-
1
-
-
70349281876
-
Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential?
-
Alper, H., and G. Stephanopoulos. 2009. Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? Nat. Rev. Microbiol. 7:715-723.
-
(2009)
Nat. Rev. Microbiol.
, vol.7
, pp. 715-723
-
-
Alper, H.1
Stephanopoulos, G.2
-
2
-
-
53049097710
-
Metabolic engineering of Escherichia coli for 1-butanol production
-
Atsumi, S., et al. 2008. Metabolic engineering of Escherichia coli for 1-butanol production. Metab. Eng. 10:305-311.
-
(2008)
Metab. Eng.
, vol.10
, pp. 305-311
-
-
Atsumi, S.1
-
3
-
-
38049001166
-
Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels
-
Atsumi, S., T. Hanai, and J. C. Liao. 2008. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86-89.
-
(2008)
Nature
, vol.451
, pp. 86-89
-
-
Atsumi, S.1
Hanai, T.2
Liao, J.C.3
-
4
-
-
70349427105
-
Acetolactate synthase from Bacillus subtilis serves as a 2-ketoisovalerate decarboxylase for isobutanol biosynthesis in Escherichia coli
-
Atsumi, S., Z. Li, and J. C. Liao. 2009. Acetolactate synthase from Bacillus subtilis serves as a 2-ketoisovalerate decarboxylase for isobutanol biosynthesis in Escherichia coli. Appl. Environ. Microbiol. 75:6306-6311.
-
(2009)
Appl. Environ. Microbiol.
, vol.75
, pp. 6306-6311
-
-
Atsumi, S.1
Li, Z.2
Liao, J.C.3
-
5
-
-
74149094503
-
Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes
-
Atsumi, S., et al. 2010. Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl. Microbiol. Biotechnol. 85:651-657.
-
(2010)
Appl. Microbiol. Biotechnol.
, vol.85
, pp. 651-657
-
-
Atsumi, S.1
-
6
-
-
31544450286
-
Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio Collection
-
Baba, T., et al. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio Collection. Mol. Syst. Biol. 2:2006.0008.
-
(2006)
Mol. Syst. Biol.
, vol.2
-
-
Baba, T.1
-
7
-
-
79955164750
-
Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli
-
Bastian, S., et al. 2011. Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab. Eng. 13:345-352.
-
(2011)
Metab. Eng.
, vol.13
, pp. 345-352
-
-
Bastian, S.1
-
8
-
-
0023176253
-
Factors affecting transcriptional regulation of the formate-hydrogen-lyase pathway of Escherichia coli
-
Birkmann, A., F. Zinoni, G. Sawers, and A. Böck. 1987. Factors affecting transcriptional regulation of the formate-hydrogen-lyase pathway of Escherichia coli. Arch. Microbiol. 148:44-51.
-
(1987)
Arch. Microbiol.
, vol.148
, pp. 44-51
-
-
Birkmann, A.1
Zinoni, F.2
Sawers, G.3
Böck, A.4
-
9
-
-
38749113965
-
Addressing the need for alternative transportation fuels: the Joint BioEnergy Institute
-
Blanch, H. W., et al. 2008. Addressing the need for alternative transportation fuels: the Joint BioEnergy Institute. ACS Chem. Biol. 3:17-20.
-
(2008)
ACS Chem. Biol.
, vol.3
, pp. 17-20
-
-
Blanch, H.W.1
-
10
-
-
76649136634
-
Pentanol isomer synthesis in engineered microorganisms
-
Cann, A., and J. Liao. 2010. Pentanol isomer synthesis in engineered microorganisms. Appl. Microbiol. Biotechnol. 85:893-899.
-
(2010)
Appl. Microbiol. Biotechnol.
, vol.85
, pp. 893-899
-
-
Cann, A.1
Liao, J.2
-
11
-
-
0029065955
-
Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant
-
Cherepanov, P. P., and W. Wackernagel. 1995. Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158:9-14.
-
(1995)
Gene
, vol.158
, pp. 9-14
-
-
Cherepanov, P.P.1
Wackernagel, W.2
-
12
-
-
0034612342
-
One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products
-
Datsenko, K. A., and B. L. Wanner. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. U. S. A. 97:6640-6645.
-
(2000)
Proc. Natl. Acad. Sci. U. S. A.
, vol.97
, pp. 6640-6645
-
-
Datsenko, K.A.1
Wanner, B.L.2
-
13
-
-
0032906898
-
The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli
-
de Graef, M. R., S. Alexeeva, J. L. Snoep, and M. J. Teixeira de Mattos. 1999. The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli. J. Bacteriol. 181:2351-2357.
-
(1999)
J. Bacteriol.
, vol.181
, pp. 2351-2357
-
-
de Graef, M.R.1
Alexeeva, S.2
Snoep, J.L.3
de Mattos, M.J.T.4
-
14
-
-
0032475934
-
An investigation of the metabolism of valine to isobutyl alcohol in Saccharomyces cerevisiae
-
Dickinson, J. R., S. J. Harrison, and M. J. E. Hewlins. 1998. An investigation of the metabolism of valine to isobutyl alcohol in Saccharomyces cerevisiae. J. Biol. Chem. 273:25751-25756.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 25751-25756
-
-
Dickinson, J.R.1
Harrison, S.J.2
Hewlins, M.J.E.3
-
15
-
-
77952585143
-
CASOP: a computational approach for strain optimization aiming at high productivity
-
Hädicke, O., and S. Klamt. 2010. CASOP: a computational approach for strain optimization aiming at high productivity. J. Biotechnol. 147:88-101.
-
(2010)
J. Biotechnol.
, vol.147
, pp. 88-101
-
-
Hädicke, O.1
Klamt, S.2
-
16
-
-
33746176450
-
Bonkers about biofuels
-
Herrera, S. 2006. Bonkers about biofuels. Nat. Biotechnol. 24:755-760.
-
(2006)
Nat. Biotechnol.
, vol.24
, pp. 755-760
-
-
Herrera, S.1
-
17
-
-
0031832290
-
Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose
-
Ho, N. W., Z. Chen, and A. P. Brainard. 1998. Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl. Environ. Microbiol. 64:1852-1859.
-
(1998)
Appl. Environ. Microbiol.
, vol.64
, pp. 1852-1859
-
-
Ho, N.W.1
Chen, Z.2
Brainard, A.P.3
-
18
-
-
38049162218
-
Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli
-
Inui, M. 2008. Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl. Microbiol. Biotechnol. 77:1305-1316.
-
(2008)
Appl. Microbiol. Biotechnol.
, vol.77
, pp. 1305-1316
-
-
Inui, M.1
-
19
-
-
77957812531
-
Metabolic analysis of wild-type Escherichia coli and a pyruvate dehydrogenase complex (PDHC)-deficient derivative reveals the role of PDHC in the fermentative metabolism of glucose
-
Murarka, A., J. M. Clomburg, S. Moran, J. V. Shanks, and R. Gonzalez. 2010. Metabolic analysis of wild-type Escherichia coli and a pyruvate dehydrogenase complex (PDHC)-deficient derivative reveals the role of PDHC in the fermentative metabolism of glucose. J. Biol. Chem. 285:31548-31558.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 31548-31558
-
-
Murarka, A.1
Clomburg, J.M.2
Moran, S.3
Shanks, J.V.4
Gonzalez, R.5
-
20
-
-
0025825737
-
Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II
-
Ohta, K., D. S. Beall, J. P. Mejia, K. T. Shanmugam, and L. O. Ingram. 1991. Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl. Environ. Microbiol. 57:893-900.
-
(1991)
Appl. Environ. Microbiol.
, vol.57
, pp. 893-900
-
-
Ohta, K.1
Beall, D.S.2
Mejia, J.P.3
Shanmugam, K.T.4
Ingram, L.O.5
-
21
-
-
34249934691
-
Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation
-
Park, J. H., K. H. Lee, T. Y. Kim, and S. Y. Lee. 2007. Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc. Natl. Acad. Sci. U. S. A. 104:7797-7802.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 7797-7802
-
-
Park, J.H.1
Lee, K.H.2
Kim, T.Y.3
Lee, S.Y.4
-
22
-
-
0021044309
-
On the redox control of synthesis of anaerobically induced enzymes in enterobacteriaceae
-
Pecher, A., et al. 1983. On the redox control of synthesis of anaerobically induced enzymes in enterobacteriaceae. Arch. Microbiol. 136:131-136.
-
(1983)
Arch. Microbiol.
, vol.136
, pp. 131-136
-
-
Pecher, A.1
-
23
-
-
0344052685
-
METATOOL: for studying metabolic networks
-
Pfeiffer, T., I. Sanchez-Valdenebro, J. C. Nuno, F. Montero, and S. Schuster. 1999. METATOOL: for studying metabolic networks. Bioinformatics 15:251-257.
-
(1999)
Bioinformatics
, vol.15
, pp. 251-257
-
-
Pfeiffer, T.1
Sanchez-Valdenebro, I.2
Nuno, J.C.3
Montero, F.4
Schuster, S.5
-
24
-
-
31544452808
-
The path forward for biofuels and biomaterials
-
Ragauskas, A. J., et al. 2006. The path forward for biofuels and biomaterials. Science 311:484-489.
-
(2006)
Science
, vol.311
, pp. 484-489
-
-
Ragauskas, A.J.1
-
25
-
-
77955118014
-
Microbial biosynthesis of alkanes
-
Schirmer, A., M. A. Rude, X. Li, E. Popova, and S. B. del Cardayre. 2010. Microbial biosynthesis of alkanes. Science 329:559-562.
-
(2010)
Science
, vol.329
, pp. 559-562
-
-
Schirmer, A.1
Rude, M.A.2
Li, X.3
Popova, E.4
del Cardayre, S.B.5
-
26
-
-
33746173718
-
Can biofuels finally take center stage?
-
Schubert, C. 2006. Can biofuels finally take center stage? Nat. Biotechnol. 24:777-784.
-
(2006)
Nat. Biotechnol.
, vol.24
, pp. 777-784
-
-
Schubert, C.1
-
27
-
-
0034064689
-
A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks
-
Schuster, S., D. A. Fell, and T. Dandekar. 2000. A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat. Biotechnol. 18:326-332.
-
(2000)
Nat. Biotechnol.
, vol.18
, pp. 326-332
-
-
Schuster, S.1
Fell, D.A.2
Dandekar, T.3
-
28
-
-
0000311393
-
Elementary modes of functioning in biochemical networks
-
R. Cuthbertson, M. Holcombe, and R. Paton (ed.), World Scientific, Singapore
-
Schuster, S., C. Hilgetag, J. H. Woods, and D. A. Fell. 1994. Elementary modes of functioning in biochemical networks, p. 151-165. In R. Cuthbertson, M. Holcombe, and R. Paton (ed.), Computation in cellular and molecular biological systems. World Scientific, Singapore.
-
(1994)
Computation in cellular and molecular biological systems
, pp. 151-165
-
-
Schuster, S.1
Hilgetag, C.2
Woods, J.H.3
Fell, D.A.4
-
29
-
-
0036691976
-
Reaction routes in biochemical reaction systems: algebraic properties, validated calculation procedure and example from nucleotide metabolism
-
Schuster, S., C. Hilgetag, J. H. Woods, and D. A. Fell. 2002. Reaction routes in biochemical reaction systems: algebraic properties, validated calculation procedure and example from nucleotide metabolism. J. Math. Biol. 45:153-181.
-
(2002)
J. Math. Biol.
, vol.45
, pp. 153-181
-
-
Schuster, S.1
Hilgetag, C.2
Woods, J.H.3
Fell, D.A.4
-
30
-
-
57049169148
-
Metabolic engineering of the non-sporulating, non-solventogenic Clostridium acetobutylicum strain M5 to produce butanol without acetone demonstrate the robustness of the acid-formation pathways and the importance of the electron balance
-
Sillers, R., A. Chow, B. Tracy, and E. T. Papoutsakis. 2008. Metabolic engineering of the non-sporulating, non-solventogenic Clostridium acetobutylicum strain M5 to produce butanol without acetone demonstrate the robustness of the acid-formation pathways and the importance of the electron balance. Metab. Eng. 10:321-332.
-
(2008)
Metab. Eng.
, vol.10
, pp. 321-332
-
-
Sillers, R.1
Chow, A.2
Tracy, B.3
Papoutsakis, E.T.4
-
31
-
-
75749125061
-
Microbial production of fatty-acid-derived fuels and chemicals from plant biomass
-
Steen, E. J., et al. 2010. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463:559-562.
-
(2010)
Nature
, vol.463
, pp. 559-562
-
-
Steen, E.J.1
-
32
-
-
58149154663
-
Elementary mode analysis: a useful metabolic pathway analysis tool for characterizing cellular metabolism
-
Trinh, C., A. Wlaschin, and F. Srienc. 2009. Elementary mode analysis: a useful metabolic pathway analysis tool for characterizing cellular metabolism. Appl. Microbiol. Biotechnol. 81:813-826.
-
(2009)
Appl. Microbiol. Biotechnol.
, vol.81
, pp. 813-826
-
-
Trinh, C.1
Wlaschin, A.2
Srienc, F.3
-
33
-
-
33749448704
-
Design, construction and performance of the most efficient biomass producing E. coli bacterium
-
Trinh, C. T., R. Carlson, A. Wlaschin, and F. Srienc. 2006. Design, construction and performance of the most efficient biomass producing E. coli bacterium. Metab. Eng. 8:628-638.
-
(2006)
Metab. Eng.
, vol.8
, pp. 628-638
-
-
Trinh, C.T.1
Carlson, R.2
Wlaschin, A.3
Srienc, F.4
-
34
-
-
77955411560
-
Elucidating mechanisms of solvent toxicity in ethanologenic Escherichia coli
-
Trinh, C. T., S. Huffer, M. E. Clark, H. W. Blanch, and D. S. Clark. 2010. Elucidating mechanisms of solvent toxicity in ethanologenic Escherichia coli. Biotechnol. Bioeng. 106:721-730.
-
(2010)
Biotechnol. Bioeng.
, vol.106
, pp. 721-730
-
-
Trinh, C.T.1
Huffer, S.2
Clark, M.E.3
Blanch, H.W.4
Clark, D.S.5
-
35
-
-
70350517579
-
Metabolic engineering of Escherichia coli for efficient conversion of glycerol to ethanol
-
Trinh, C. T., and F. Srienc. 2009. Metabolic engineering of Escherichia coli for efficient conversion of glycerol to ethanol. Appl. Environ. Microbiol. 75:6696-6705.
-
(2009)
Appl. Environ. Microbiol.
, vol.75
, pp. 6696-6705
-
-
Trinh, C.T.1
Srienc, F.2
-
36
-
-
45749137679
-
Minimal Escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses
-
Trinh, C. T., P. Unrean, and F. Srienc. 2008. Minimal Escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses. Appl. Environ. Microbiol. 74:3634-3643.
-
(2008)
Appl. Environ. Microbiol.
, vol.74
, pp. 3634-3643
-
-
Trinh, C.T.1
Unrean, P.2
Srienc, F.3
-
37
-
-
0030738589
-
Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors
-
Unden, G., and J. Bongaerts. 1997. Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochim. Biophys. Acta 1320:217-234.
-
(1997)
Biochim. Biophys. Acta
, vol.1320
, pp. 217-234
-
-
Unden, G.1
Bongaerts, J.2
-
38
-
-
76749169796
-
Rational design and construction of an efficient E. coli for production of diapolycopendioic acid
-
Unrean, P., C. T. Trinh, and F. Srienc. 2010. Rational design and construction of an efficient E. coli for production of diapolycopendioic acid. Metab. Eng. 12:112-122.
-
(2010)
Metab. Eng.
, vol.12
, pp. 112-122
-
-
Unrean, P.1
Trinh, C.T.2
Srienc, F.3
-
39
-
-
77955598091
-
-
U.S. Energy Information Administration. U.S. Energy Information Administration, U.S. Department of Energy, Washington, DC
-
U.S. Energy Information Administration. 2010. International energy outlook 2010. U.S. Energy Information Administration, U.S. Department of Energy, Washington, DC.
-
(2010)
International energy outlook 2010
-
-
-
40
-
-
0028953195
-
Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis
-
Zhang, M., C. Eddy, K. Deanda, M. Finkelstein, and S. Picataggio. 1995. Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267:240-243.
-
(1995)
Science
, vol.267
, pp. 240-243
-
-
Zhang, M.1
Eddy, C.2
Deanda, K.3
Finkelstein, M.4
Picataggio, S.5
-
41
-
-
0021529749
-
Regulation of the synthesis of hydrogenase (formate hydrogen-lyase linked) of E. coli
-
Zinoni, F., A. Beier, A. Pecher, R. Wirth, and A. Böck. 1984. Regulation of the synthesis of hydrogenase (formate hydrogen-lyase linked) of E. coli. Arch. Microbiol. 139:299-304.
-
(1984)
Arch. Microbiol.
, vol.139
, pp. 299-304
-
-
Zinoni, F.1
Beier, A.2
Pecher, A.3
Wirth, R.4
Böck, A.5
|