메뉴 건너뛰기




Volumn 13, Issue 1, 2014, Pages

Increased 3-hydroxypropionic acid production from glycerol, by modification of central metabolism in Escherichia coli

Author keywords

3 hydroxypropionic acid; Central metabolism; Escherichia coli; Genome scale metabolic model; Glycerol

Indexed keywords

1,3 PROPANEDIOL; ALDEHYDE DEHYDROGENASE; CARBON; DIHYDROXYACETONE PHOSPHATE; GLYCEROL; HYDRACRYLIC ACID; HYDROLYASE; METHYLGLYOXAL; PYRUVIC ACID;

EID: 84900437499     PISSN: None     EISSN: 14752859     Source Type: Journal    
DOI: 10.1186/1475-2859-13-64     Document Type: Article
Times cited : (63)

References (47)
  • 1
    • 84876676068 scopus 로고    scopus 로고
    • Recent advances in the metabolic engineering of microorganisms for the production of 3-hydroxypropionic acid as C3 platform chemical
    • 10.1007/s00253-013-4802-4, 23494623
    • Valdehuesa KN, Liu H, Nisola GM, Chung WJ, Lee SH, Park SJ. Recent advances in the metabolic engineering of microorganisms for the production of 3-hydroxypropionic acid as C3 platform chemical. Appl Microbiol Biotechnol 2013, 97:3309-3321. 10.1007/s00253-013-4802-4, 23494623.
    • (2013) Appl Microbiol Biotechnol , vol.97 , pp. 3309-3321
    • Valdehuesa, K.N.1    Liu, H.2    Nisola, G.M.3    Chung, W.J.4    Lee, S.H.5    Park, S.J.6
  • 2
    • 84882643588 scopus 로고    scopus 로고
    • Recent advances in biological production of 3-hydroxypropionic acid
    • 10.1016/j.biotechadv.2013.02.008, 23473969
    • Kumar V, Ashok S, Park S. Recent advances in biological production of 3-hydroxypropionic acid. Biotechnol Adv 2013, 31:945-961. 10.1016/j.biotechadv.2013.02.008, 23473969.
    • (2013) Biotechnol Adv , vol.31 , pp. 945-961
    • Kumar, V.1    Ashok, S.2    Park, S.3
  • 3
    • 84875637187 scopus 로고    scopus 로고
    • Biosynthesis of poly(3-hydroxypropionate) from glycerol by recombinant Escherichia coli
    • Wang Q, Yang P, Liu C, Xue Y, Xian M, Zhao G. Biosynthesis of poly(3-hydroxypropionate) from glycerol by recombinant Escherichia coli. Bioresour Technol 2013, 131:548-551.
    • (2013) Bioresour Technol , vol.131 , pp. 548-551
    • Wang, Q.1    Yang, P.2    Liu, C.3    Xue, Y.4    Xian, M.5    Zhao, G.6
  • 4
    • 77955561494 scopus 로고    scopus 로고
    • Biosynthesis and biodegradation of 3-hydroxypropionate-containing polyesters
    • 10.1128/AEM.01015-10, 2916506, 20543057
    • Andreessen B, Steinbuchel A. Biosynthesis and biodegradation of 3-hydroxypropionate-containing polyesters. Appl Environ Microbiol 2010, 76:4919-4925. 10.1128/AEM.01015-10, 2916506, 20543057.
    • (2010) Appl Environ Microbiol , vol.76 , pp. 4919-4925
    • Andreessen, B.1    Steinbuchel, A.2
  • 6
    • 77950551360 scopus 로고    scopus 로고
    • Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy's " Top 10" revisited
    • Bozell JJ, Petersen GR. Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy's " Top 10" revisited. Green Chem 2010, 12:539.
    • (2010) Green Chem , vol.12 , pp. 539
    • Bozell, J.J.1    Petersen, G.R.2
  • 7
    • 57349088282 scopus 로고    scopus 로고
    • Glycerol: a promising and abundant carbon source for industrial microbiology
    • 10.1016/j.biotechadv.2008.07.006, 18775486
    • da Silva GP, Mack M, Contiero J. Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol Adv 2009, 27:30-39. 10.1016/j.biotechadv.2008.07.006, 18775486.
    • (2009) Biotechnol Adv , vol.27 , pp. 30-39
    • da Silva, G.P.1    Mack, M.2    Contiero, J.3
  • 8
    • 28744432513 scopus 로고    scopus 로고
    • Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process
    • 10.1263/jbb.100.260, 16243274
    • Ito T, Nakashimada Y, Senba K, Matsui T, Nishio N. Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. J Biosci Bioeng 2005, 100:260-265. 10.1263/jbb.100.260, 16243274.
    • (2005) J Biosci Bioeng , vol.100 , pp. 260-265
    • Ito, T.1    Nakashimada, Y.2    Senba, K.3    Matsui, T.4    Nishio, N.5
  • 9
    • 84878414591 scopus 로고    scopus 로고
    • Fermentation of glycerol and production of valuable chemical and biofuel molecules
    • 10.1007/s10529-013-1240-4, 23690047
    • Mattam AJ, Clomburg JM, Gonzalez R, Yazdani SS. Fermentation of glycerol and production of valuable chemical and biofuel molecules. Biotechnol Lett 2013, 35:831-842. 10.1007/s10529-013-1240-4, 23690047.
    • (2013) Biotechnol Lett , vol.35 , pp. 831-842
    • Mattam, A.J.1    Clomburg, J.M.2    Gonzalez, R.3    Yazdani, S.S.4
  • 10
    • 84870716533 scopus 로고    scopus 로고
    • Effect of puuC overexpression and nitrate addition on glycerol metabolism and anaerobic 3-hydroxypropionic acid production in recombinant Klebsiella pneumoniae ΔglpKΔdhaT
    • Ashok S, Mohan Raj S, Ko Y, Sankaranarayanan M, Zhou S, Kumar V, Park S. Effect of puuC overexpression and nitrate addition on glycerol metabolism and anaerobic 3-hydroxypropionic acid production in recombinant Klebsiella pneumoniae ΔglpKΔdhaT. Metab Eng 2013, 15:10-24.
    • (2013) Metab Eng , vol.15 , pp. 10-24
    • Ashok, S.1    Mohan Raj, S.2    Ko, Y.3    Sankaranarayanan, M.4    Zhou, S.5    Kumar, V.6    Park, S.7
  • 11
    • 79955564954 scopus 로고    scopus 로고
    • Development of recombinant Klebsiella pneumoniae ΔdhaT strain for the co-production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol
    • 10.1007/s00253-011-3148-z, 21336929
    • Ashok S, Raj SM, Rathnasingh C, Park S. Development of recombinant Klebsiella pneumoniae ΔdhaT strain for the co-production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol. Appl Microbiol Biotechnol 2011, 90:1253-1265. 10.1007/s00253-011-3148-z, 21336929.
    • (2011) Appl Microbiol Biotechnol , vol.90 , pp. 1253-1265
    • Ashok, S.1    Raj, S.M.2    Rathnasingh, C.3    Park, S.4
  • 12
    • 84871722147 scopus 로고    scopus 로고
    • Production of 3-hydroxypropionic acid from glycerol by recombinant Klebsiella pneumoniae ΔdhaTΔyqhD which can produce vitamin B12 naturally
    • 10.1002/bit.24726, 22952017
    • Ashok S, Sankaranarayanan M, Ko Y, Jae KE, Ainala SK, Kumar V, Park S. Production of 3-hydroxypropionic acid from glycerol by recombinant Klebsiella pneumoniae ΔdhaTΔyqhD which can produce vitamin B12 naturally. Biotechnol Bioeng 2013, 110:511-524. 10.1002/bit.24726, 22952017.
    • (2013) Biotechnol Bioeng , vol.110 , pp. 511-524
    • Ashok, S.1    Sankaranarayanan, M.2    Ko, Y.3    Jae, K.E.4    Ainala, S.K.5    Kumar, V.6    Park, S.7
  • 13
    • 84884587132 scopus 로고    scopus 로고
    • Identification and characterization of Klebsiella pneumoniae aldehyde dehydrogenases increasing production of 3-hydroxypropionic acid from glycerol
    • 10.1007/s00449-012-0880-4, 23297067
    • Luo LH, Seo JW, Heo SY, Oh BR, Kim DH, Kim CH. Identification and characterization of Klebsiella pneumoniae aldehyde dehydrogenases increasing production of 3-hydroxypropionic acid from glycerol. Bioprocess Biosyst Eng 2013, 36:1319-1326. 10.1007/s00449-012-0880-4, 23297067.
    • (2013) Bioprocess Biosyst Eng , vol.36 , pp. 1319-1326
    • Luo, L.H.1    Seo, J.W.2    Heo, S.Y.3    Oh, B.R.4    Kim, D.H.5    Kim, C.H.6
  • 14
    • 84900817777 scopus 로고    scopus 로고
    • Development of a deletion mutant of Pseudomonas denitrificans that does not degrade 3-hydroxypropionic acid
    • doi:10.1007/s00253-014-5562-5
    • Zhou S, Ashok S, Ko Y, Kim DM, Park S. Development of a deletion mutant of Pseudomonas denitrificans that does not degrade 3-hydroxypropionic acid. Appl Microbiol Biotechnol 2014, doi:10.1007/s00253-014-5562-5.
    • (2014) Appl Microbiol Biotechnol
    • Zhou, S.1    Ashok, S.2    Ko, Y.3    Kim, D.M.4    Park, S.5
  • 15
    • 84886244943 scopus 로고    scopus 로고
    • Production of 3-hydroxypropionic acid from glycerol by recombinant Pseudomonas denitrificans
    • 10.1002/bit.24980, 23775313
    • Zhou S, Catherine C, Rathnasingh C, Somasundar A, Park S. Production of 3-hydroxypropionic acid from glycerol by recombinant Pseudomonas denitrificans. Biotechnol Bioeng 2013, 110:3177-3187. 10.1002/bit.24980, 23775313.
    • (2013) Biotechnol Bioeng , vol.110 , pp. 3177-3187
    • Zhou, S.1    Catherine, C.2    Rathnasingh, C.3    Somasundar, A.4    Park, S.5
  • 16
    • 54949113283 scopus 로고    scopus 로고
    • Production of 3-hydroxypropionic acid from glycerol by a novel recombinant Escherichia coli BL21 strain
    • Raj SM, Rathnasingh C, Jo J-E, Park S. Production of 3-hydroxypropionic acid from glycerol by a novel recombinant Escherichia coli BL21 strain. Process Biochem 2008, 43:1440-1446.
    • (2008) Process Biochem , vol.43 , pp. 1440-1446
    • Raj, S.M.1    Rathnasingh, C.2    Jo, J.-E.3    Park, S.4
  • 17
    • 70350497694 scopus 로고    scopus 로고
    • Development and evaluation of efficient recombinant Escherichia coli strains for the production of 3-hydroxypropionic acid from glycerol
    • Rathnasingh C, Raj SM, Jo JE, Park S. Development and evaluation of efficient recombinant Escherichia coli strains for the production of 3-hydroxypropionic acid from glycerol. Biotechnol Bioeng 2009, 104:729-739.
    • (2009) Biotechnol Bioeng , vol.104 , pp. 729-739
    • Rathnasingh, C.1    Raj, S.M.2    Jo, J.E.3    Park, S.4
  • 18
    • 69949118104 scopus 로고    scopus 로고
    • Effect of process parameters on 3-hydroxypropionic acid production from glycerol using a recombinant Escherichia coli
    • 10.1007/s00253-009-1986-8, 19352643
    • Mohan Raj S, Rathnasingh C, Jung WC, Park S. Effect of process parameters on 3-hydroxypropionic acid production from glycerol using a recombinant Escherichia coli. Appl Microbiol Biotechnol 2009, 84:649-657. 10.1007/s00253-009-1986-8, 19352643.
    • (2009) Appl Microbiol Biotechnol , vol.84 , pp. 649-657
    • Mohan Raj, S.1    Rathnasingh, C.2    Jung, W.C.3    Park, S.4
  • 19
    • 84893508699 scopus 로고    scopus 로고
    • Enhanced production of 3-hydroxypropionic acid from glycerol by modulation of glycerol metabolism in recombinant Escherichia coli
    • Kim K, Kim SK, Park YC, Seo JH. Enhanced production of 3-hydroxypropionic acid from glycerol by modulation of glycerol metabolism in recombinant Escherichia coli. Bioresour Technol 2014, 156C:170-175.
    • (2014) Bioresour Technol , vol.156 C , pp. 170-175
    • Kim, K.1    Kim, S.K.2    Park, Y.C.3    Seo, J.H.4
  • 20
    • 84878016831 scopus 로고    scopus 로고
    • Utilization of Saccharomyces cerevisiae recombinant strain incapable of both ethanol and glycerol biosynthesis for anaerobic bioproduction
    • 10.1007/s00253-013-4760-x, 23435983
    • Ida Y, Hirasawa T, Furusawa C, Shimizu H. Utilization of Saccharomyces cerevisiae recombinant strain incapable of both ethanol and glycerol biosynthesis for anaerobic bioproduction. Appl Microbiol Biotechnol 2013, 97:4811-4819. 10.1007/s00253-013-4760-x, 23435983.
    • (2013) Appl Microbiol Biotechnol , vol.97 , pp. 4811-4819
    • Ida, Y.1    Hirasawa, T.2    Furusawa, C.3    Shimizu, H.4
  • 22
    • 82455199087 scopus 로고    scopus 로고
    • Reconstruction and verification of a genome-scale metabolic model for Synechocystis sp. PCC6803
    • 10.1007/s00253-011-3559-x, 21881889
    • Yoshikawa K, Kojima Y, Nakajima T, Furusawa C, Hirasawa T, Shimizu H. Reconstruction and verification of a genome-scale metabolic model for Synechocystis sp. PCC6803. Appl Microbiol Biotechnol 2011, 92:347-358. 10.1007/s00253-011-3559-x, 21881889.
    • (2011) Appl Microbiol Biotechnol , vol.92 , pp. 347-358
    • Yoshikawa, K.1    Kojima, Y.2    Nakajima, T.3    Furusawa, C.4    Hirasawa, T.5    Shimizu, H.6
  • 23
    • 69249154275 scopus 로고    scopus 로고
    • Development and experimental verification of a genome-scale metabolic model for Corynebacterium glutamicum
    • 10.1186/1475-2859-8-43, 2728707, 19646286
    • Shinfuku Y, Sorpitiporn N, Sono M, Furusawa C, Hirasawa T, Shimizu H. Development and experimental verification of a genome-scale metabolic model for Corynebacterium glutamicum. Microb Cell Fact 2009, 8:43. 10.1186/1475-2859-8-43, 2728707, 19646286.
    • (2009) Microb Cell Fact , vol.8 , pp. 43
    • Shinfuku, Y.1    Sorpitiporn, N.2    Sono, M.3    Furusawa, C.4    Hirasawa, T.5    Shimizu, H.6
  • 24
    • 77749320898 scopus 로고    scopus 로고
    • What is flux balance analysis?
    • 10.1038/nbt.1614, 3108565, 20212490
    • Orth JD, Thiele I, Palsson BO. What is flux balance analysis?. Nat Biotechnol 2010, 28:245-248. 10.1038/nbt.1614, 3108565, 20212490.
    • (2010) Nat Biotechnol , vol.28 , pp. 245-248
    • Orth, J.D.1    Thiele, I.2    Palsson, B.O.3
  • 25
    • 73149122136 scopus 로고    scopus 로고
    • Applications of genome-scale metabolic reconstructions
    • 2795471, 19888215
    • Oberhardt MA, Palsson BO, Papin JA. Applications of genome-scale metabolic reconstructions. Mol Syst Biol 2009, 5:320. 2795471, 19888215.
    • (2009) Mol Syst Biol , vol.5 , pp. 320
    • Oberhardt, M.A.1    Palsson, B.O.2    Papin, J.A.3
  • 26
    • 45149111660 scopus 로고    scopus 로고
    • The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli
    • 10.1038/nbt1401, 3108568, 18536691
    • Feist AM, Palsson BO. The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat Biotechnol 2008, 26:659-667. 10.1038/nbt1401, 3108568, 18536691.
    • (2008) Nat Biotechnol , vol.26 , pp. 659-667
    • Feist, A.M.1    Palsson, B.O.2
  • 27
    • 9544253891 scopus 로고    scopus 로고
    • Genome-scale models of microbial cells: evaluating the consequences of constraints
    • 10.1038/nrmicro1023, 15494745
    • Price ND, Reed JL, Palsson BO. Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2004, 2:886-897. 10.1038/nrmicro1023, 15494745.
    • (2004) Nat Rev Microbiol , vol.2 , pp. 886-897
    • Price, N.D.1    Reed, J.L.2    Palsson, B.O.3
  • 28
    • 0242487787 scopus 로고    scopus 로고
    • Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization
    • 10.1002/bit.10803, 14595777
    • Burgard AP, Pharkya P, Maranas CD. Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 2003, 84:647-657. 10.1002/bit.10803, 14595777.
    • (2003) Biotechnol Bioeng , vol.84 , pp. 647-657
    • Burgard, A.P.1    Pharkya, P.2    Maranas, C.D.3
  • 29
    • 84871933717 scopus 로고    scopus 로고
    • In silico screening of triple reaction knockout Escherichia coli strains for overproduction of useful metabolites
    • 10.1016/j.jbiosc.2012.09.004, 23041138
    • Ohno S, Furusawa C, Shimizu H. In silico screening of triple reaction knockout Escherichia coli strains for overproduction of useful metabolites. J Biosci Bioeng 2013, 115:221-228. 10.1016/j.jbiosc.2012.09.004, 23041138.
    • (2013) J Biosci Bioeng , vol.115 , pp. 221-228
    • Ohno, S.1    Furusawa, C.2    Shimizu, H.3
  • 30
    • 84897378649 scopus 로고    scopus 로고
    • FastPros: screening of reaction knockout strategies for metabolic engineering
    • 3967105, 24257186
    • Ohno S, Shimizu H, Furusawa C. FastPros: screening of reaction knockout strategies for metabolic engineering. Bioinformatics 2013, 30:981. 3967105, 24257186.
    • (2013) Bioinformatics , vol.30 , pp. 981
    • Ohno, S.1    Shimizu, H.2    Furusawa, C.3
  • 31
    • 18844392599 scopus 로고    scopus 로고
    • Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli
    • 10.1016/j.ymben.2004.12.003, 15885614
    • Alper H, Jin YS, Moxley JF, Stephanopoulos G. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab Eng 2005, 7:155-164. 10.1016/j.ymben.2004.12.003, 15885614.
    • (2005) Metab Eng , vol.7 , pp. 155-164
    • Alper, H.1    Jin, Y.S.2    Moxley, J.F.3    Stephanopoulos, G.4
  • 32
    • 34249934691 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation
    • 10.1073/pnas.0702609104, 1857225, 17463081
    • Park JH, Lee KH, Kim TY, Lee SY. Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci U S A 2007, 104:7797-7802. 10.1073/pnas.0702609104, 1857225, 17463081.
    • (2007) Proc Natl Acad Sci U S A , vol.104 , pp. 7797-7802
    • Park, J.H.1    Lee, K.H.2    Kim, T.Y.3    Lee, S.Y.4
  • 33
    • 29144484729 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation
    • 10.1128/AEM.71.12.7880-7887.2005, 1317394, 16332763
    • Lee SJ, Lee DY, Kim TY, Kim BH, Lee J, Lee SY. Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation. Appl Environ Microbiol 2005, 71:7880-7887. 10.1128/AEM.71.12.7880-7887.2005, 1317394, 16332763.
    • (2005) Appl Environ Microbiol , vol.71 , pp. 7880-7887
    • Lee, S.J.1    Lee, D.Y.2    Kim, T.Y.3    Kim, B.H.4    Lee, J.5    Lee, S.Y.6
  • 35
    • 78650995732 scopus 로고    scopus 로고
    • Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae
    • 10.1186/1475-2859-10-2, 3025834, 21219616
    • Hasunuma T, Sanda T, Yamada R, Yoshimura K, Ishii J, Kondo A. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microb Cell Fact 2011, 10:2. 10.1186/1475-2859-10-2, 3025834, 21219616.
    • (2011) Microb Cell Fact , vol.10 , pp. 2
    • Hasunuma, T.1    Sanda, T.2    Yamada, R.3    Yoshimura, K.4    Ishii, J.5    Kondo, A.6
  • 36
    • 84872450790 scopus 로고    scopus 로고
    • Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO2 to 1,2-propanediol
    • 10.1186/1475-2859-12-4, 3556108, 23339487
    • Li H, Liao JC. Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO2 to 1,2-propanediol. Microb Cell Fact 2013, 12:4. 10.1186/1475-2859-12-4, 3556108, 23339487.
    • (2013) Microb Cell Fact , vol.12 , pp. 4
    • Li, H.1    Liao, J.C.2
  • 37
    • 0021195497 scopus 로고
    • Metabolism of methylglyoxal in microorganisms
    • 10.1146/annurev.mi.38.100184.000405, 6093685
    • Cooper RA. Metabolism of methylglyoxal in microorganisms. Annu Rev Microbiol 1984, 38:49-68. 10.1146/annurev.mi.38.100184.000405, 6093685.
    • (1984) Annu Rev Microbiol , vol.38 , pp. 49-68
    • Cooper, R.A.1
  • 38
    • 34447523907 scopus 로고    scopus 로고
    • Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli
    • 1949037, 17625511
    • Schuetz R, Kuepfer L, Sauer U. Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol 2007, 3:119. 1949037, 17625511.
    • (2007) Mol Syst Biol , vol.3 , pp. 119
    • Schuetz, R.1    Kuepfer, L.2    Sauer, U.3
  • 39
    • 0031983922 scopus 로고    scopus 로고
    • From famine to feast: the role of methylglyoxal production in Escherichia coli
    • 10.1046/j.1365-2958.1998.00700.x, 9489667
    • Totemeyer S, Booth NA, Nichols WW, Dunbar B, Booth IR. From famine to feast: the role of methylglyoxal production in Escherichia coli. Mol Microbiol 1998, 27:553-562. 10.1046/j.1365-2958.1998.00700.x, 9489667.
    • (1998) Mol Microbiol , vol.27 , pp. 553-562
    • Totemeyer, S.1    Booth, N.A.2    Nichols, W.W.3    Dunbar, B.4    Booth, I.R.5
  • 40
    • 64749083606 scopus 로고    scopus 로고
    • Understanding and harnessing the microaerobic metabolism of glycerol in Escherichia coli
    • 10.1002/bit.22246, 19189409
    • Durnin G, Clomburg J, Yeates Z, Alvarez PJ, Zygourakis K, Campbell P, Gonzalez R. Understanding and harnessing the microaerobic metabolism of glycerol in Escherichia coli. Biotechnol Bioeng 2009, 103:148-161. 10.1002/bit.22246, 19189409.
    • (2009) Biotechnol Bioeng , vol.103 , pp. 148-161
    • Durnin, G.1    Clomburg, J.2    Yeates, Z.3    Alvarez, P.J.4    Zygourakis, K.5    Campbell, P.6    Gonzalez, R.7
  • 41
    • 78651093186 scopus 로고    scopus 로고
    • YqhD: a broad-substrate range aldehyde reductase with various applications in production of biorenewable fuels and chemicals
    • 10.1007/s00253-010-2912-9, 20924577
    • Jarboe LR. YqhD: a broad-substrate range aldehyde reductase with various applications in production of biorenewable fuels and chemicals. Appl Microbiol Biotechnol 2011, 89:249-257. 10.1007/s00253-010-2912-9, 20924577.
    • (2011) Appl Microbiol Biotechnol , vol.89 , pp. 249-257
    • Jarboe, L.R.1
  • 42
    • 84897412160 scopus 로고    scopus 로고
    • Elevated production of 3-hydroxypropionic acid by metabolic engineering of the glycerol metabolism in Escherichia coli
    • Jung WS, Kang JH, Chu HS, Choi IS, Cho KM. Elevated production of 3-hydroxypropionic acid by metabolic engineering of the glycerol metabolism in Escherichia coli. Metab Eng 2014, 23C:116-122.
    • (2014) Metab Eng , vol.23 C , pp. 116-122
    • Jung, W.S.1    Kang, J.H.2    Chu, H.S.3    Choi, I.S.4    Cho, K.M.5
  • 43
    • 0034612342 scopus 로고    scopus 로고
    • One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products
    • 10.1073/pnas.120163297, 18686, 10829079
    • Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 2000, 97:6640-6645. 10.1073/pnas.120163297, 18686, 10829079.
    • (2000) Proc Natl Acad Sci U S A , vol.97 , pp. 6640-6645
    • Datsenko, K.A.1    Wanner, B.L.2
  • 45
    • 70349306551 scopus 로고    scopus 로고
    • Systematic phenome analysis of Escherichia coli multiple-knockout mutants reveals hidden reactions in central carbon metabolism
    • 2758719, 19756045
    • Nakahigashi K, Toya Y, Ishii N, Soga T, Hasegawa M, Watanabe H, Takai Y, Honma M, Mori H, Tomita M. Systematic phenome analysis of Escherichia coli multiple-knockout mutants reveals hidden reactions in central carbon metabolism. Mol Syst Biol 2009, 5:306. 2758719, 19756045.
    • (2009) Mol Syst Biol , vol.5 , pp. 306
    • Nakahigashi, K.1    Toya, Y.2    Ishii, N.3    Soga, T.4    Hasegawa, M.5    Watanabe, H.6    Takai, Y.7    Honma, M.8    Mori, H.9    Tomita, M.10
  • 47
    • 0000544768 scopus 로고
    • The formation and catabolism of methylglyoxal during glycolysis in Escherichia coli
    • 10.1016/0014-5793(70)80546-4, 11945504
    • Cooper RA, Anderson A. The formation and catabolism of methylglyoxal during glycolysis in Escherichia coli. FEBS Lett 1970, 11:273-276. 10.1016/0014-5793(70)80546-4, 11945504.
    • (1970) FEBS Lett , vol.11 , pp. 273-276
    • Cooper, R.A.1    Anderson, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.