메뉴 건너뛰기




Volumn 8, Issue 4, 2013, Pages

Identification of Metabolic Engineering Targets through Analysis of Optimal and Sub-Optimal Routes

Author keywords

[No Author keywords available]

Indexed keywords

SUCCINIC ACID; ESCHERICHIA COLI PROTEIN; MESSENGER RNA; SACCHAROMYCES CEREVISIAE PROTEIN;

EID: 84876575387     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0061648     Document Type: Article
Times cited : (16)

References (42)
  • 1
    • 0025895183 scopus 로고
    • Toward a science of metabolic engineering
    • Bailey JE, (1991) Toward a science of metabolic engineering. Science 252: 1668-1675.
    • (1991) Science , vol.252 , pp. 1668-1675
    • Bailey, J.E.1
  • 2
  • 3
    • 0242487787 scopus 로고    scopus 로고
    • OptKnock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization
    • Burgard AP, Pharkya P, Maranas CD, (2003) OptKnock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84: 647-657.
    • (2003) Biotechnol Bioeng , vol.84 , pp. 647-657
    • Burgard, A.P.1    Pharkya, P.2    Maranas, C.D.3
  • 4
    • 30044437327 scopus 로고    scopus 로고
    • Evolutionary programming as a platform for in silico metabolic engineering
    • Patil KR, Rocha I, Forster J, Nielsen J (2005) Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinformatics 6.
    • (2005) BMC Bioinformatics , vol.6
    • Patil, K.R.1    Rocha, I.2    Forster, J.3    Nielsen, J.4
  • 5
    • 77950960250 scopus 로고    scopus 로고
    • OptFlux: an open-source software platform for in silico metabolic engineering
    • Rocha I, Maia P, Evangelista P, Vilaca P, Soares S, et al. (2010) OptFlux: an open-source software platform for in silico metabolic engineering. BMC Syst Biol 4.
    • (2010) BMC Syst Biol , vol.4
    • Rocha, I.1    Maia, P.2    Evangelista, P.3    Vilaca, P.4    Soares, S.5
  • 6
    • 0037069467 scopus 로고    scopus 로고
    • Analysis of optimality in natural and perturbed metabolic networks
    • Segre D, Vitkup D, Church GM, (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci 99: 15112-15117.
    • (2002) Proc Natl Acad Sci , vol.99 , pp. 15112-15117
    • Segre, D.1    Vitkup, D.2    Church, G.M.3
  • 7
    • 18844392599 scopus 로고    scopus 로고
    • Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli
    • Alper H, Jin YS, Moxley JF, Stephanopoulos G, (2005) Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab Eng 7: 155-164.
    • (2005) Metab Eng , vol.7 , pp. 155-164
    • Alper, H.1    Jin, Y.S.2    Moxley, J.F.3    Stephanopoulos, G.4
  • 9
    • 70449592325 scopus 로고    scopus 로고
    • Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering
    • Asadollahi MA, Maury J, Patil KR, Schalk M, Clark A, et al. (2009) Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering. Metab Eng 11: 328-334.
    • (2009) Metab Eng , vol.11 , pp. 328-334
    • Asadollahi, M.A.1    Maury, J.2    Patil, K.R.3    Schalk, M.4    Clark, A.5
  • 10
    • 34447523907 scopus 로고    scopus 로고
    • Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli
    • Schuetz R, Kuepfer L, Sauer U (2007) Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol 3.
    • (2007) Mol Syst Biol , vol.3
    • Schuetz, R.1    Kuepfer, L.2    Sauer, U.3
  • 11
    • 1642457253 scopus 로고    scopus 로고
    • The effects of alternate optimal solutions in constraint-based genome-scale metabolic models
    • Mahadevan R, Schilling CH, (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 5: 264-276.
    • (2003) Metab Eng , vol.5 , pp. 264-276
    • Mahadevan, R.1    Schilling, C.H.2
  • 12
    • 2642513030 scopus 로고    scopus 로고
    • Monte Carlo sampling can be used to determine the size and shape of the steady-state flux space
    • Wiback SJ, Famili I, Greenberg HJ, Palsson BO, (2004) Monte Carlo sampling can be used to determine the size and shape of the steady-state flux space. Journal of Theoretical Biology 228: 437-447.
    • (2004) Journal of Theoretical Biology , vol.228 , pp. 437-447
    • Wiback, S.J.1    Famili, I.2    Greenberg, H.J.3    Palsson, B.O.4
  • 13
    • 77949495880 scopus 로고    scopus 로고
    • Predicting metabolic engineering knockout strategies for chemical production: accounting for competing pathways
    • Tepper N, Shlomi T, (2010) Predicting metabolic engineering knockout strategies for chemical production: accounting for competing pathways. Bioinformatics 26: 536-543.
    • (2010) Bioinformatics , vol.26 , pp. 536-543
    • Tepper, N.1    Shlomi, T.2
  • 14
    • 0033080396 scopus 로고    scopus 로고
    • Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering
    • Schuster S, Dandekar T, Fell DA, (1999) Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol 17: 53-60.
    • (1999) Trends Biotechnol , vol.17 , pp. 53-60
    • Schuster, S.1    Dandekar, T.2    Fell, D.A.3
  • 15
    • 45749137679 scopus 로고    scopus 로고
    • Minimal Escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses
    • Trinh CT, Unrean P, Srienc F, (2008) Minimal Escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses. Appl Environ Microbiol 74: 3634-3643.
    • (2008) Appl Environ Microbiol , vol.74 , pp. 3634-3643
    • Trinh, C.T.1    Unrean, P.2    Srienc, F.3
  • 16
    • 74549189949 scopus 로고    scopus 로고
    • Flux Design: In silico design of cell factories based on correlation of pathway fluxes to desired properties
    • Melzer G, Esfandabadi ME, Franco-Lara E, Wittmann C (2009) Flux Design: In silico design of cell factories based on correlation of pathway fluxes to desired properties. BMC Syst Biol 3.
    • (2009) BMC Syst Biol , vol.3
    • Melzer, G.1    Esfandabadi, M.E.2    Franco-Lara, E.3    Wittmann, C.4
  • 17
    • 77951109180 scopus 로고    scopus 로고
    • Utilizing elementary mode analysis, pathway thermodynamics, and a genetic algorithm for metabolic flux determination and optimal metabolic network design
    • Boghigian BA, Shi H, Lee K, Pfeifer BA (2010) Utilizing elementary mode analysis, pathway thermodynamics, and a genetic algorithm for metabolic flux determination and optimal metabolic network design. BMC Syst Biol 4.
    • (2010) BMC Syst Biol , vol.4
    • Boghigian, B.A.1    Shi, H.2    Lee, K.3    Pfeifer, B.A.4
  • 18
    • 77952585143 scopus 로고    scopus 로고
    • CASOP: A Computational Approach for Strain Optimization aiming at high Productivity
    • Klamt
    • Hädicke O, (2010) Klamt (2010) CASOP: A Computational Approach for Strain Optimization aiming at high Productivity. J Biotechnol 147: 88-101.
    • (2010) J Biotechnol , vol.147 , pp. 88-101
    • Hädicke, O.1
  • 19
    • 84856571424 scopus 로고    scopus 로고
    • CASOP GS: Computing intervention strategies targeted at production improvement in genome-scale metabolic networks
    • Bohl K, de Figueiredo LF, Hadicke O, Klamt S, Kost C, et al. (2010) CASOP GS: Computing intervention strategies targeted at production improvement in genome-scale metabolic networks. Lecture Notes in Informatics 71-80.
    • (2010) Lecture Notes in Informatics , pp. 71-80
    • Bohl, K.1    de Figueiredo, L.F.2    Hadicke, O.3    Klamt S.Kost, C.4
  • 20
    • 79952103372 scopus 로고    scopus 로고
    • Computing complex metabolic intervention strategies using constrained minimal cut sets
    • Hädicke O, Klamt S, (2011) Computing complex metabolic intervention strategies using constrained minimal cut sets. Metab Eng 13: 204-213.
    • (2011) Metab Eng , vol.13 , pp. 204-213
    • Hädicke, O.1    Klamt, S.2
  • 21
    • 0037079050 scopus 로고    scopus 로고
    • Metabolic network structure determines key aspects of functionality and regulation
    • Stelling J, Klamt S, Bettenbrock K, Schuster S, Gilles ED, (2002) Metabolic network structure determines key aspects of functionality and regulation. Nature 420: 190-193.
    • (2002) Nature , vol.420 , pp. 190-193
    • Stelling, J.1    Klamt, S.2    Bettenbrock, K.3    Schuster, S.4    Gilles, E.D.5
  • 22
    • 38149142675 scopus 로고    scopus 로고
    • Effect of carbon source perturbations on transcriptional regulation of metabolic fluxes in Saccharomyces cerevisiae
    • Çakir T, Kirdar B, Onsan ZI, Ulgen KO, Nielsen J (2007) Effect of carbon source perturbations on transcriptional regulation of metabolic fluxes in Saccharomyces cerevisiae. BMC Syst Biol 1.
    • (2007) BMC Syst Biol , vol.1
    • Çakir, T.1    Kirdar, B.2    Onsan, Z.I.3    Ulgen, K.O.4    Nielsen, J.5
  • 23
    • 79959187023 scopus 로고    scopus 로고
    • Comparison between Elementary Flux Modes analysis and 13C-metabolic fluxes measured in bacterial and plant cells
    • Beurton-Aimar M, Beauvoit B, Monier A, Vallee F, Dieuaide-Noubhani M, et al. (2011) Comparison between Elementary Flux Modes analysis and 13C-metabolic fluxes measured in bacterial and plant cells. BMC Syst Biol 5: 95.
    • (2011) BMC Syst Biol , vol.5 , pp. 95
    • Beurton-Aimar, M.1    Beauvoit, B.2    Monier, A.3    Vallee, F.4    Dieuaide-Noubhani, M.5
  • 24
    • 28444458560 scopus 로고    scopus 로고
    • The geometry of the flux cone of a metabolic network
    • Wagner C, Urbanczik R, (2005) The geometry of the flux cone of a metabolic network. Biophys J 89: 3837-3845.
    • (2005) Biophys J , vol.89 , pp. 3837-3845
    • Wagner, C.1    Urbanczik, R.2
  • 25
    • 34247612307 scopus 로고    scopus 로고
    • Multiple high-throughput analyses monitor the response of E. coli to perturbations
    • Ishii N, Nakahigashi K, Baba T, Robert M, Soga T, et al. (2007) Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science 316: 593-597.
    • (2007) Science , vol.316 , pp. 593-597
    • Ishii, N.1    Nakahigashi, K.2    Baba, T.3    Robert, M.4    Soga, T.5
  • 26
    • 67649218402 scopus 로고    scopus 로고
    • Genetic modification of flux for flux prediction of mutants
    • Zhao QY, Kurata H, (2009) Genetic modification of flux for flux prediction of mutants. Bioinformatics 25: 1702-1708.
    • (2009) Bioinformatics , vol.25 , pp. 1702-1708
    • Zhao, Q.Y.1    Kurata, H.2
  • 27
    • 0142089985 scopus 로고    scopus 로고
    • Metabolic flux analysis of Saccharomyces cerevisiae grown on glucose, glycerol or acetate by C-13-labeling experiments
    • Zhang HM, Shimizu K, Yao SJ, (2003) Metabolic flux analysis of Saccharomyces cerevisiae grown on glucose, glycerol or acetate by C-13-labeling experiments. Biochem Eng J 16: 211-220.
    • (2003) Biochem Eng J , vol.16 , pp. 211-220
    • Zhang, H.M.1    Shimizu, K.2    Yao, S.J.3
  • 28
    • 25444467580 scopus 로고    scopus 로고
    • Large-scale C-13-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast
    • Blank LM, Kuepfer L, Sauer U (2005) Large-scale C-13-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast. Genome Biol 6.
    • (2005) Genome Biol , vol.6
    • Blank, L.M.1    Kuepfer, L.2    Sauer, U.3
  • 30
    • 52949098408 scopus 로고    scopus 로고
    • Large-scale computation of elementary flux modes with bit pattern trees
    • Terzer M, Stelling J, (2008) Large-scale computation of elementary flux modes with bit pattern trees. Bioinformatics 24: 2229-2235.
    • (2008) Bioinformatics , vol.24 , pp. 2229-2235
    • Terzer, M.1    Stelling, J.2
  • 32
    • 84861128104 scopus 로고    scopus 로고
    • System-level insights into yeast metabolism by thermodynamic analysis of elementary flux modes
    • Jol SJ, Kummel A, Terzer M, Stelling J, Heinemann M, (2012) System-level insights into yeast metabolism by thermodynamic analysis of elementary flux modes. PLoS Comput Biol 8: e1002415.
    • (2012) PLoS Comput Biol , vol.8
    • Jol, S.J.1    Kummel, A.2    Terzer, M.3    Stelling, J.4    Heinemann, M.5
  • 33
    • 42549159856 scopus 로고    scopus 로고
    • anNET: a tool for network-embedded thermodynamic analysis of quantitative metabolome data
    • Zamboni N, Kummel A, Heinemann M (2008) anNET: a tool for network-embedded thermodynamic analysis of quantitative metabolome data. BMC Bioinformatics 9.
    • (2008) BMC Bioinformatics , vol.9
    • Zamboni, N.1    Kummel, A.2    Heinemann, M.3
  • 34
    • 0344824417 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network
    • Famili I, Forster J, Nielson J, Palsson BO, (2003) Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. Proc Natl Acad Sci 100: 13134-13139.
    • (2003) Proc Natl Acad Sci , vol.100 , pp. 13134-13139
    • Famili, I.1    Forster, J.2    Nielson, J.3    Palsson, B.O.4
  • 35
    • 77953514760 scopus 로고    scopus 로고
    • Which Metabolic Pathways Generate and Characterize the Flux Space? A Comparison among Elementary Modes, Extreme Pathways and Minimal Generators
    • Llaneras F, Pico J (2010) Which Metabolic Pathways Generate and Characterize the Flux Space? A Comparison among Elementary Modes, Extreme Pathways and Minimal Generators. J Biomed Biotechnol.
    • (2010) J Biomed Biotechnol
    • Llaneras, F.1    Pico, J.2
  • 38
    • 0001642686 scopus 로고
    • Controlled random search procedure for global optimization
    • Price WL, (1977) Controlled random search procedure for global optimization. Comput J 20: 367-370.
    • (1977) Comput J , vol.20 , pp. 367-370
    • Price, W.L.1
  • 40
    • 0033929520 scopus 로고    scopus 로고
    • Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation
    • Nissen TL, Kielland-Brandt MC, Nielsen J, Villadsen J, (2000) Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. Metab Eng 2: 69-77.
    • (2000) Metab Eng , vol.2 , pp. 69-77
    • Nissen, T.L.1    Kielland-Brandt, M.C.2    Nielsen, J.3    Villadsen, J.4
  • 41
    • 78049430020 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid
    • Raab AM, Gebhardt G, Bolotina N, Weuster-Botz D, Lang C, (2010) Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid. Metab Eng 12: 518-525.
    • (2010) Metab Eng , vol.12 , pp. 518-525
    • Raab, A.M.1    Gebhardt, G.2    Bolotina, N.3    Weuster-Botz, D.4    Lang, C.5
  • 42
    • 84872655172 scopus 로고    scopus 로고
    • Industrial Systems Biology of Saccharomyces cerevisiae enables novel succinate acid cell factory
    • Otero JM, Cimini D, Patil KR, Poulsen SG, Olsson L, et al. (2013) Industrial Systems Biology of Saccharomyces cerevisiae enables novel succinate acid cell factory. PLOS ONE 8: e54144.
    • (2013) PLOS ONE , vol.8
    • Otero, J.M.1    Cimini, D.2    Patil, K.R.3    Poulsen, S.G.4    Olsson, L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.