane domain of the Hrd1p ubiquitin ligase
    • Sato B.K., et al. Misfolded membrane proteins are specifically recognized by the transmembrane domain of the Hrd1p ubiquitin ligase. Mol. Cell 2009, 34:212-222.
    • (2009) Mol. Cell , vol.34 , pp. 212-222
    • Sato, B.K.1
  • 81
    • 84980051722 scopus 로고    scopus 로고
    • The yeast ERAD-C ubiquitin ligase Doa10 recognizes an intramembrane degron
    • Habeck G., et al. The yeast ERAD-C ubiquitin ligase Doa10 recognizes an intramembrane degron. J. Cell Biol. 2015, 209:261-273.
    • (2015) J. Cell Biol. , vol.209 , pp. 261-273
    • Habeck, G.1
  • 82
    • 0041691072 scopus 로고    scopus 로고
    • A high-molecular-weight complex of membrane proteins BAP29/BAP31 is involved in the retention of membrane-bound IgD in the endoplasmic reticulum
    • Schamel W.W., et al. A high-molecular-weight complex of membrane proteins BAP29/BAP31 is involved in the retention of membrane-bound IgD in the endoplasmic reticulum. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:9861-9866.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 9861-9866
    • Schamel, W.W.1
  • 83
    • 80455143829 scopus 로고    scopus 로고
    • BAP31 and BiP are essential for dislocation of SV40 from the endoplasmic reticulum to the cytosol
    • Geiger R., et al. BAP31 and BiP are essential for dislocation of SV40 from the endoplasmic reticulum to the cytosol. Nat. Cell Biol. 2011, 13:1305-1314.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 1305-1314
    • Geiger, R.1
  • 84
    • 34547628712 scopus 로고    scopus 로고
    • Endoplasmic reticulum retention of the gamma-secretase complex component Pen2 by Rer1
    • Kaether C., et al. Endoplasmic reticulum retention of the gamma-secretase complex component Pen2 by Rer1. EMBO Rep. 2007, 8:743-748.
    • (2007) EMBO Rep. , vol.8 , pp. 743-748
    • Kaether, C.1
  • 85
    • 33847389291 scopus 로고    scopus 로고
    • Rer1p competes with APH-1 for binding to nicastrin and regulates gamma-secretase complex assembly in the early secretory pathway
    • Spasic D., et al. Rer1p competes with APH-1 for binding to nicastrin and regulates gamma-secretase complex assembly in the early secretory pathway. J. Cell Biol. 2007, 176:629-640.
    • (2007) J. Cell Biol. , vol.176 , pp. 629-640
    • Spasic, D.1
  • 86
    • 78149482323 scopus 로고    scopus 로고
    • Retrotranslocation of a misfolded luminal ER protein by the ubiquitin-ligase Hrd1p
    • Carvalho P., et al. Retrotranslocation of a misfolded luminal ER protein by the ubiquitin-ligase Hrd1p. Cell 2010, 143:579-591.
    • (2010) Cell , vol.143 , pp. 579-591
    • Carvalho, P.1
  • 87
    • 0031301274 scopus 로고    scopus 로고
    • Complementation cloning of S2P, a gene encoding a putative metalloprotease required for intramembrane cleavage of SREBPs
    • Rawson R.B., et al. Complementation cloning of S2P, a gene encoding a putative metalloprotease required for intramembrane cleavage of SREBPs. Mol. Cell 1997, 1:47-57.
    • (1997) Mol. Cell , vol.1 , pp. 47-57
    • Rawson, R.B.1
  • 88
    • 33644862462 scopus 로고    scopus 로고
    • Amyloid precursor protein and Notch intracellular domains are generated after transport of their precursors to the cell surface
    • Kaether C., et al. Amyloid precursor protein and Notch intracellular domains are generated after transport of their precursors to the cell surface. Traffic 2006, 7:408-415.
    • (2006) Traffic , vol.7 , pp. 408-415
    • Kaether, C.1
  • 89
    • 0042786828 scopus 로고    scopus 로고
    • Expression of the presenilin-like signal peptide peptidase (SPP) in mouse adult brain and during development
    • Urny J., et al. Expression of the presenilin-like signal peptide peptidase (SPP) in mouse adult brain and during development. Gene Expr. Patterns 2003, 3:685-691.
    • (2003) Gene Expr. Patterns , vol.3 , pp. 685-691
    • Urny, J.1
  • 90
    • 28244456207 scopus 로고    scopus 로고
    • Differential localization and identification of a critical aspartate suggest non-redundant proteolytic functions of the presenilin homologues SPPL2b and SPPL3
    • Krawitz P., et al. Differential localization and identification of a critical aspartate suggest non-redundant proteolytic functions of the presenilin homologues SPPL2b and SPPL3. J. Biol. Chem. 2005, 280:39515-39523.
    • (2005) J. Biol. Chem. , vol.280 , pp. 39515-39523
    • Krawitz, P.1
  • 91
    • 33746618450 scopus 로고    scopus 로고
    • SPPL2a and SPPL2b promote intramembrane proteolysis of TNFalpha in activated dendritic cells to trigger IL-12 production
    • Friedmann E., et al. SPPL2a and SPPL2b promote intramembrane proteolysis of TNFalpha in activated dendritic cells to trigger IL-12 production. Nat. Cell Biol. 2006, 8:843-848.
    • (2006) Nat. Cell Biol. , vol.8 , pp. 843-848
    • Friedmann, E.1
  • 92
    • 0038700756 scopus 로고    scopus 로고
    • Mitochondrial membrane remodelling regulated by a conserved rhomboid protease
    • McQuibban G.A., et al. Mitochondrial membrane remodelling regulated by a conserved rhomboid protease. Nature 2003, 423:537-541.
    • (2003) Nature , vol.423 , pp. 537-541
    • McQuibban, G.A.1
  • 93
    • 1242288387 scopus 로고    scopus 로고
    • Diverse substrate recognition mechanisms for rhomboids; thrombomodulin is cleaved by mammalian rhomboids
    • Lohi O., et al. Diverse substrate recognition mechanisms for rhomboids; thrombomodulin is cleaved by mammalian rhomboids. Curr. Biol. 2004, 14:236-241.
    • (2004) Curr. Biol. , vol.14 , pp. 236-241
    • Lohi, O.1
  • 94
    • 59449102799 scopus 로고    scopus 로고
    • Analysis of prelamin A biogenesis reveals the nucleus to be a CaaX processing compartment
    • Barrowman J., et al. Analysis of prelamin A biogenesis reveals the nucleus to be a CaaX processing compartment. Mol. Biol. Cell 2008, 19:5398-5408.
    • (2008) Mol. Biol. Cell , vol.19 , pp. 5398-5408
    • Barrowman, J.1
  • 95
    • 18744414494 scopus 로고    scopus 로고
    • Conformational changes of the multifunction p97 AAA ATPase during its ATPase cycle
    • Rouiller I., et al. Conformational changes of the multifunction p97 AAA ATPase during its ATPase cycle. Nat. Struct. Biol. 2002, 9:950-957.
    • (2002) Nat. Struct. Biol. , vol.9 , pp. 950-957
    • Rouiller, I.1
  • 96
    • 42949164124 scopus 로고    scopus 로고
    • Improved structures of full-length p97, an AAA ATPase: implications for mechanisms of nucleotide-dependent conformational change
    • Davies J.M., et al. Improved structures of full-length p97, an AAA ATPase: implications for mechanisms of nucleotide-dependent conformational change. Structure 2008, 16:715-726.
    • (2008) Structure , vol.16 , pp. 715-726
    • Davies, J.M.1
  • 97
    • 33646535590 scopus 로고    scopus 로고
    • Central pore residues mediate the p97/VCP activity required for ERAD
    • DeLaBarre B., et al. Central pore residues mediate the p97/VCP activity required for ERAD. Mol. Cell 2006, 22:451-462.
    • (2006) Mol. Cell , vol.22 , pp. 451-462
    • DeLaBarre, B.1
  • 98
    • 0034658270 scopus 로고    scopus 로고
    • A complex of mammalian ufd1 and npl4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways
    • Meyer H.H., et al. A complex of mammalian ufd1 and npl4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways. EMBO J. 2000, 19:2181-2192.
    • (2000) EMBO J. , vol.19 , pp. 2181-2192
    • Meyer, H.H.1
  • 99
    • 70349778618 scopus 로고    scopus 로고
    • The otubain YOD1 is a deubiquitinating enzyme that associates with p97 to facilitate protein dislocation from the ER
    • Ernst R., et al. The otubain YOD1 is a deubiquitinating enzyme that associates with p97 to facilitate protein dislocation from the ER. Mol. Cell 2009, 36:28-38.
    • (2009) Mol. Cell , vol.36 , pp. 28-38
    • Ernst, R.1
  • 100
    • 0033621152 scopus 로고    scopus 로고
    • Are presenilins intramembrane-cleaving proteases? Implications for the molecular mechanism of Alzheimer's disease
    • Wolfe M.S., et al. Are presenilins intramembrane-cleaving proteases? Implications for the molecular mechanism of Alzheimer's disease. Biochemistry 1999, 38:11223-11230.
    • (1999) Biochemistry , vol.38 , pp. 11223-11230
    • Wolfe, M.S.1
  • 101
    • 0032556859 scopus 로고    scopus 로고
    • Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein
    • De Strooper B., et al. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 1998, 391:387-390.
    • (1998) Nature , vol.391 , pp. 387-390
    • De Strooper, B.1
  • 102
    • 84871725890 scopus 로고    scopus 로고
    • Structure of a presenilin family intramembrane aspartate protease
    • Li X., et al. Structure of a presenilin family intramembrane aspartate protease. Nature 2013, 493:56-61.
    • (2013) Nature , vol.493 , pp. 56-61
    • Li, X.1
  • 103
    • 0037431082 scopus 로고    scopus 로고
    • Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gamma-Secretase complex
    • De Strooper B. Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gamma-Secretase complex. Neuron 2003, 38:9-12.
    • (2003) Neuron , vol.38 , pp. 9-12
    • De Strooper, B.1
  • 104
    • 0035913908 scopus 로고    scopus 로고
    • Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases
    • Urban S., et al. Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell 2001, 107:173-182.
    • (2001) Cell , vol.107 , pp. 173-182
    • Urban, S.1
  • 105
    • 0042526632 scopus 로고    scopus 로고
    • Processing of Mgm1 by the Rhomboid-type protease Pcp1 is required for maintenance of mitochondrial morphology and of mitochondrial DNA
    • Herlan M., et al. Processing of Mgm1 by the Rhomboid-type protease Pcp1 is required for maintenance of mitochondrial morphology and of mitochondrial DNA. J. Biol. Chem. 2003, 278:27781-27788.
    • (2003) J. Biol. Chem. , vol.278 , pp. 27781-27788
    • Herlan, M.1
  • 106
    • 33750886311 scopus 로고    scopus 로고
    • Crystal structure of a rhomboid family intramembrane protease
    • Wang Y., et al. Crystal structure of a rhomboid family intramembrane protease. Nature 2006, 444:179-180.
    • (2006) Nature , vol.444 , pp. 179-180
    • Wang, Y.1
  • 107
    • 73149105938 scopus 로고    scopus 로고
    • Cleavage of a multispanning membrane protein by an intramembrane serine protease
    • Erez E., Bibi E. Cleavage of a multispanning membrane protein by an intramembrane serine protease. Biochemistry 2009, 48:12314-12322.
    • (2009) Biochemistry , vol.48 , pp. 12314-12322
    • Erez, E.1    Bibi, E.2
  • 108
    • 36849037428 scopus 로고    scopus 로고
    • Structure of a site-2 protease family intramembrane metalloprotease
    • Feng L., et al. Structure of a site-2 protease family intramembrane metalloprotease. Science 2007, 318:1608-1612.
    • (2007) Science , vol.318 , pp. 1608-1612
    • Feng, L.1
  • 109
    • 0034515724 scopus 로고    scopus 로고
    • ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs
    • Ye J., et al. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell 2000, 6:1355-1364.
    • (2000) Mol. Cell , vol.6 , pp. 1355-1364
    • Ye, J.1
  • 110
    • 84890441584 scopus 로고    scopus 로고
    • Mechanism of farnesylated CAAX protein processing by the intramembrane protease Rce1
    • Manolaridis I., et al. Mechanism of farnesylated CAAX protein processing by the intramembrane protease Rce1. Nature 2013, 504:301-305.
    • (2013) Nature , vol.504 , pp. 301-305
    • Manolaridis, I.1
  • 111
    • 72049093490 scopus 로고    scopus 로고
    • Two proteolytic modules are involved in regulated intramembrane proteolysis of Bacillus subtilis RsiW
    • Heinrich J., et al. Two proteolytic modules are involved in regulated intramembrane proteolysis of Bacillus subtilis RsiW. Mol. Microbiol. 2009, 74:1412-1426.
    • (2009) Mol. Microbiol. , vol.74 , pp. 1412-1426
    • Heinrich, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.