-
1
-
-
79959481888
-
Protein folding and modification in the mammalian endoplasmic reticulum
-
Braakman I., Bulleid N.J. Protein folding and modification in the mammalian endoplasmic reticulum. Annu. Rev. Biochem. 2011, 80:71-99.
-
(2011)
Annu. Rev. Biochem.
, vol.80
, pp. 71-99
-
-
Braakman, I.1
Bulleid, N.J.2
-
2
-
-
84909962081
-
Quality control of inner nuclear membrane proteins by the Asi complex
-
Foresti O., et al. Quality control of inner nuclear membrane proteins by the Asi complex. Science 2014, 346:751-755.
-
(2014)
Science
, vol.346
, pp. 751-755
-
-
Foresti, O.1
-
3
-
-
84922218720
-
Protein quality control at the inner nuclear membrane
-
Khmelinskii A., et al. Protein quality control at the inner nuclear membrane. Nature 2014, 516:410-413.
-
(2014)
Nature
, vol.516
, pp. 410-413
-
-
Khmelinskii, A.1
-
4
-
-
84931577157
-
Mitochondrial proteases and protein quality control in ageing and longevity
-
Hamon M.P., et al. Mitochondrial proteases and protein quality control in ageing and longevity. Ageing Res. Rev. 2015, 23:56-66.
-
(2015)
Ageing Res. Rev.
, vol.23
, pp. 56-66
-
-
Hamon, M.P.1
-
5
-
-
84910673082
-
Identification of candidate substrates for the Golgi Tul1 E3 ligase using quantitative diGly proteomics in yeast
-
Tong Z., et al. Identification of candidate substrates for the Golgi Tul1 E3 ligase using quantitative diGly proteomics in yeast. Mol. Cell. Proteomics 2014, 13:2871-2882.
-
(2014)
Mol. Cell. Proteomics
, vol.13
, pp. 2871-2882
-
-
Tong, Z.1
-
6
-
-
77955607650
-
Peripheral protein quality control removes unfolded CFTR from the plasma membrane
-
Okiyoneda T., et al. Peripheral protein quality control removes unfolded CFTR from the plasma membrane. Science 2010, 329:805-810.
-
(2010)
Science
, vol.329
, pp. 805-810
-
-
Okiyoneda, T.1
-
7
-
-
84901801108
-
Organellophagy: eliminating cellular building blocks via selective autophagy
-
Okamoto K. Organellophagy: eliminating cellular building blocks via selective autophagy. J. Cell Biol. 2014, 205:435-445.
-
(2014)
J. Cell Biol.
, vol.205
, pp. 435-445
-
-
Okamoto, K.1
-
8
-
-
0035818999
-
The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol
-
Ye Y., et al. The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 2001, 414:652-656.
-
(2001)
Nature
, vol.414
, pp. 652-656
-
-
Ye, Y.1
-
9
-
-
0038487228
-
Function of the p97-Ufd1-Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains
-
Ye Y., et al. Function of the p97-Ufd1-Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains. J. Cell Biol. 2003, 162:71-84.
-
(2003)
J. Cell Biol.
, vol.162
, pp. 71-84
-
-
Ye, Y.1
-
10
-
-
78149429951
-
A stress-responsive system for mitochondrial protein degradation
-
Heo J.M., et al. A stress-responsive system for mitochondrial protein degradation. Mol. Cell 2010, 40:465-480.
-
(2010)
Mol. Cell
, vol.40
, pp. 465-480
-
-
Heo, J.M.1
-
11
-
-
78650729600
-
Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin
-
Tanaka A., et al. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 2010, 191:1367-1380.
-
(2010)
J. Cell Biol.
, vol.191
, pp. 1367-1380
-
-
Tanaka, A.1
-
12
-
-
84904540152
-
Msp1/ATAD1 maintains mitochondrial function by facilitating the degradation of mislocalized tail-anchored proteins
-
Chen Y.C., et al. Msp1/ATAD1 maintains mitochondrial function by facilitating the degradation of mislocalized tail-anchored proteins. EMBO J. 2014, 33:1548-1564.
-
(2014)
EMBO J.
, vol.33
, pp. 1548-1564
-
-
Chen, Y.C.1
-
13
-
-
84901837721
-
The conserved AAA-ATPase Msp1 confers organelle specificity to tail-anchored proteins
-
Okreglak V., Walter P. The conserved AAA-ATPase Msp1 confers organelle specificity to tail-anchored proteins. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:8019-8024.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 8019-8024
-
-
Okreglak, V.1
Walter, P.2
-
14
-
-
84891347210
-
Der1 promotes movement of misfolded proteins through the endoplasmic reticulum membrane
-
Mehnert M., et al. Der1 promotes movement of misfolded proteins through the endoplasmic reticulum membrane. Nat. Cell Biol. 2014, 16:77-86.
-
(2014)
Nat. Cell Biol.
, vol.16
, pp. 77-86
-
-
Mehnert, M.1
-
15
-
-
84898729879
-
Cleaning up in the endoplasmic reticulum: ubiquitin in charge
-
Christianson J.C., Ye Y. Cleaning up in the endoplasmic reticulum: ubiquitin in charge. Nat. Struct. Mol. Biol. 2014, 21:325-335.
-
(2014)
Nat. Struct. Mol. Biol.
, vol.21
, pp. 325-335
-
-
Christianson, J.C.1
Ye, Y.2
-
16
-
-
84865298998
-
Finding the will and the way of ERAD substrate retrotranslocation
-
Hampton R.Y., Sommer T. Finding the will and the way of ERAD substrate retrotranslocation. Curr. Opin. Cell Biol. 2012, 24:460-466.
-
(2012)
Curr. Opin. Cell Biol.
, vol.24
, pp. 460-466
-
-
Hampton, R.Y.1
Sommer, T.2
-
17
-
-
84896270715
-
Quality control: ER-associated degradation: protein quality control and beyond
-
Ruggiano A., et al. Quality control: ER-associated degradation: protein quality control and beyond. J. Cell Biol. 2014, 204:869-879.
-
(2014)
J. Cell Biol.
, vol.204
, pp. 869-879
-
-
Ruggiano, A.1
-
18
-
-
33749353475
-
P97 functions as an auxiliary factor to facilitate TM domain extraction during CFTR ER-associated degradation
-
Carlson E.J., et al. p97 functions as an auxiliary factor to facilitate TM domain extraction during CFTR ER-associated degradation. EMBO J. 2006, 25:4557-4566.
-
(2006)
EMBO J.
, vol.25
, pp. 4557-4566
-
-
Carlson, E.J.1
-
19
-
-
80051669175
-
Intramembrane proteolysis in regulated protein trafficking
-
Lemberg M.K. Intramembrane proteolysis in regulated protein trafficking. Traffic 2011, 12:1109-1118.
-
(2011)
Traffic
, vol.12
, pp. 1109-1118
-
-
Lemberg, M.K.1
-
20
-
-
84921369563
-
The roles of PINK1, Parkin, and mitochondrial fidelity in Parkinson's disease
-
Pickrell A.M., Youle R.J. The roles of PINK1, Parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 2015, 85:257-273.
-
(2015)
Neuron
, vol.85
, pp. 257-273
-
-
Pickrell, A.M.1
Youle, R.J.2
-
22
-
-
84864279894
-
New lives for old: evolution of pseudoenzyme function illustrated by iRhoms
-
Adrain C., Freeman M. New lives for old: evolution of pseudoenzyme function illustrated by iRhoms. Nat. Rev. Mol. Cell Biol. 2012, 13:489-498.
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 489-498
-
-
Adrain, C.1
Freeman, M.2
-
23
-
-
84876806705
-
Sampling the membrane: function of rhomboid-family proteins
-
Lemberg M.K. Sampling the membrane: function of rhomboid-family proteins. Trends Cell Biol. 2013, 23:210-217.
-
(2013)
Trends Cell Biol.
, vol.23
, pp. 210-217
-
-
Lemberg, M.K.1
-
24
-
-
84923099296
-
Mechanisms of integral membrane protein insertion and folding
-
Cymer F., et al. Mechanisms of integral membrane protein insertion and folding. J. Mol. Biol. 2014, 427:999-1022.
-
(2014)
J. Mol. Biol.
, vol.427
, pp. 999-1022
-
-
Cymer, F.1
-
25
-
-
0034885052
-
AAA+ superfamily ATPases: common structure--diverse function
-
Ogura T., Wilkinson A.J. AAA+ superfamily ATPases: common structure--diverse function. Genes Cells 2001, 6:575-597.
-
(2001)
Genes Cells
, vol.6
, pp. 575-597
-
-
Ogura, T.1
Wilkinson, A.J.2
-
26
-
-
0033639076
-
Membrane protein degradation by AAA proteases in mitochondria: extraction of substrates from either membrane surface
-
Leonhard K., et al. Membrane protein degradation by AAA proteases in mitochondria: extraction of substrates from either membrane surface. Mol. Cell 2000, 5:629-638.
-
(2000)
Mol. Cell
, vol.5
, pp. 629-638
-
-
Leonhard, K.1
-
27
-
-
0034268493
-
Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing
-
Hoppe T., et al. Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 2000, 102:577-586.
-
(2000)
Cell
, vol.102
, pp. 577-586
-
-
Hoppe, T.1
-
28
-
-
77957341511
-
Proteasomal degradation is transcriptionally controlled by TCF11 via an ERAD-dependent feedback loop
-
Steffen J., et al. Proteasomal degradation is transcriptionally controlled by TCF11 via an ERAD-dependent feedback loop. Mol. Cell 2010, 40:147-158.
-
(2010)
Mol. Cell
, vol.40
, pp. 147-158
-
-
Steffen, J.1
-
29
-
-
80053299005
-
Cdc48: a power machine in protein degradation
-
Stolz A., et al. Cdc48: a power machine in protein degradation. Trends Biochem. Sci. 2011, 36:515-523.
-
(2011)
Trends Biochem. Sci.
, vol.36
, pp. 515-523
-
-
Stolz, A.1
-
30
-
-
79954525510
-
Yeast SREBP cleavage activation requires the Golgi Dsc E3 ligase complex
-
Stewart E.V., et al. Yeast SREBP cleavage activation requires the Golgi Dsc E3 ligase complex. Mol. Cell 2011, 42:160-171.
-
(2011)
Mol. Cell
, vol.42
, pp. 160-171
-
-
Stewart, E.V.1
-
31
-
-
21744460209
-
Ufd1 exhibits the AAA-ATPase fold with two distinct ubiquitin interaction sites
-
Park S., et al. Ufd1 exhibits the AAA-ATPase fold with two distinct ubiquitin interaction sites. Structure 2005, 13:995-1005.
-
(2005)
Structure
, vol.13
, pp. 995-1005
-
-
Park, S.1
-
32
-
-
84907059487
-
The VCP/p97 system at a glance: connecting cellular function to disease pathogenesis
-
Meyer H., Weihl C.C. The VCP/p97 system at a glance: connecting cellular function to disease pathogenesis. J. Cell Sci. 2014, 127:3877-3883.
-
(2014)
J. Cell Sci.
, vol.127
, pp. 3877-3883
-
-
Meyer, H.1
Weihl, C.C.2
-
33
-
-
84908072286
-
Key steps in ERAD of luminal ER proteins reconstituted with purified components
-
Stein A., et al. Key steps in ERAD of luminal ER proteins reconstituted with purified components. Cell 2014, 158:1375-1388.
-
(2014)
Cell
, vol.158
, pp. 1375-1388
-
-
Stein, A.1
-
34
-
-
0034681260
-
Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans
-
Brown M.S., et al. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 2000, 100:391-398.
-
(2000)
Cell
, vol.100
, pp. 391-398
-
-
Brown, M.S.1
-
35
-
-
33846490396
-
M-AAA protease-driven membrane dislocation allows intramembrane cleavage by rhomboid in mitochondria
-
Tatsuta T., et al. m-AAA protease-driven membrane dislocation allows intramembrane cleavage by rhomboid in mitochondria. EMBO J. 2007, 26:325-335.
-
(2007)
EMBO J.
, vol.26
, pp. 325-335
-
-
Tatsuta, T.1
-
36
-
-
33846541511
-
Rhomboid protease AarA mediates quorum-sensing in Providencia stuartii by activating TatA of the twin-arginine translocase
-
Stevenson L.G., et al. Rhomboid protease AarA mediates quorum-sensing in Providencia stuartii by activating TatA of the twin-arginine translocase. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:1003-1008.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 1003-1008
-
-
Stevenson, L.G.1
-
37
-
-
0037102509
-
DegS and YaeL participate sequentially in the cleavage of RseA to activate the sigma(E)-dependent extracytoplasmic stress response
-
Alba B.M., et al. DegS and YaeL participate sequentially in the cleavage of RseA to activate the sigma(E)-dependent extracytoplasmic stress response. Genes Dev. 2002, 16:2156-2168.
-
(2002)
Genes Dev.
, vol.16
, pp. 2156-2168
-
-
Alba, B.M.1
-
38
-
-
0037102458
-
YaeL (EcfE) activates the sigma(E) pathway of stress response through a site-2 cleavage of anti-sigma(E), RseA
-
Kanehara K., et al. YaeL (EcfE) activates the sigma(E) pathway of stress response through a site-2 cleavage of anti-sigma(E), RseA. Genes Dev. 2002, 16:2147-2155.
-
(2002)
Genes Dev.
, vol.16
, pp. 2147-2155
-
-
Kanehara, K.1
-
39
-
-
84865389259
-
Ubiquitin-dependent intramembrane rhomboid protease promotes ERAD of membrane proteins
-
Fleig L., et al. Ubiquitin-dependent intramembrane rhomboid protease promotes ERAD of membrane proteins. Mol. Cell 2012, 47:558-569.
-
(2012)
Mol. Cell
, vol.47
, pp. 558-569
-
-
Fleig, L.1
-
40
-
-
0036809216
-
Requirements for signal peptide peptidase-catalyzed intramembrane proteolysis
-
Lemberg M.K., Martoglio B. Requirements for signal peptide peptidase-catalyzed intramembrane proteolysis. Mol. Cell 2002, 10:735-744.
-
(2002)
Mol. Cell
, vol.10
, pp. 735-744
-
-
Lemberg, M.K.1
Martoglio, B.2
-
41
-
-
84929514064
-
Understanding intramembrane proteolysis: from protein dynamics to reaction kinetics
-
Langosch D., et al. Understanding intramembrane proteolysis: from protein dynamics to reaction kinetics. Trends Biochem. Sci. 2015, 40:318-327.
-
(2015)
Trends Biochem. Sci.
, vol.40
, pp. 318-327
-
-
Langosch, D.1
-
42
-
-
0037150672
-
Identification of signal peptide peptidase, a presenilin-type aspartic protease
-
Weihofen A., et al. Identification of signal peptide peptidase, a presenilin-type aspartic protease. Science 2002, 296:2215-2218.
-
(2002)
Science
, vol.296
, pp. 2215-2218
-
-
Weihofen, A.1
-
43
-
-
54949110552
-
Proteomic profiling of gamma-secretase substrates and mapping of substrate requirements
-
Hemming M.L., et al. Proteomic profiling of gamma-secretase substrates and mapping of substrate requirements. PLoS Biol. 2008, 6:e257.
-
(2008)
PLoS Biol.
, vol.6
, pp. e257
-
-
Hemming, M.L.1
-
44
-
-
0030298339
-
Sterol resistance in CHO cells traced to point mutation in SREBP cleavage-activating protein
-
Hua X., et al. Sterol resistance in CHO cells traced to point mutation in SREBP cleavage-activating protein. Cell 1996, 87:415-426.
-
(1996)
Cell
, vol.87
, pp. 415-426
-
-
Hua, X.1
-
45
-
-
0035913906
-
Regulated intracellular ligand transport and proteolysis control EGF signal activation in Drosophila
-
Lee J.R., et al. Regulated intracellular ligand transport and proteolysis control EGF signal activation in Drosophila. Cell 2001, 107:161-171.
-
(2001)
Cell
, vol.107
, pp. 161-171
-
-
Lee, J.R.1
-
46
-
-
63649164073
-
Trafficking, a key player in regulated intramembrane proteolysis
-
Sannerud R., Annaert W. Trafficking, a key player in regulated intramembrane proteolysis. Semin. Cell Dev. Biol. 2009, 20:183-190.
-
(2009)
Semin. Cell Dev. Biol.
, vol.20
, pp. 183-190
-
-
Sannerud, R.1
Annaert, W.2
-
47
-
-
84922219279
-
Signal peptide peptidase functions in ERAD to cleave the unfolded protein response regulator XBP1u
-
Chen C., et al. Signal peptide peptidase functions in ERAD to cleave the unfolded protein response regulator XBP1u. EMBO J. 2014, 33:2492-2506.
-
(2014)
EMBO J.
, vol.33
, pp. 2492-2506
-
-
Chen, C.1
-
48
-
-
2142710081
-
Alternative topogenesis of Mgm1 and mitochondrial morphology depend on ATP and a functional import motor
-
Herlan M., et al. Alternative topogenesis of Mgm1 and mitochondrial morphology depend on ATP and a functional import motor. J. Cell Biol. 2004, 165:167-173.
-
(2004)
J. Cell Biol.
, vol.165
, pp. 167-173
-
-
Herlan, M.1
-
49
-
-
0032185770
-
Molecular identification of the sterol-regulated luminal protease that cleaves SREBPs and controls lipid composition of animal cells
-
Sakai J., et al. Molecular identification of the sterol-regulated luminal protease that cleaves SREBPs and controls lipid composition of animal cells. Mol. Cell 1998, 2:505-514.
-
(1998)
Mol. Cell
, vol.2
, pp. 505-514
-
-
Sakai, J.1
-
50
-
-
0032574993
-
Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain
-
Schroeter E.H., et al. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 1998, 393:382-386.
-
(1998)
Nature
, vol.393
, pp. 382-386
-
-
Schroeter, E.H.1
-
51
-
-
84918808671
-
Shedding of glycan-modifying enzymes by signal peptide peptidase-like 3 (SPPL3) regulates cellular N-glycosylation
-
Voss M., et al. Shedding of glycan-modifying enzymes by signal peptide peptidase-like 3 (SPPL3) regulates cellular N-glycosylation. EMBO J. 2014, 33:2890-2905.
-
(2014)
EMBO J.
, vol.33
, pp. 2890-2905
-
-
Voss, M.1
-
52
-
-
0033535504
-
A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain
-
De Strooper B., et al. A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature 1999, 398:518-522.
-
(1999)
Nature
, vol.398
, pp. 518-522
-
-
De Strooper, B.1
-
53
-
-
2942557122
-
Gamma-secretase: proteasome of the membrane?
-
Kopan R., Ilagan M.X. Gamma-secretase: proteasome of the membrane?. Nat. Rev. Mol. Cell Biol. 2004, 5:499-504.
-
(2004)
Nat. Rev. Mol. Cell Biol.
, vol.5
, pp. 499-504
-
-
Kopan, R.1
Ilagan, M.X.2
-
54
-
-
80455164551
-
Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant alpha-1 antitrypsin from the endoplasmic reticulum
-
Greenblatt E.J., et al. Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant alpha-1 antitrypsin from the endoplasmic reticulum. Nat. Struct. Mol. Biol. 2011, 18:1147-1152.
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 1147-1152
-
-
Greenblatt, E.J.1
-
55
-
-
84862064898
-
Exosome-related multi-pass transmembrane protein TSAP6 is a target of rhomboid protease RHBDD1-induced proteolysis
-
Wan C., et al. Exosome-related multi-pass transmembrane protein TSAP6 is a target of rhomboid protease RHBDD1-induced proteolysis. PLoS ONE 2012, 7:e37452.
-
(2012)
PLoS ONE
, vol.7
, pp. e37452
-
-
Wan, C.1
-
56
-
-
84878791679
-
Rhomboid domain containing 1 inhibits cell apoptosis by upregulating AP-1 activity and its downstream target Bcl-3
-
Ren X., et al. Rhomboid domain containing 1 inhibits cell apoptosis by upregulating AP-1 activity and its downstream target Bcl-3. FEBS Lett. 2013, 587:1793-1798.
-
(2013)
FEBS Lett.
, vol.587
, pp. 1793-1798
-
-
Ren, X.1
-
57
-
-
0035576260
-
Intramembrane proteolysis of signal peptides: an essential step in the generation of HLA-E epitopes
-
Lemberg M.K., et al. Intramembrane proteolysis of signal peptides: an essential step in the generation of HLA-E epitopes. J. Immunol. 2001, 167:6441-6446.
-
(2001)
J. Immunol.
, vol.167
, pp. 6441-6446
-
-
Lemberg, M.K.1
-
58
-
-
77951226758
-
Signal peptide peptidase (SPP) assembles with substrates and misfolded membrane proteins into distinct oligomeric complexes
-
Schrul B., et al. Signal peptide peptidase (SPP) assembles with substrates and misfolded membrane proteins into distinct oligomeric complexes. Biochem. J. 2010, 427:523-534.
-
(2010)
Biochem. J.
, vol.427
, pp. 523-534
-
-
Schrul, B.1
-
59
-
-
69949171887
-
The TRC8 E3 ligase ubiquitinates MHC class I molecules before dislocation from the ER
-
Stagg H.R., et al. The TRC8 E3 ligase ubiquitinates MHC class I molecules before dislocation from the ER. J. Cell Biol. 2009, 186:685-692.
-
(2009)
J. Cell Biol.
, vol.186
, pp. 685-692
-
-
Stagg, H.R.1
-
60
-
-
33745207334
-
Signal peptide peptidase is required for dislocation from the endoplasmic reticulum
-
Loureiro J., et al. Signal peptide peptidase is required for dislocation from the endoplasmic reticulum. Nature 2006, 441:894-897.
-
(2006)
Nature
, vol.441
, pp. 894-897
-
-
Loureiro, J.1
-
61
-
-
75049084045
-
Protein disulphide isomerase is required for signal peptide peptidase-mediated protein degradation
-
Lee S.O., et al. Protein disulphide isomerase is required for signal peptide peptidase-mediated protein degradation. EMBO J. 2010, 29:363-375.
-
(2010)
EMBO J.
, vol.29
, pp. 363-375
-
-
Lee, S.O.1
-
62
-
-
84903147836
-
Cleavage by signal peptide peptidase is required for the degradation of selected tail-anchored proteins
-
Boname J.M., et al. Cleavage by signal peptide peptidase is required for the degradation of selected tail-anchored proteins. J. Cell Biol. 2014, 205:847-862.
-
(2014)
J. Cell Biol.
, vol.205
, pp. 847-862
-
-
Boname, J.M.1
-
63
-
-
84936135347
-
Signal peptide peptidase-mediated nuclear localization of heme oxygenase-1 promotes cancer cell proliferation and invasion independent of its enzymatic activity
-
Hsu F.F., et al. Signal peptide peptidase-mediated nuclear localization of heme oxygenase-1 promotes cancer cell proliferation and invasion independent of its enzymatic activity. Oncogene 2015, 34:2360-2370.
-
(2015)
Oncogene
, vol.34
, pp. 2360-2370
-
-
Hsu, F.F.1
-
64
-
-
79955663580
-
Regulated intramembrane proteolysis - lessons from amyloid precursor protein processing
-
Lichtenthaler S.F., et al. Regulated intramembrane proteolysis - lessons from amyloid precursor protein processing. J. Neurochem. 2011, 117:779-796.
-
(2011)
J. Neurochem.
, vol.117
, pp. 779-796
-
-
Lichtenthaler, S.F.1
-
65
-
-
84885092137
-
Mechanism, specificity, and physiology of signal peptide peptidase (SPP) and SPP-like proteases
-
Voss M., et al. Mechanism, specificity, and physiology of signal peptide peptidase (SPP) and SPP-like proteases. Biochim. Biophys. Acta 2013, 1828:2828-2839.
-
(2013)
Biochim. Biophys. Acta
, vol.1828
, pp. 2828-2839
-
-
Voss, M.1
-
66
-
-
84919466648
-
The yeast ER-intramembrane protease Ypf1 refines nutrient sensing by regulating transporter abundance
-
Avci D., et al. The yeast ER-intramembrane protease Ypf1 refines nutrient sensing by regulating transporter abundance. Mol. Cell 2014, 56:630-640.
-
(2014)
Mol. Cell
, vol.56
, pp. 630-640
-
-
Avci, D.1
-
67
-
-
84871826750
-
Targeting the ERAD pathway via inhibition of signal peptide peptidase for antiparasitic therapeutic design
-
Harbut M.B., et al. Targeting the ERAD pathway via inhibition of signal peptide peptidase for antiparasitic therapeutic design. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:21486-21491.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 21486-21491
-
-
Harbut, M.B.1
-
68
-
-
64749083589
-
Protein quality control as a strategy for cellular regulation: lessons from ubiquitin-mediated regulation of the sterol pathway
-
Hampton R.Y., Garza R.M. Protein quality control as a strategy for cellular regulation: lessons from ubiquitin-mediated regulation of the sterol pathway. Chem. Rev. 2009, 109:1561-1574.
-
(2009)
Chem. Rev.
, vol.109
, pp. 1561-1574
-
-
Hampton, R.Y.1
Garza, R.M.2
-
69
-
-
79959888488
-
RNF170 protein, an endoplasmic reticulum membrane ubiquitin ligase, mediates inositol 1,4,5-trisphosphate receptor ubiquitination and degradation
-
Lu J.P., et al. RNF170 protein, an endoplasmic reticulum membrane ubiquitin ligase, mediates inositol 1,4,5-trisphosphate receptor ubiquitination and degradation. J. Biol. Chem. 2011, 286:24426-24433.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 24426-24433
-
-
Lu, J.P.1
-
70
-
-
0346101770
-
Insig-dependent ubiquitination and degradation of mammalian 3-hydroxy-3-methylglutaryl-CoA reductase stimulated by sterols and geranylgeraniol
-
Sever N., et al. Insig-dependent ubiquitination and degradation of mammalian 3-hydroxy-3-methylglutaryl-CoA reductase stimulated by sterols and geranylgeraniol. J. Biol. Chem. 2003, 278:52479-52490.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 52479-52490
-
-
Sever, N.1
-
71
-
-
24944591120
-
Gp78, a membrane-anchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase
-
Song B.L., et al. Gp78, a membrane-anchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase. Mol. Cell 2005, 19:829-840.
-
(2005)
Mol. Cell
, vol.19
, pp. 829-840
-
-
Song, B.L.1
-
72
-
-
84855510314
-
Sterol-induced degradation of HMG CoA reductase depends on interplay of two Insigs and two ubiquitin ligases, gp78 and Trc8
-
Jo Y., et al. Sterol-induced degradation of HMG CoA reductase depends on interplay of two Insigs and two ubiquitin ligases, gp78 and Trc8. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:20503-20508.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 20503-20508
-
-
Jo, Y.1
-
73
-
-
84870495262
-
Differential regulation of HMG-CoA reductase and Insig-1 by enzymes of the ubiquitin-proteasome system
-
Tsai Y.C., et al. Differential regulation of HMG-CoA reductase and Insig-1 by enzymes of the ubiquitin-proteasome system. Mol. Biol. Cell 2012, 23:4484-4494.
-
(2012)
Mol. Biol. Cell
, vol.23
, pp. 4484-4494
-
-
Tsai, Y.C.1
-
74
-
-
0033615648
-
A highly conserved signal controls degradation of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase in eukaryotes
-
Gardner R.G., Hampton R.Y. A highly conserved signal controls degradation of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase in eukaryotes. J. Biol. Chem. 1999, 274:31671-31678.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 31671-31678
-
-
Gardner, R.G.1
Hampton, R.Y.2
-
75
-
-
84875412927
-
Insulin-induced gene protein (INSIG)-dependent sterol regulation of Hmg2 endoplasmic reticulum-associated degradation (ERAD) in yeast
-
Theesfeld C.L., Hampton R.Y. Insulin-induced gene protein (INSIG)-dependent sterol regulation of Hmg2 endoplasmic reticulum-associated degradation (ERAD) in yeast. J. Biol. Chem. 2013, 288:8519-8530.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 8519-8530
-
-
Theesfeld, C.L.1
Hampton, R.Y.2
-
76
-
-
84881150929
-
Deubiquitinases sharpen substrate discrimination during membrane protein degradation from the ER
-
Zhang Z.R., et al. Deubiquitinases sharpen substrate discrimination during membrane protein degradation from the ER. Cell 2013, 154:609-622.
-
(2013)
Cell
, vol.154
, pp. 609-622
-
-
Zhang, Z.R.1
-
77
-
-
6944250394
-
The Caenorhabditis elegans IMPAS gene, imp-2, is essential for development and is functionally distinct from related presenilins
-
Grigorenko A.P., et al. The Caenorhabditis elegans IMPAS gene, imp-2, is essential for development and is functionally distinct from related presenilins. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:14955-14960.
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 14955-14960
-
-
Grigorenko, A.P.1
-
78
-
-
84930984937
-
A ubiquitin-binding CUE domain in presenilin-1 enables interaction with K63-linked polyubiquitin chains
-
Duggan S.P., et al. A ubiquitin-binding CUE domain in presenilin-1 enables interaction with K63-linked polyubiquitin chains. FEBS Lett. 2015, 589:1001-1008.
-
(2015)
FEBS Lett.
, vol.589
, pp. 1001-1008
-
-
Duggan, S.P.1
-
79
-
-
84255169603
-
Defining human ERAD networks through an integrative mapping strategy
-
Christianson J.C., et al. Defining human ERAD networks through an integrative mapping strategy. Nat. Cell Biol. 2011, 14:93-105.
-
(2011)
Nat. Cell Biol.
, vol.14
, pp. 93-105
-
-
Christianson, J.C.1
-
80
-
-
64749087257
-
Misfolded membrane proteins are specifically recognized by the transmembrane domain of the Hrd1p ubiquitin ligase
-
Sato B.K., et al. Misfolded membrane proteins are specifically recognized by the transmembrane domain of the Hrd1p ubiquitin ligase. Mol. Cell 2009, 34:212-222.
-
(2009)
Mol. Cell
, vol.34
, pp. 212-222
-
-
Sato, B.K.1
-
81
-
-
84980051722
-
The yeast ERAD-C ubiquitin ligase Doa10 recognizes an intramembrane degron
-
Habeck G., et al. The yeast ERAD-C ubiquitin ligase Doa10 recognizes an intramembrane degron. J. Cell Biol. 2015, 209:261-273.
-
(2015)
J. Cell Biol.
, vol.209
, pp. 261-273
-
-
Habeck, G.1
-
82
-
-
0041691072
-
A high-molecular-weight complex of membrane proteins BAP29/BAP31 is involved in the retention of membrane-bound IgD in the endoplasmic reticulum
-
Schamel W.W., et al. A high-molecular-weight complex of membrane proteins BAP29/BAP31 is involved in the retention of membrane-bound IgD in the endoplasmic reticulum. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:9861-9866.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 9861-9866
-
-
Schamel, W.W.1
-
83
-
-
80455143829
-
BAP31 and BiP are essential for dislocation of SV40 from the endoplasmic reticulum to the cytosol
-
Geiger R., et al. BAP31 and BiP are essential for dislocation of SV40 from the endoplasmic reticulum to the cytosol. Nat. Cell Biol. 2011, 13:1305-1314.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 1305-1314
-
-
Geiger, R.1
-
84
-
-
34547628712
-
Endoplasmic reticulum retention of the gamma-secretase complex component Pen2 by Rer1
-
Kaether C., et al. Endoplasmic reticulum retention of the gamma-secretase complex component Pen2 by Rer1. EMBO Rep. 2007, 8:743-748.
-
(2007)
EMBO Rep.
, vol.8
, pp. 743-748
-
-
Kaether, C.1
-
85
-
-
33847389291
-
Rer1p competes with APH-1 for binding to nicastrin and regulates gamma-secretase complex assembly in the early secretory pathway
-
Spasic D., et al. Rer1p competes with APH-1 for binding to nicastrin and regulates gamma-secretase complex assembly in the early secretory pathway. J. Cell Biol. 2007, 176:629-640.
-
(2007)
J. Cell Biol.
, vol.176
, pp. 629-640
-
-
Spasic, D.1
-
86
-
-
78149482323
-
Retrotranslocation of a misfolded luminal ER protein by the ubiquitin-ligase Hrd1p
-
Carvalho P., et al. Retrotranslocation of a misfolded luminal ER protein by the ubiquitin-ligase Hrd1p. Cell 2010, 143:579-591.
-
(2010)
Cell
, vol.143
, pp. 579-591
-
-
Carvalho, P.1
-
87
-
-
0031301274
-
Complementation cloning of S2P, a gene encoding a putative metalloprotease required for intramembrane cleavage of SREBPs
-
Rawson R.B., et al. Complementation cloning of S2P, a gene encoding a putative metalloprotease required for intramembrane cleavage of SREBPs. Mol. Cell 1997, 1:47-57.
-
(1997)
Mol. Cell
, vol.1
, pp. 47-57
-
-
Rawson, R.B.1
-
88
-
-
33644862462
-
Amyloid precursor protein and Notch intracellular domains are generated after transport of their precursors to the cell surface
-
Kaether C., et al. Amyloid precursor protein and Notch intracellular domains are generated after transport of their precursors to the cell surface. Traffic 2006, 7:408-415.
-
(2006)
Traffic
, vol.7
, pp. 408-415
-
-
Kaether, C.1
-
89
-
-
0042786828
-
Expression of the presenilin-like signal peptide peptidase (SPP) in mouse adult brain and during development
-
Urny J., et al. Expression of the presenilin-like signal peptide peptidase (SPP) in mouse adult brain and during development. Gene Expr. Patterns 2003, 3:685-691.
-
(2003)
Gene Expr. Patterns
, vol.3
, pp. 685-691
-
-
Urny, J.1
-
90
-
-
28244456207
-
Differential localization and identification of a critical aspartate suggest non-redundant proteolytic functions of the presenilin homologues SPPL2b and SPPL3
-
Krawitz P., et al. Differential localization and identification of a critical aspartate suggest non-redundant proteolytic functions of the presenilin homologues SPPL2b and SPPL3. J. Biol. Chem. 2005, 280:39515-39523.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 39515-39523
-
-
Krawitz, P.1
-
91
-
-
33746618450
-
SPPL2a and SPPL2b promote intramembrane proteolysis of TNFalpha in activated dendritic cells to trigger IL-12 production
-
Friedmann E., et al. SPPL2a and SPPL2b promote intramembrane proteolysis of TNFalpha in activated dendritic cells to trigger IL-12 production. Nat. Cell Biol. 2006, 8:843-848.
-
(2006)
Nat. Cell Biol.
, vol.8
, pp. 843-848
-
-
Friedmann, E.1
-
92
-
-
0038700756
-
Mitochondrial membrane remodelling regulated by a conserved rhomboid protease
-
McQuibban G.A., et al. Mitochondrial membrane remodelling regulated by a conserved rhomboid protease. Nature 2003, 423:537-541.
-
(2003)
Nature
, vol.423
, pp. 537-541
-
-
McQuibban, G.A.1
-
93
-
-
1242288387
-
Diverse substrate recognition mechanisms for rhomboids; thrombomodulin is cleaved by mammalian rhomboids
-
Lohi O., et al. Diverse substrate recognition mechanisms for rhomboids; thrombomodulin is cleaved by mammalian rhomboids. Curr. Biol. 2004, 14:236-241.
-
(2004)
Curr. Biol.
, vol.14
, pp. 236-241
-
-
Lohi, O.1
-
94
-
-
59449102799
-
Analysis of prelamin A biogenesis reveals the nucleus to be a CaaX processing compartment
-
Barrowman J., et al. Analysis of prelamin A biogenesis reveals the nucleus to be a CaaX processing compartment. Mol. Biol. Cell 2008, 19:5398-5408.
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 5398-5408
-
-
Barrowman, J.1
-
95
-
-
18744414494
-
Conformational changes of the multifunction p97 AAA ATPase during its ATPase cycle
-
Rouiller I., et al. Conformational changes of the multifunction p97 AAA ATPase during its ATPase cycle. Nat. Struct. Biol. 2002, 9:950-957.
-
(2002)
Nat. Struct. Biol.
, vol.9
, pp. 950-957
-
-
Rouiller, I.1
-
96
-
-
42949164124
-
Improved structures of full-length p97, an AAA ATPase: implications for mechanisms of nucleotide-dependent conformational change
-
Davies J.M., et al. Improved structures of full-length p97, an AAA ATPase: implications for mechanisms of nucleotide-dependent conformational change. Structure 2008, 16:715-726.
-
(2008)
Structure
, vol.16
, pp. 715-726
-
-
Davies, J.M.1
-
97
-
-
33646535590
-
Central pore residues mediate the p97/VCP activity required for ERAD
-
DeLaBarre B., et al. Central pore residues mediate the p97/VCP activity required for ERAD. Mol. Cell 2006, 22:451-462.
-
(2006)
Mol. Cell
, vol.22
, pp. 451-462
-
-
DeLaBarre, B.1
-
98
-
-
0034658270
-
A complex of mammalian ufd1 and npl4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways
-
Meyer H.H., et al. A complex of mammalian ufd1 and npl4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways. EMBO J. 2000, 19:2181-2192.
-
(2000)
EMBO J.
, vol.19
, pp. 2181-2192
-
-
Meyer, H.H.1
-
99
-
-
70349778618
-
The otubain YOD1 is a deubiquitinating enzyme that associates with p97 to facilitate protein dislocation from the ER
-
Ernst R., et al. The otubain YOD1 is a deubiquitinating enzyme that associates with p97 to facilitate protein dislocation from the ER. Mol. Cell 2009, 36:28-38.
-
(2009)
Mol. Cell
, vol.36
, pp. 28-38
-
-
Ernst, R.1
-
100
-
-
0033621152
-
Are presenilins intramembrane-cleaving proteases? Implications for the molecular mechanism of Alzheimer's disease
-
Wolfe M.S., et al. Are presenilins intramembrane-cleaving proteases? Implications for the molecular mechanism of Alzheimer's disease. Biochemistry 1999, 38:11223-11230.
-
(1999)
Biochemistry
, vol.38
, pp. 11223-11230
-
-
Wolfe, M.S.1
-
101
-
-
0032556859
-
Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein
-
De Strooper B., et al. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 1998, 391:387-390.
-
(1998)
Nature
, vol.391
, pp. 387-390
-
-
De Strooper, B.1
-
102
-
-
84871725890
-
Structure of a presenilin family intramembrane aspartate protease
-
Li X., et al. Structure of a presenilin family intramembrane aspartate protease. Nature 2013, 493:56-61.
-
(2013)
Nature
, vol.493
, pp. 56-61
-
-
Li, X.1
-
103
-
-
0037431082
-
Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gamma-Secretase complex
-
De Strooper B. Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gamma-Secretase complex. Neuron 2003, 38:9-12.
-
(2003)
Neuron
, vol.38
, pp. 9-12
-
-
De Strooper, B.1
-
104
-
-
0035913908
-
Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases
-
Urban S., et al. Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell 2001, 107:173-182.
-
(2001)
Cell
, vol.107
, pp. 173-182
-
-
Urban, S.1
-
105
-
-
0042526632
-
Processing of Mgm1 by the Rhomboid-type protease Pcp1 is required for maintenance of mitochondrial morphology and of mitochondrial DNA
-
Herlan M., et al. Processing of Mgm1 by the Rhomboid-type protease Pcp1 is required for maintenance of mitochondrial morphology and of mitochondrial DNA. J. Biol. Chem. 2003, 278:27781-27788.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 27781-27788
-
-
Herlan, M.1
-
106
-
-
33750886311
-
Crystal structure of a rhomboid family intramembrane protease
-
Wang Y., et al. Crystal structure of a rhomboid family intramembrane protease. Nature 2006, 444:179-180.
-
(2006)
Nature
, vol.444
, pp. 179-180
-
-
Wang, Y.1
-
107
-
-
73149105938
-
Cleavage of a multispanning membrane protein by an intramembrane serine protease
-
Erez E., Bibi E. Cleavage of a multispanning membrane protein by an intramembrane serine protease. Biochemistry 2009, 48:12314-12322.
-
(2009)
Biochemistry
, vol.48
, pp. 12314-12322
-
-
Erez, E.1
Bibi, E.2
-
108
-
-
36849037428
-
Structure of a site-2 protease family intramembrane metalloprotease
-
Feng L., et al. Structure of a site-2 protease family intramembrane metalloprotease. Science 2007, 318:1608-1612.
-
(2007)
Science
, vol.318
, pp. 1608-1612
-
-
Feng, L.1
-
109
-
-
0034515724
-
ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs
-
Ye J., et al. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell 2000, 6:1355-1364.
-
(2000)
Mol. Cell
, vol.6
, pp. 1355-1364
-
-
Ye, J.1
-
110
-
-
84890441584
-
Mechanism of farnesylated CAAX protein processing by the intramembrane protease Rce1
-
Manolaridis I., et al. Mechanism of farnesylated CAAX protein processing by the intramembrane protease Rce1. Nature 2013, 504:301-305.
-
(2013)
Nature
, vol.504
, pp. 301-305
-
-
Manolaridis, I.1
-
111
-
-
72049093490
-
Two proteolytic modules are involved in regulated intramembrane proteolysis of Bacillus subtilis RsiW
-
Heinrich J., et al. Two proteolytic modules are involved in regulated intramembrane proteolysis of Bacillus subtilis RsiW. Mol. Microbiol. 2009, 74:1412-1426.
-
(2009)
Mol. Microbiol.
, vol.74
, pp. 1412-1426
-
-
Heinrich, J.1
|