메뉴 건너뛰기




Volumn 16, Issue 4, 2015, Pages 207-220

Replication fork reversal in eukaryotes: From dead end to dynamic response

Author keywords

[No Author keywords available]

Indexed keywords

DNA TOPOISOMERASE; NICOTINAMIDE ADENINE DINUCLEOTIDE ADENOSINE DIPHOSPHATE RIBOSYLTRANSFERASE INHIBITOR; RECQ HELICASE; CHROMATIN;

EID: 84926226900     PISSN: 14710072     EISSN: 14710080     Source Type: Journal    
DOI: 10.1038/nrm3935     Document Type: Review
Times cited : (364)

References (142)
  • 1
    • 0017298802 scopus 로고
    • A model for replication repair in mammalian cells
    • Higgins, N. P., Kato, K. & Strauss, B. A model for replication repair in mammalian cells. J. Mol. Biol. 101, 417-425 (1976).
    • (1976) J. Mol. Biol. , vol.101 , pp. 417-425
    • Higgins, N.P.1    Kato, K.2    Strauss, B.3
  • 2
    • 0017876925 scopus 로고
    • Production of DNA bifilarly substituted with bromodeoxyuridine in the first round of synthesis: Branch migration during isolation of cellular DNA
    • Tatsumi, K. & Strauss, B. Production of DNA bifilarly substituted with bromodeoxyuridine in the first round of synthesis: branch migration during isolation of cellular DNA. Nucleic Acids Res. 5, 331-347 (1978).
    • (1978) Nucleic Acids Res. , vol.5 , pp. 331-347
    • Tatsumi, K.1    Strauss, B.2
  • 3
    • 84870207299 scopus 로고    scopus 로고
    • Direct observation of stalled fork restart via fork regression in the T4 replication system
    • Manosas, M., Perumal, S. K., Croquette, V. & Benkovic, S. J. Direct observation of stalled fork restart via fork regression in the T4 replication system. Science 338, 1217-1220 (2012).
    • (2012) Science , vol.338 , pp. 1217-1220
    • Manosas, M.1    Perumal, S.K.2    Croquette, V.3    Benkovic, S.J.4
  • 4
    • 84860578766 scopus 로고    scopus 로고
    • Replication fork reversal after replication-transcription collision
    • De Septenville, A. L., Duigou, S., Boubakri, H. & Michel, B. Replication fork reversal after replication-transcription collision. PLoS Genet. 8, e1002622 (2012).
    • (2012) PLoS Genet. , vol.8 , pp. e1002622
    • De Septenville, A.L.1    Duigou, S.2    Boubakri, H.3    Michel, B.4
  • 5
    • 77955559161 scopus 로고    scopus 로고
    • Response of the bacteriophage T4 replisome to noncoding lesions and regression of a stalled replication fork
    • Nelson, S. W. & Benkovic, S. J. Response of the bacteriophage T4 replisome to noncoding lesions and regression of a stalled replication fork. J. Mol. Biol. 401, 743-756 (2010).
    • (2010) J. Mol. Biol. , vol.401 , pp. 743-756
    • Nelson, S.W.1    Benkovic, S.J.2
  • 6
    • 67649862225 scopus 로고    scopus 로고
    • Replication fork reversal and the maintenance of genome stability
    • Atkinson, J. & McGlynn, P. Replication fork reversal and the maintenance of genome stability. Nucleic Acids Res. 37, 3475-3492 (2009).
    • (2009) Nucleic Acids Res. , vol.37 , pp. 3475-3492
    • Atkinson, J.1    McGlynn, P.2
  • 7
    • 77649165394 scopus 로고    scopus 로고
    • Maintaining genome stability at the replication fork
    • Branzei, D. & Foiani, M. Maintaining genome stability at the replication fork. Nature Rev. Mol. Cell. Biol. 11, 208-219 (2010).
    • (2010) Nature Rev. Mol. Cell. Biol. , vol.11 , pp. 208-219
    • Branzei, D.1    Foiani, M.2
  • 8
    • 84919422784 scopus 로고    scopus 로고
    • Tolerating DNA damage during eukaryotic chromosome replication
    • Saugar, I., Ortiz-Bazán, M. Á. & Tercero, J. A. Tolerating DNA damage during eukaryotic chromosome replication. Exp. Cell Res. 329, 170-177 (2014).
    • (2014) Exp. Cell Res. , vol.329 , pp. 170-177
    • Saugar, I.1    Ortiz-Bazán, M.A.2    Tercero, J.A.3
  • 9
    • 0035797383 scopus 로고    scopus 로고
    • The DNA replication checkpoint response stabilizes stalled replication forks
    • Lopes, M. et al. The DNA replication checkpoint response stabilizes stalled replication forks. Nature 412, 557-561 (2001).
    • (2001) Nature , vol.412 , pp. 557-561
    • Lopes, M.1
  • 10
    • 0037178740 scopus 로고    scopus 로고
    • Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects
    • Sogo, J. M., Lopes, M. & Foiani, M. Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 297, 599-602 (2002).
    • (2002) Science , vol.297 , pp. 599-602
    • Sogo, J.M.1    Lopes, M.2    Foiani, M.3
  • 11
    • 84859042868 scopus 로고    scopus 로고
    • Preventing replication stress to maintain genome stability: Resolving conflicts between replication and transcription
    • Bermejo, R., Lai, M. S. & Foiani, M. Preventing replication stress to maintain genome stability: resolving conflicts between replication and transcription. Mol. Cell 45, 710-718 (2012).
    • (2012) Mol. Cell , vol.45 , pp. 710-718
    • Bermejo, R.1    Lai, M.S.2    Foiani, M.3
  • 12
    • 79960802984 scopus 로고    scopus 로고
    • The replication checkpoint protects fork stability by releasing transcribed genes from nuclear pores
    • Bermejo, R. et al. The replication checkpoint protects fork stability by releasing transcribed genes from nuclear pores. Cell 146, 233-246 (2011).
    • (2011) Cell , vol.146 , pp. 233-246
    • Bermejo, R.1
  • 13
    • 39449123590 scopus 로고    scopus 로고
    • Cleavage of stalled forks by fission yeast Mus81/Eme1 in absence of DNA replication checkpoint
    • Froget, B., Blaisonneau, J., Lambert, S. & Baldacci, G. Cleavage of stalled forks by fission yeast Mus81/Eme1 in absence of DNA replication checkpoint. Mol. Biol. Cell 19, 445-456 (2008).
    • (2008) Mol. Biol. Cell , vol.19 , pp. 445-456
    • Froget, B.1    Blaisonneau, J.2    Lambert, S.3    Baldacci, G.4
  • 14
    • 77955479780 scopus 로고    scopus 로고
    • Homologous recombination restarts blocked replication forks at the expense of genome rearrangements by template exchange
    • Lambert, S. et al. Homologous recombination restarts blocked replication forks at the expense of genome rearrangements by template exchange. Mol. Cell 39, 346-359 (2010).
    • (2010) Mol. Cell , vol.39 , pp. 346-359
    • Lambert, S.1
  • 15
    • 29544437558 scopus 로고    scopus 로고
    • Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions
    • Lopes, M., Foiani, M. & Sogo, J. M. Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol. Cell 21, 15-27 (2006).
    • (2006) Mol. Cell , vol.21 , pp. 15-27
    • Lopes, M.1    Foiani, M.2    Sogo, J.M.3
  • 16
    • 37249019677 scopus 로고    scopus 로고
    • Mismatch repair-dependent processing of methylation damage gives rise to persistent single-stranded gaps in newly replicated DNA
    • Mojas, N., Lopes, M. & Jiricny, J. Mismatch repair-dependent processing of methylation damage gives rise to persistent single-stranded gaps in newly replicated DNA. Genes Dev. 21, 3342-3355 (2007).
    • (2007) Genes Dev. , vol.21 , pp. 3342-3355
    • Mojas, N.1    Lopes, M.2    Jiricny, J.3
  • 17
    • 84861322877 scopus 로고    scopus 로고
    • Topoisomerase i poisoning results in PARP-mediated replication fork reversal
    • Ray Chaudhuri, A. et al. Topoisomerase I poisoning results in PARP-mediated replication fork reversal. Nature Struct. Mol. Biol. 19, 417-423 (2012).
    • (2012) Nature Struct. Mol. Biol. , vol.19 , pp. 417-423
    • Ray Chaudhuri, A.1
  • 18
    • 0043066728 scopus 로고    scopus 로고
    • Yeast histone 2A serine 129 is essential for the efficient repair of checkpoint-blind DNA damage
    • Redon, C. et al. Yeast histone 2A serine 129 is essential for the efficient repair of checkpoint-blind DNA damage. EMBO Rep. 4, 678-684 (2003).
    • (2003) EMBO Rep. , vol.4 , pp. 678-684
    • Redon, C.1
  • 19
    • 84861974796 scopus 로고    scopus 로고
    • The intra-S phase checkpoint targets Dna2 to prevent stalled replication forks from reversing
    • Hu, J. et al. The intra-S phase checkpoint targets Dna2 to prevent stalled replication forks from reversing. Cell 149, 1221-1232 (2012).
    • (2012) Cell , vol.149 , pp. 1221-1232
    • Hu, J.1
  • 20
    • 0035951787 scopus 로고    scopus 로고
    • Positive torsional strain causes the formation of a four-way junction at replication forks
    • Postow, L. et al. Positive torsional strain causes the formation of a four-way junction at replication forks. J. Biol. Chem. 276, 2790-2796 (2001).
    • (2001) J. Biol. Chem. , vol.276 , pp. 2790-2796
    • Postow, L.1
  • 21
    • 0036464531 scopus 로고    scopus 로고
    • Supercoiling, knotting and replication fork reversal in partially replicated plasmids
    • Olavarrieta, L. et al. Supercoiling, knotting and replication fork reversal in partially replicated plasmids. Nucleic Acids Res. 30, 656-666 (2002).
    • (2002) Nucleic Acids Res. , vol.30 , pp. 656-666
    • Olavarrieta, L.1
  • 22
    • 44349176520 scopus 로고    scopus 로고
    • Regression supports two mechanisms of fork processing in phage T4
    • Long, D. T. & Kreuzer, K. N. Regression supports two mechanisms of fork processing in phage T4. Proc. Natl Acad. Sci. USA 105, 6852-6857 (2008).
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 6852-6857
    • Long, D.T.1    Kreuzer, K.N.2
  • 23
    • 34547095273 scopus 로고    scopus 로고
    • Replication fork reversal occurs spontaneously after digestion but is constrained in supercoiled domains
    • Fierro-Fernández, M., Hernández, P., Krimer, D. B. & Schvartzman, J. B. Replication fork reversal occurs spontaneously after digestion but is constrained in supercoiled domains. J. Biol. Chem. 282, 18190-18196 (2007).
    • (2007) J. Biol. Chem. , vol.282 , pp. 18190-18196
    • Fierro-Fernández, M.1    Hernández, P.2    Krimer, D.B.3    Schvartzman, J.B.4
  • 24
    • 84922335476 scopus 로고    scopus 로고
    • Visualization of recombination-mediated damage bypass by template switching
    • Giannattasio, M. et al. Visualization of recombination-mediated damage bypass by template switching. Nature Struct. Mol. Biol. 21, 884-892 (2014).
    • (2014) Nature Struct. Mol. Biol. , vol.21 , pp. 884-892
    • Giannattasio, M.1
  • 25
    • 84923902089 scopus 로고    scopus 로고
    • Error-free DNA damage tolerance and sister chromatid proximity during DNA replication rely on the Pola/primase/Ctf4 complex
    • Fumasoni, M., Zwicky, K., Vanoli, F., Lopes, M. & Branzei, D. Error-free DNA damage tolerance and sister chromatid proximity during DNA replication rely on the Pola/primase/Ctf4 complex. Mol. Cell http:// dx.doi.org/10.1016/j.molcel.2014.12.038 (2015).
    • (2015) Mol. Cell
    • Fumasoni, M.1    Zwicky, K.2    Vanoli, F.3    Lopes, M.4    Branzei, D.5
  • 26
    • 33749034730 scopus 로고    scopus 로고
    • Topoisomerase i inhibitors: Camptothecins and beyond
    • Pommier, Y. Topoisomerase I inhibitors: camptothecins and beyond. Nature Rev. Cancer 6, 789-802 (2006).
    • (2006) Nature Rev. Cancer , vol.6 , pp. 789-802
    • Pommier, Y.1
  • 27
    • 78650724206 scopus 로고    scopus 로고
    • Chk1 inhibits replication factory activation but allows dormant origin firing in existing factories
    • Ge, X. Q. & Blow, J. J. Chk1 inhibits replication factory activation but allows dormant origin firing in existing factories. J. Cell Biol. 191, 1285-1297 (2010).
    • (2010) J. Cell Biol. , vol.191 , pp. 1285-1297
    • Ge, X.Q.1    Blow, J.J.2
  • 28
    • 78649316608 scopus 로고    scopus 로고
    • A genome-wide camptothecin sensitivity screen identifies a mammalian MMS22L- NFKBIL2 complex required for genomic stability
    • O'Connell, B. C. et al. A genome-wide camptothecin sensitivity screen identifies a mammalian MMS22L- NFKBIL2 complex required for genomic stability. Mol. Cell 40, 645-657 (2010).
    • (2010) Mol. Cell , vol.40 , pp. 645-657
    • O'Connell, B.C.1
  • 29
    • 84875220657 scopus 로고    scopus 로고
    • Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase i inhibition
    • Berti, M. et al. Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase I inhibition. Nature Struct. Mol. Biol. 20, 347-354 (2013).
    • (2013) Nature Struct. Mol. Biol. , vol.20 , pp. 347-354
    • Berti, M.1
  • 30
    • 84924911767 scopus 로고    scopus 로고
    • Rad51-mediated replication fork reversal is a general response to genotoxic treatments in human cells
    • Zellweger, R. et al. Rad51-mediated replication fork reversal is a general response to genotoxic treatments in human cells. J. Cell Biol. http://dx.doi.org/10.1083/ jcb.201406099 (2015).
    • (2015) J. Cell Biol.
    • Zellweger, R.1
  • 31
    • 84922196613 scopus 로고    scopus 로고
    • Poly(ADP-ribosyl)gycohydrolase (PARG) prevents the accumulation of unusual replication structures during unperturbed S phase
    • Ray Chaudhuri, A., Ahuja, A. K., Herrador, R. & Lopes, M. Poly(ADP-ribosyl)gycohydrolase (PARG) prevents the accumulation of unusual replication structures during unperturbed S phase. Mol Cell. Biol. 35, 856-865 (2015).
    • (2015) Mol Cell. Biol. , vol.35 , pp. 856865
    • Ray Chaudhuri, A.1    Ahuja, A.K.2    Herrador, R.3    Lopes, M.4
  • 32
    • 84876333995 scopus 로고    scopus 로고
    • Oncogenes induce genotoxic stress by mitotic processing of unusual replication intermediates
    • Neelsen, K. J., Zanini, I. M. Y., Herrador, R. & Lopes, M. Oncogenes induce genotoxic stress by mitotic processing of unusual replication intermediates. J. Cell Biol. 200, 699-708 (2013).
    • (2013) J. Cell Biol. , vol.200 , pp. 699-708
    • Neelsen, K.J.1    Zanini, I.M.Y.2    Herrador, R.3    Lopes, M.4
  • 33
    • 84876160611 scopus 로고    scopus 로고
    • Friedreich's ataxia-associated GAA repeats induce replication-fork reversal and unusual molecular junctions
    • Follonier, C., Oehler, J., Herrador, R. & Lopes, M. Friedreich's ataxia-associated GAA repeats induce replication-fork reversal and unusual molecular junctions. Nature Struct. Mol. Biol. 20, 486-494 (2013).
    • (2013) Nature Struct. Mol. Biol. , vol.20 , pp. 486-494
    • Follonier, C.1    Oehler, J.2    Herrador, R.3    Lopes, M.4
  • 34
    • 84888788310 scopus 로고    scopus 로고
    • Deregulated origin licensing leads to chromosomal breaks by rereplication of a gapped DNA template
    • Neelsen, K. J. et al. Deregulated origin licensing leads to chromosomal breaks by rereplication of a gapped DNA template. Genes Dev. 27, 2537-2542 (2013).
    • (2013) Genes Dev. , vol.27 , pp. 2537-2542
    • Neelsen, K.J.1
  • 35
    • 51549098159 scopus 로고    scopus 로고
    • Mechanism of replication-coupled DNA interstrand crosslink repair
    • Räschle, M. et al. Mechanism of replication-coupled DNA interstrand crosslink repair. Cell 134, 969-980 (2008).
    • (2008) Cell , vol.134 , pp. 969-980
    • Räschle, M.1
  • 36
    • 84887204233 scopus 로고    scopus 로고
    • The DNA translocase FANCM/MHF promotes replication traverse of DNA interstrand crosslinks
    • Huang, J. et al. The DNA translocase FANCM/MHF promotes replication traverse of DNA interstrand crosslinks. Mol. Cell 52, 434-446 (2013).
    • (2013) Mol. Cell , vol.52 , pp. 434-446
    • Huang, J.1
  • 37
    • 77958109197 scopus 로고    scopus 로고
    • Mechanisms of trinucleotide repeat instability during human development
    • McMurray, C. T. Mechanisms of trinucleotide repeat instability during human development. Nature Rev. Genet. 11, 786-799 (2010).
    • (2010) Nature Rev. Genet. , vol.11 , pp. 786-799
    • McMurray, C.T.1
  • 38
    • 34250878426 scopus 로고    scopus 로고
    • Expandable DNA repeats and human disease
    • Mirkin, S. M. Expandable DNA repeats and human disease. Nature 447, 932-940 (2007).
    • (2007) Nature , vol.447 , pp. 932-940
    • Mirkin, S.M.1
  • 39
    • 84880440332 scopus 로고    scopus 로고
    • ATR phosphorylates SMARCAL1 to prevent replication fork collapse
    • Couch, F. B. et al. ATR phosphorylates SMARCAL1 to prevent replication fork collapse. Genes Dev. 27, 1610-1623 (2013).
    • (2013) Genes Dev. , vol.27 , pp. 1610-1623
    • Couch, F.B.1
  • 40
    • 84902075532 scopus 로고    scopus 로고
    • Metabolism of DNA secondary structures at the eukaryotic replication fork
    • León-Ortiz, A. M., Svendsen, J. & Boulton, S. J. Metabolism of DNA secondary structures at the eukaryotic replication fork. DNA Repair 19, 152-162 (2014).
    • (2014) DNA Repair , vol.19 , pp. 152-162
    • León-Ortiz, A.M.1    Svendsen, J.2    Boulton, S.J.3
  • 41
    • 79955525482 scopus 로고    scopus 로고
    • Nucleotide deficiency promotes genomic instability in early stages of cancer development
    • Bester, A. C. et al. Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 145, 435-446 (2011).
    • (2011) Cell , vol.145 , pp. 435-446
    • Bester, A.C.1
  • 42
    • 84881480253 scopus 로고    scopus 로고
    • Increased replication initiation and conflicts with transcription underlie cyclin E-induced replication stress
    • Jones, R. M. et al. Increased replication initiation and conflicts with transcription underlie cyclin E-induced replication stress. Oncogene 32, 3744-3753 (2013).
    • (2013) Oncogene , vol.32 , pp. 3744-3753
    • Jones, R.M.1
  • 43
    • 84925216841 scopus 로고    scopus 로고
    • FBH1 catalyzes regression of stalled replication forks
    • Fugger, K. et al. FBH1 catalyzes regression of stalled replication forks. Cell Rep. http://dx.doi.org/10.1016/j. celrep.2015.02.028 (2015).
    • (2015) Cell Rep.
    • Fugger, K.1
  • 44
    • 68849127270 scopus 로고    scopus 로고
    • Fbh1 limits Rad51-dependent recombination at blocked replication forks
    • Lorenz, A., Osman, F., Folkyte, V., Sofueva, S. & Whitby, M. C. Fbh1 limits Rad51-dependent recombination at blocked replication forks. Mol. Cell. Biol. 29, 4742-4756 (2009).
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 4742-4756
    • Lorenz, A.1    Osman, F.2    Folkyte, V.3    Sofueva, S.4    Whitby, M.C.5
  • 45
    • 35649023709 scopus 로고    scopus 로고
    • The human F-Box DNA helicase FBH1 faces Saccharomyces cerevisiae Srs2 and postreplication repair pathway roles
    • Chiolo, I. et al. The human F-Box DNA helicase FBH1 faces Saccharomyces cerevisiae Srs2 and postreplication repair pathway roles. Mol. Cell. Biol. 27, 7439-7450 (2007).
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 7439-7450
    • Chiolo, I.1
  • 46
    • 84877155835 scopus 로고    scopus 로고
    • FBH1 co-operates with MUS81 in inducing DNA double-strand breaks and cell death following replication stress
    • Fugger, K. et al. FBH1 co-operates with MUS81 in inducing DNA double-strand breaks and cell death following replication stress. Nature Commun. 4, 1423 (2013).
    • (2013) Nature Commun. , vol.4 , pp. 1423
    • Fugger, K.1
  • 47
    • 69949166903 scopus 로고    scopus 로고
    • Human Fbh1 helicase contributes to genome maintenance via pro- and anti-recombinase activities
    • Fugger, K. et al. Human Fbh1 helicase contributes to genome maintenance via pro- and anti-recombinase activities. J. Cell Biol. 186, 655-663 (2009).
    • (2009) J. Cell Biol. , vol.186 , pp. 655-663
    • Fugger, K.1
  • 48
    • 84876021636 scopus 로고    scopus 로고
    • Single-molecule sorting reveals how ubiquitylation affects substrate recognition and activities of FBH1 helicase
    • Masuda-Ozawa, T., Hoang, T., Seo, Y.-S., Chen, L.-F. & Spies, M. Single-molecule sorting reveals how ubiquitylation affects substrate recognition and activities of FBH1 helicase. Nucleic Acids Res. 41, 3576-3587 (2013).
    • (2013) Nucleic Acids Res. , vol.41 , pp. 3576-3587
    • Masuda-Ozawa, T.1    Hoang, T.2    Seo, Y.-S.3    Chen, L.-F.4    Spies, M.5
  • 49
    • 84885870096 scopus 로고    scopus 로고
    • HELQ promotes RAD51 paralogue-dependent repair to avert germ cell loss and tumorigenesis
    • Adelman, C. A. et al. HELQ promotes RAD51 paralogue-dependent repair to avert germ cell loss and tumorigenesis. Nature 502, 381-384 (2013).
    • (2013) Nature , vol.502 , pp. 381-384
    • Adelman, C.A.1
  • 50
    • 78549251695 scopus 로고    scopus 로고
    • Rad51 protects nascent DNA from Mre11-dependent degradation and promotes continuous DNA synthesis
    • Hashimoto, Y., Ray Chaudhuri, A., Lopes, M. & Costanzo, V. Rad51 protects nascent DNA from Mre11-dependent degradation and promotes continuous DNA synthesis. Nature Struct. Mol. Biol. 17, 1305-1311 (2010).
    • (2010) Nature Struct. Mol. Biol. , vol.17 , pp. 1305-1311
    • Hashimoto, Y.1    Ray Chaudhuri, A.2    Lopes, M.3    Costanzo, V.4
  • 51
    • 79955799175 scopus 로고    scopus 로고
    • Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11
    • Schlacher, K. et al. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145, 529-542 (2011).
    • (2011) Cell , vol.145 , pp. 529-542
    • Schlacher, K.1
  • 52
    • 84863753191 scopus 로고    scopus 로고
    • A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2
    • Schlacher, K., Wu, H. & Jasin, M. A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell 22, 106-116 (2012).
    • (2012) Cancer Cell , vol.22 , pp. 106-116
    • Schlacher, K.1    Wu, H.2    Jasin, M.3
  • 53
    • 76849109722 scopus 로고    scopus 로고
    • Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair
    • Petermann, E., Orta, M. L., Issaeva, N., Schultz, N. & Helleday, T. Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Mol. Cell 37, 492-502 (2010).
    • (2010) Mol. Cell , vol.37 , pp. 492-502
    • Petermann, E.1    Orta, M.L.2    Issaeva, N.3    Schultz, N.4    Helleday, T.5
  • 54
    • 17644421842 scopus 로고    scopus 로고
    • Interaction of hRad51 and hRad52 with MCM complex: A cross-talk between recombination and replication proteins
    • Shukla, A., Navadgi, V. M., Mallikarjuna, K. & Rao, B. J. Interaction of hRad51 and hRad52 with MCM complex: a cross-talk between recombination and replication proteins. Biochem. Biophys. Res. Commun. 329, 1240-1245 (2005).
    • (2005) Biochem. Biophys. Res. Commun. , vol.329 , pp. 1240-1245
    • Shukla, A.1    Navadgi, V.M.2    Mallikarjuna, K.3    Rao, B.J.4
  • 55
    • 40749107055 scopus 로고    scopus 로고
    • Minichromosome maintenance proteins interact with checkpoint and recombination proteins to promote s-phase genome stability
    • Bailis, J. M., Luche, D. D., Hunter, T. & Forsburg, S. L. Minichromosome maintenance proteins interact with checkpoint and recombination proteins to promote s-phase genome stability. Mol. Cell. Biol. 28, 1724-1738 (2008).
    • (2008) Mol. Cell. Biol. , vol.28 , pp. 1724-1738
    • Bailis, J.M.1    Luche, D.D.2    Hunter, T.3    Forsburg, S.L.4
  • 56
    • 84863670930 scopus 로고    scopus 로고
    • Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway
    • Kim, H. & D'Andrea, A. D. Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway. Genes Dev. 26, 1393-1408 (2012).
    • (2012) Genes Dev. , vol.26 , pp. 1393-1408
    • Kim, H.1    D'Andrea, A.D.2
  • 57
    • 49649099084 scopus 로고    scopus 로고
    • The human RecQ helicases, BLM and RECQ1, display distinct DNA substrate specificities
    • Popuri, V. et al. The human RecQ helicases, BLM and RECQ1, display distinct DNA substrate specificities. J. Biol. Chem. 283, 17766-17776 (2008).
    • (2008) J. Biol. Chem. , vol.283 , pp. 17766-17776
    • Popuri, V.1
  • 58
    • 28544438312 scopus 로고    scopus 로고
    • Identification of RecQL1 as a Holliday junction processing enzyme in human cell lines
    • LeRoy, G., Carroll, R., Kyin, S., Seki, M. & Cole, M. D. Identification of RecQL1 as a Holliday junction processing enzyme in human cell lines. Nucleic Acids Res. 33, 6251-6257 (2005).
    • (2005) Nucleic Acids Res. , vol.33 , pp. 6251-6257
    • Leroy, G.1    Carroll, R.2    Kyin, S.3    Seki, M.4    Cole, M.D.5
  • 59
    • 23044517287 scopus 로고    scopus 로고
    • Biochemical analysis of the DNA unwinding and strand annealing activities catalyzed by human RECQ1
    • Sharma, S. et al. Biochemical analysis of the DNA unwinding and strand annealing activities catalyzed by human RECQ1. J. Biol. Chem. 280, 28072-28084 (2005).
    • (2005) J. Biol. Chem. , vol.280 , pp. 28072-28084
    • Sharma, S.1
  • 60
    • 11344268431 scopus 로고    scopus 로고
    • Exo1 processes stalled replication forks and counteracts fork reversal in checkpoint-defective cells
    • Cotta-Ramusino, C. et al. Exo1 processes stalled replication forks and counteracts fork reversal in checkpoint-defective cells. Mol. Cell 17, 153-159 (2005).
    • (2005) Mol. Cell , vol.17 , pp. 153-159
    • Cotta-Ramusino, C.1
  • 61
    • 84924873531 scopus 로고    scopus 로고
    • DNA2 drives processing and restart of reversed replication forks in human cells
    • Thangavel, S. et al. DNA2 drives processing and restart of reversed replication forks in human cells. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201406100 (2015).
    • (2015) J. Cell Biol.
    • Thangavel, S.1
  • 62
    • 84887402750 scopus 로고    scopus 로고
    • Replication stress-induced genome instability: The dark side of replication maintenance by homologous recombination
    • Carr, A. M. & Lambert, S. Replication stress-induced genome instability: the dark side of replication maintenance by homologous recombination. J. Mol. Biol. 425, 4733-4744 (2013).
    • (2013) J. Mol. Biol. , vol.425 , pp. 4733-4744
    • Carr, A.M.1    Lambert, S.2
  • 63
    • 35848930133 scopus 로고    scopus 로고
    • The structure-specific endonuclease Mus81 contributes to replication restart by generating double-strand DNA breaks
    • Hanada, K. et al. The structure-specific endonuclease Mus81 contributes to replication restart by generating double-strand DNA breaks. Nature Struct. Mol. Biol. 14, 1096-1104 (2007).
    • (2007) Nature Struct. Mol. Biol. , vol.14 , pp. 1096-1104
    • Hanada, K.1
  • 64
    • 84873412967 scopus 로고    scopus 로고
    • The WRN and MUS81 proteins limit cell death and genome instability following oncogene activation
    • Murfuni, I. et al. The WRN and MUS81 proteins limit cell death and genome instability following oncogene activation. Oncogene 32, 610-620 (2012).
    • (2012) Oncogene , vol.32 , pp. 610-620
    • Murfuni, I.1
  • 65
    • 80053544629 scopus 로고    scopus 로고
    • Regulatory control of the resolution of DNA recombination intermediates during meiosis and mitosis
    • Matos, J., Blanco, M. G., Maslen, S., Skehel, J. M. & West, S. C. Regulatory control of the resolution of DNA recombination intermediates during meiosis and mitosis. Cell 147, 158-172 (2011).
    • (2011) Cell , vol.147 , pp. 158-172
    • Matos, J.1    Blanco, M.G.2    Maslen, S.3    Skehel, J.M.4    West, S.C.5
  • 66
    • 84892432014 scopus 로고    scopus 로고
    • Cell-cycle kinases coordinate the resolution of recombination intermediates with chromosome segregation
    • Matos, J., Blanco, M. G. & West, S. C. Cell-cycle kinases coordinate the resolution of recombination intermediates with chromosome segregation. Cell Rep. 4, 76-86 (2013).
    • (2013) Cell Rep. , vol.4 , pp. 76-86
    • Matos, J.1    Blanco, M.G.2    West, S.C.3
  • 67
    • 84881471113 scopus 로고    scopus 로고
    • ERCC1 and MUS81-EME1 promote sister chromatid separation by processing late replication intermediates at common fragile sites during mitosis
    • Naim, V., Wilhelm, T., Debatisse, M. & Rosselli, F. ERCC1 and MUS81-EME1 promote sister chromatid separation by processing late replication intermediates at common fragile sites during mitosis. Nature Cell Biol. 15, 1-8 (2013).
    • (2013) Nature Cell Biol. , vol.15 , pp. 1-8
    • Naim, V.1    Wilhelm, T.2    Debatisse, M.3    Rosselli, F.4
  • 68
    • 85027953032 scopus 로고    scopus 로고
    • Regulation of Mus81-Eme1 Holliday junction resolvase in response to DNA damage
    • Dehé, P.-M. et al. Regulation of Mus81-Eme1 Holliday junction resolvase in response to DNA damage. Nature Struct. Mol. Biol. 20, 598-603 (2013).
    • (2013) Nature Struct. Mol. Biol. , vol.20 , pp. 598-603
    • Dehé, P.-M.1
  • 69
    • 84901280865 scopus 로고    scopus 로고
    • MUS81-EME2 promotes replication fork restart
    • Pepe, A. & West, S. C. MUS81-EME2 promotes replication fork restart. Cell Rep. 7, 1048-1055 (2014).
    • (2014) Cell Rep. , vol.7 , pp. 1048-1055
    • Pepe, A.1    West, S.C.2
  • 70
    • 0035900652 scopus 로고    scopus 로고
    • Mus81-Eme1 are essential components of a Holliday junction resolvase
    • Boddy, M. N. et al. Mus81-Eme1 are essential components of a Holliday junction resolvase. Cell 107, 537-548 (2001).
    • (2001) Cell , vol.107 , pp. 537-548
    • Boddy, M.N.1
  • 71
    • 18244405819 scopus 로고    scopus 로고
    • Human Mus81-associated endonuclease cleaves Holliday junctions in vitro
    • Chen, X. B. et al. Human Mus81-associated endonuclease cleaves Holliday junctions in vitro. Mol. Cell 8, 1117-1127 (2001).
    • (2001) Mol. Cell , vol.8 , pp. 1117-1127
    • Chen, X.B.1
  • 72
    • 0037470059 scopus 로고    scopus 로고
    • Cleavage of model replication forks by fission yeast Mus81-Eme1 and budding yeast Mus81-Mms4
    • Whitby, M. C., Osman, F. & Dixon, J. Cleavage of model replication forks by fission yeast Mus81-Eme1 and budding yeast Mus81-Mms4. J. Biol. Chem. 278, 6928-6935 (2002).
    • (2002) J. Biol. Chem. , vol.278 , pp. 6928-6935
    • Whitby, M.C.1    Osman, F.2    Dixon, J.3
  • 73
    • 0037107402 scopus 로고    scopus 로고
    • Holliday junction resolution in human cells: Two junction endonucleases with distinct substrate specificities
    • Constantinou, A., Chen, X.-B., McGowan, C. H. & West, S. C. Holliday junction resolution in human cells: two junction endonucleases with distinct substrate specificities. EMBO J. 21, 5577-5585 (2002).
    • (2002) EMBO J. , vol.21 , pp. 5577-5585
    • Constantinou, A.1    Chen, X.-B.2    McGowan, C.H.3    West, S.C.4
  • 74
    • 84898965087 scopus 로고    scopus 로고
    • Substrate specificity of the MUS81-EME2 structure selective endonuclease
    • Pepe, A. & West, S. C. Substrate specificity of the MUS81-EME2 structure selective endonuclease. Nucleic Acids Res. 42, 3833-3845 (2013).
    • (2013) Nucleic Acids Res. , vol.42 , pp. 3833-3845
    • Pepe, A.1    West, S.C.2
  • 75
    • 84901358862 scopus 로고    scopus 로고
    • Human MUS81-EME2 can cleave a variety of DNA structures including intact Holliday junction and nicked duplex
    • Amangyeld, T., Shin, Y.-K., Lee, M., Kwon, B. & Seo, Y.-S. Human MUS81-EME2 can cleave a variety of DNA structures including intact Holliday junction and nicked duplex. Nucleic Acids Res. 42, 5846-5862 (2014).
    • (2014) Nucleic Acids Res. , vol.42 , pp. 5846-5862
    • Amangyeld, T.1    Shin, Y.-K.2    Lee, M.3    Kwon, B.4    Seo, Y.-S.5
  • 76
    • 84889088229 scopus 로고    scopus 로고
    • Resolving branched DNA intermediates with structure-specific nucleases during replication in eukaryotes
    • Rass, U. Resolving branched DNA intermediates with structure-specific nucleases during replication in eukaryotes. Chromosoma 122, 499-515 (2013).
    • (2013) Chromosoma , vol.122 , pp. 499-515
    • Rass, U.1
  • 77
    • 67649655402 scopus 로고    scopus 로고
    • Human SLX4 is a Holliday junction resolvase subunit that binds multiple DNA repair/ recombination endonucleases
    • Fekairi, S. et al. Human SLX4 is a Holliday junction resolvase subunit that binds multiple DNA repair/ recombination endonucleases. Cell 138, 78-89 (2009).
    • (2009) Cell , vol.138 , pp. 78-89
    • Fekairi, S.1
  • 78
    • 67649662604 scopus 로고    scopus 로고
    • Mammalian BTBD12/SLX4 assembles a Holliday junction resolvase and is required for DNA repair
    • Svendsen, J. M. et al. Mammalian BTBD12/SLX4 assembles a Holliday junction resolvase and is required for DNA repair. Cell 138, 63-77 (2009).
    • (2009) Cell , vol.138 , pp. 63-77
    • Svendsen, J.M.1
  • 79
    • 84873667075 scopus 로고    scopus 로고
    • RecQ helicases: Conserved guardians of genomic integrity
    • Larsen, N. B. & Hickson, I. D. RecQ helicases: conserved guardians of genomic integrity. Adv. Exp. Med. Biol. 767, 161-184 (2013).
    • (2013) Adv. Exp. Med. Biol. , vol.767 , pp. 161-184
    • Larsen, N.B.1    Hickson, I.D.2
  • 80
    • 84902187810 scopus 로고    scopus 로고
    • Human RecQ helicases in DNA repair, recombination, and replication
    • Croteau, D. L., Popuri, V., Opresko, P. L. & Bohr, V. A. Human RecQ helicases in DNA repair, recombination, and replication. Annu. Rev. Biochem. 83, 519-552 (2014).
    • (2014) Annu. Rev. Biochem. , vol.83 , pp. 519-552
    • Croteau, D.L.1    Popuri, V.2    Opresko, P.L.3    Bohr, V.A.4
  • 81
    • 77956881105 scopus 로고    scopus 로고
    • ATR and ATM differently regulate WRN to prevent DSBs at stalled replication forks and promote replication fork recovery
    • Ammazzalorso, F., Pirzio, L. M., Bignami, M., Franchitto, A. & Pichierri, P. ATR and ATM differently regulate WRN to prevent DSBs at stalled replication forks and promote replication fork recovery. EMBO J. 29, 3156-3169 (2010).
    • (2010) EMBO J. , vol.29 , pp. 3156-3169
    • Ammazzalorso, F.1    Pirzio, L.M.2    Bignami, M.3    Franchitto, A.4    Pichierri, P.5
  • 82
    • 0345824623 scopus 로고    scopus 로고
    • Asymmetry of DNA replication fork progression in Werner's syndrome
    • Rodríguez-López, A. M., Jackson, D. A., Iborra, F. & Cox, L. S. Asymmetry of DNA replication fork progression in Werner's syndrome. Aging Cell 1, 30-39 (2002).
    • (2002) Aging Cell , vol.1 , pp. 30-39
    • Rodríguez-López, A.M.1    Jackson, D.A.2    Iborra, F.3    Cox, L.S.4
  • 83
    • 33750980979 scopus 로고    scopus 로고
    • Human RECQ5 helicase promotes strand exchange on synthetic DNA structures resembling a stalled replication fork
    • Kanagaraj, R., Saydam, N., Garcia, P. L., Zheng, L. & Janscak, P. Human RECQ5 helicase promotes strand exchange on synthetic DNA structures resembling a stalled replication fork. Nucleic Acids Res. 34, 5217-5231 (2006).
    • (2006) Nucleic Acids Res. , vol.34 , pp. 5217-5231
    • Kanagaraj, R.1    Saydam, N.2    Garcia, P.L.3    Zheng, L.4    Janscak, P.5
  • 84
    • 33751581731 scopus 로고    scopus 로고
    • The Werner and Bloom syndrome proteins catalyze regression of a model replication fork
    • Machwe, A., Xiao, L., Groden, J. & Orren, D. K. The Werner and Bloom syndrome proteins catalyze regression of a model replication fork. Biochemistry 45, 13939-13946 (2006).
    • (2006) Biochemistry , vol.45 , pp. 13939-13946
    • Machwe, A.1    Xiao, L.2    Groden, J.3    Orren, D.K.4
  • 85
    • 33747352774 scopus 로고    scopus 로고
    • The Bloom's syndrome helicase can promote the regression of a model replication fork
    • Ralf, C., Hickson, I. D. & Wu, L. The Bloom's syndrome helicase can promote the regression of a model replication fork. J. Biol. Chem. 281, 22839-22846 (2006).
    • (2006) J. Biol. Chem. , vol.281 , pp. 22839-22846
    • Ralf, C.1    Hickson, I.D.2    Wu, L.3
  • 86
    • 80051512519 scopus 로고    scopus 로고
    • The Werner and Bloom syndrome proteins help resolve replication blockage by converting (regressed) holliday junctions to functional replication forks
    • Machwe, A., Karale, R., Xu, X., Liu, Y. & Orren, D. K. The Werner and Bloom syndrome proteins help resolve replication blockage by converting (regressed) holliday junctions to functional replication forks. Biochemistry 50, 6774-6788 (2011).
    • (2011) Biochemistry , vol.50 , pp. 6774-6788
    • Machwe, A.1    Karale, R.2    Xu, X.3    Liu, Y.4    Orren, D.K.5
  • 87
    • 79952779558 scopus 로고    scopus 로고
    • Molecular cooperation between the Werner syndrome protein and replication protein A in relation to replication fork blockage
    • Machwe, A., Lozada, E., Wold, M. S., Li, G.-M. & Orren, D. K. Molecular cooperation between the Werner syndrome protein and replication protein A in relation to replication fork blockage. J. Biol. Chem. 286, 3497-3508 (2011).
    • (2011) J. Biol. Chem. , vol.286 , pp. 3497-3508
    • Machwe, A.1    Lozada, E.2    Wold, M.S.3    Li, G.-M.4    Orren, D.K.5
  • 88
    • 1642458364 scopus 로고    scopus 로고
    • Phosphorylation of the Bloom's syndrome helicase and its role in recovery from S-phase arrest
    • Davies, S. L., North, P. S., Dart, A., Lakin, N. D. & Hickson, I. D. Phosphorylation of the Bloom's syndrome helicase and its role in recovery from S-phase arrest. Mol. Cell. Biol. 24, 1279-1291 (2004).
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 1279-1291
    • Davies, S.L.1    North, P.S.2    Dart, A.3    Lakin, N.D.4    Hickson, I.D.5
  • 89
    • 34447115757 scopus 로고    scopus 로고
    • Role for BLM in replication-fork restart and suppression of origin firing after replicative stress
    • Davies, S. L., North, P. S. & Hickson, I. D. Role for BLM in replication-fork restart and suppression of origin firing after replicative stress. Nature Struct. Mol. Biol. 14, 677-679 (2007).
    • (2007) Nature Struct. Mol. Biol. , vol.14 , pp. 677-679
    • Davies, S.L.1    North, P.S.2    Hickson, I.D.3
  • 90
    • 34848880201 scopus 로고    scopus 로고
    • Replication fork regression in vitro by the Werner syndrome protein (WRN): Holliday junction formation, the effect of leading arm structure and a potential role for WRN exonuclease activity
    • Machwe, A., Xiao, L., Lloyd, R. G., Bolt, E. & Orren, D. K. Replication fork regression in vitro by the Werner syndrome protein (WRN): Holliday junction formation, the effect of leading arm structure and a potential role for WRN exonuclease activity. Nucleic Acids Res. 35, 5729-5747 (2007).
    • (2007) Nucleic Acids Res. , vol.35 , pp. 5729-5747
    • Machwe, A.1    Xiao, L.2    Lloyd, R.G.3    Bolt, E.4    Orren, D.K.5
  • 91
    • 33745122231 scopus 로고    scopus 로고
    • Identification of multiple distinct Snf2 subfamilies with conserved structural motifs
    • Flaus, A., Martin, D. M. A., Barton, G. J. & Owen-Hughes, T. Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res. 34, 2887-2905 (2006).
    • (2006) Nucleic Acids Res. , vol.34 , pp. 2887-2905
    • Flaus, A.1    Martin, D.M.A.2    Barton, G.J.3    Owen-Hughes, T.4
  • 92
    • 35148847451 scopus 로고    scopus 로고
    • Yeast rad5 protein required for postreplication repair has a DNA helicase activity specific for replication fork regression
    • Blastyák, A. et al. Yeast rad5 protein required for postreplication repair has a DNA helicase activity specific for replication fork regression. Mol. Cell 28, 167-175 (2007).
    • (2007) Mol. Cell , vol.28 , pp. 167-175
    • Blastyák, A.1
  • 93
    • 41649083002 scopus 로고    scopus 로고
    • Human HLTF functions as a ubiquitin ligase for proliferating cell nuclear antigen polyubiquitination
    • Unk, I. et al. Human HLTF functions as a ubiquitin ligase for proliferating cell nuclear antigen polyubiquitination. Proc. Natl Acad. Sci. USA 105, 3768-3773 (2008).
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 3768-3773
    • Unk, I.1
  • 94
    • 84879796452 scopus 로고    scopus 로고
    • Substrate-selective repair and restart of replication forks by DNA translocases
    • Bétous, R. et al. Substrate-selective repair and restart of replication forks by DNA translocases. Cell Rep. 3, 1958-1969 (2013).
    • (2013) Cell Rep. , vol.3 , pp. 1958-1969
    • Bétous, R.1
  • 95
    • 77049127484 scopus 로고    scopus 로고
    • Role of yeast Rad5 and its human orthologs, HLTF and SHPRH in DNA damage tolerance
    • Unk, I., Hajdu, I., Blastyák, A. & Haracska, L. Role of yeast Rad5 and its human orthologs, HLTF and SHPRH in DNA damage tolerance. DNA Repair 9, 257-267 (2010).
    • (2010) DNA Repair , vol.9 , pp. 257-267
    • Unk, I.1    Hajdu, I.2    Blastyák, A.3    Haracska, L.4
  • 96
    • 75149143176 scopus 로고    scopus 로고
    • Role of double-stranded DNA translocase activity of human HLTF in replication of damaged
    • Blastyák, A., Hajdu, I., Unk, I. & Haracska, L. Role of double-stranded DNA translocase activity of human HLTF in replication of damaged DNA. Mol. Cell. Biol. 30, 684-693 (2010).
    • (2010) DNA. Mol. Cell. Biol. , vol.30 , pp. 684-693
    • Blastyák, A.1    Hajdu, I.2    Unk, I.3    Haracska, L.4
  • 97
    • 84896730048 scopus 로고    scopus 로고
    • Strand invasion by HLTF as a mechanism for template switch in fork rescue
    • Burkovics, P., Sebesta, M., Balogh, D., Haracska, L. & Krejci, L. Strand invasion by HLTF as a mechanism for template switch in fork rescue. Nucleic Acids Res. 42, 1711-1720 (2013).
    • (2013) Nucleic Acids Res. , vol.42 , pp. 1711-1720
    • Burkovics, P.1    Sebesta, M.2    Balogh, D.3    Haracska, L.4    Krejci, L.5
  • 98
    • 80052159311 scopus 로고    scopus 로고
    • Coordinated protein and DNA remodeling by human HLTF on stalled replication fork
    • Achar, Y. J., Balogh, D. & Haracska, L. Coordinated protein and DNA remodeling by human HLTF on stalled replication fork. Proc. Natl Acad. Sci. USA 108, 14073-14078 (2011).
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 14073-14078
    • Achar, Y.J.1    Balogh, D.2    Haracska, L.3
  • 99
    • 50449092205 scopus 로고    scopus 로고
    • Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks
    • Motegi, A. et al. Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks. Proc. Natl Acad. Sci. USA 105, 12411-12416 (2008).
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 12411-12416
    • Motegi, A.1
  • 100
    • 0032492853 scopus 로고    scopus 로고
    • Catalysis of homologous DNA pairing by yeast Rad51 and Rad54 proteins
    • Petukhova, G., Stratton, S. & Sung, P. Catalysis of homologous DNA pairing by yeast Rad51 and Rad54 proteins. Nature 393, 91-94 (1998).
    • (1998) Nature , vol.393 , pp. 91-94
    • Petukhova, G.1    Stratton, S.2    Sung, P.3
  • 101
    • 33746715608 scopus 로고    scopus 로고
    • Rad54 protein promotes branch migration of Holliday junctions
    • Bugreev, D. V., Mazina, O. M. & Mazin, A. V. Rad54 protein promotes branch migration of Holliday junctions. Nature 442, 590-593 (2006).
    • (2006) Nature , vol.442 , pp. 590-593
    • Bugreev, D.V.1    Mazina, O.M.2    Mazin, A.V.3
  • 102
    • 79953693899 scopus 로고    scopus 로고
    • Cooperation of RAD51 and RAD54 in regression of a model replication fork
    • Bugreev, D. V., Rossi, M. J. & Mazin, A. V. Cooperation of RAD51 and RAD54 in regression of a model replication fork. Nucleic Acids Res. 39, 2153-2164 (2011).
    • (2011) Nucleic Acids Res. , vol.39 , pp. 2153-2164
    • Bugreev, D.V.1    Rossi, M.J.2    Mazin, A.V.3
  • 103
    • 84877609865 scopus 로고    scopus 로고
    • Rad51 replication fork recruitment is required for DNA damage tolerance
    • Gonzalez-Prieto, R., Munoz-Cabello, A. M., Cabello-Lobato, M. J. & Prado, F. Rad51 replication fork recruitment is required for DNA damage tolerance. EMBO J. 32, 1307-1321 (2013).
    • (2013) EMBO J. , vol.32 , pp. 1307-1321
    • Gonzalez-Prieto, R.1    Munoz-Cabello, A.M.2    Cabello-Lobato, M.J.3    Prado, F.4
  • 104
    • 55349121223 scopus 로고    scopus 로고
    • HARP is an ATP-driven annealing helicase
    • Yusufzai, T. & Kadonaga, J. T. HARP is an ATP-driven annealing helicase. Science 322, 748-750 (2008).
    • (2008) Science , vol.322 , pp. 748-750
    • Yusufzai, T.1    Kadonaga, J.T.2
  • 105
    • 78650448305 scopus 로고    scopus 로고
    • Annealing helicase 2 (AH2), a DNA-rewinding motor with an HNH motif
    • Yusufzai, T. & Kadonaga, J. T. Annealing helicase 2 (AH2), a DNA-rewinding motor with an HNH motif. Proc. Natl Acad. Sci. USA 107, 20970-20973 (2010).
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 20970-20973
    • Yusufzai, T.1    Kadonaga, J.T.2
  • 106
    • 84856246154 scopus 로고    scopus 로고
    • SMARCAL1 catalyzes fork regression and Holliday junction migration to maintain genome stability during DNA replication
    • Betous, R. et al. SMARCAL1 catalyzes fork regression and Holliday junction migration to maintain genome stability during DNA replication. Genes Dev. 26, 151-162 (2012).
    • (2012) Genes Dev. , vol.26 , pp. 151-162
    • Betous, R.1
  • 107
    • 70350103969 scopus 로고    scopus 로고
    • The annealing helicase HARP is recruited to DNA repair sites via an interaction with RPA
    • Yusufzai, T., Kong, X., Yokomori, K. & Kadonaga, J. T. The annealing helicase HARP is recruited to DNA repair sites via an interaction with RPA. Genes Dev. 23, 2400-2404 (2009).
    • (2009) Genes Dev. , vol.23 , pp. 2400-2404
    • Yusufzai, T.1    Kong, X.2    Yokomori, K.3    Kadonaga, J.T.4
  • 108
    • 70350118815 scopus 로고    scopus 로고
    • The annealing helicase HARP protects stalled replication forks
    • Yuan, J., Ghosal, G. & Chen, J. The annealing helicase HARP protects stalled replication forks. Genes Dev. 23, 2394-2399 (2009).
    • (2009) Genes Dev. , vol.23 , pp. 2394-2399
    • Yuan, J.1    Ghosal, G.2    Chen, J.3
  • 109
    • 70350111290 scopus 로고    scopus 로고
    • The annealing helicase SMARCAL1 maintains genome integrity at stalled replication forks
    • Bansbach, C. E., Betous, R., Lovejoy, C. A., Glick, G. G. & Cortez, D. The annealing helicase SMARCAL1 maintains genome integrity at stalled replication forks. Genes Dev. 23, 2405-2414 (2009).
    • (2009) Genes Dev. , vol.23 , pp. 2405-2414
    • Bansbach, C.E.1    Betous, R.2    Lovejoy, C.A.3    Glick, G.G.4    Cortez, D.5
  • 110
    • 70350088521 scopus 로고    scopus 로고
    • The SIOD disorder protein SMARCAL1 is an RPA-interacting protein involved in replication fork restart
    • Ciccia, A. et al. The SIOD disorder protein SMARCAL1 is an RPA-interacting protein involved in replication fork restart. Genes Dev. 23, 2415-2425 (2009).
    • (2009) Genes Dev. , vol.23 , pp. 2415-2425
    • Ciccia, A.1
  • 111
    • 72149132821 scopus 로고    scopus 로고
    • Identification of SMARCAL1 as a component of the DNA damage response
    • Postow, L., Woo, E. M., Chait, B. T. & Funabiki, H. Identification of SMARCAL1 as a component of the DNA damage response. J. Biol. Chem. 284, 35951-35961 (2009).
    • (2009) J. Biol. Chem. , vol.284 , pp. 35951-35961
    • Postow, L.1    Woo, E.M.2    Chait, B.T.3    Funabiki, H.4
  • 112
    • 84893255518 scopus 로고    scopus 로고
    • Phosphorylation of a C-terminal auto-inhibitory domain increases SMARCAL1 activity
    • Carroll, C. et al. Phosphorylation of a C-terminal auto-inhibitory domain increases SMARCAL1 activity. Nucleic Acids Res. 42, 918-925 (2013).
    • (2013) Nucleic Acids Res. , vol.42 , pp. 918-925
    • Carroll, C.1
  • 113
    • 84864946159 scopus 로고    scopus 로고
    • Polyubiquitinated PCNA recruits the ZRANB3 translocase to maintain genomic integrity after replication stress
    • Ciccia, A. et al. Polyubiquitinated PCNA recruits the ZRANB3 translocase to maintain genomic integrity after replication stress. Mol. Cell 47, 396-409 (2012).
    • (2012) Mol. Cell , vol.47 , pp. 396-409
    • Ciccia, A.1
  • 114
    • 84864014165 scopus 로고    scopus 로고
    • ZRANB3 is a structure-specific ATP-dependent endonuclease involved in replication stress response
    • Weston, R., Peeters, H. & Ahel, D. ZRANB3 is a structure-specific ATP-dependent endonuclease involved in replication stress response. Genes Dev. 26, 1558-1572 (2012).
    • (2012) Genes Dev. , vol.26 , pp. 1558-1572
    • Weston, R.1    Peeters, H.2    Ahel, D.3
  • 115
    • 84864923437 scopus 로고    scopus 로고
    • The HARP-like domain-containing protein AH2/ZRANB3 binds to PCNA and participates in cellular response to replication stress
    • Yuan, J., Ghosal, G. & Chen, J. The HARP-like domain-containing protein AH2/ZRANB3 binds to PCNA and participates in cellular response to replication stress. Mol. Cell 47, 410-421 (2012).
    • (2012) Mol. Cell , vol.47 , pp. 410-421
    • Yuan, J.1    Ghosal, G.2    Chen, J.3
  • 116
    • 76749123854 scopus 로고    scopus 로고
    • The FANCM family of DNA helicases/ translocases
    • Whitby, M. C. The FANCM family of DNA helicases/ translocases. DNA Repair 9, 224-236 (2010).
    • (2010) DNA Repair , vol.9 , pp. 224-236
    • Whitby, M.C.1
  • 117
    • 38349050087 scopus 로고    scopus 로고
    • The Fanconi anemia protein FANCM can promote branch migration of Holliday junctions and replication forks
    • Gari, K., D., Ecaillet, C., Stasiak, A. Z., Stasiak, A. & Constantinou, A. The Fanconi anemia protein FANCM can promote branch migration of Holliday junctions and replication forks. Mol. Cell 29, 141-148 (2008).
    • (2008) Mol. Cell , vol.29 , pp. 141-148
    • Gari, K.D.1    Ecaillet, C.2    Stasiak, A.Z.3    Stasiak, A.4    Constantinou, A.5
  • 118
    • 55849133052 scopus 로고    scopus 로고
    • Remodeling of DNA replication structures by the branch point translocase FANCM
    • Gari, K., D., Ecaillet, C., Delannoy, M., Wu, L. & Constantinou, A. Remodeling of DNA replication structures by the branch point translocase FANCM. Proc. Natl Acad. Sci. USA 105, 16107-16112 (2008).
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 16107-16112
    • Gari, K.D.1    Ecaillet, C.2    Delannoy, M.3    Wu, L.4    Constantinou, A.5
  • 119
    • 44349174992 scopus 로고    scopus 로고
    • FANCM of the Fanconi anemia core complex is required for both monoubiquitination and DNA repair
    • Xue, Y., Li, Y., Guo, R., Ling, C. & Wang, W. FANCM of the Fanconi anemia core complex is required for both monoubiquitination and DNA repair. Hum. Mol. Genet. 17, 1641-1652 (2008).
    • (2008) Hum. Mol. Genet. , vol.17 , pp. 1641-1652
    • Xue, Y.1    Li, Y.2    Guo, R.3    Ling, C.4    Wang, W.5
  • 120
    • 84899948111 scopus 로고    scopus 로고
    • The histone-fold complex MHF is remodeled by FANCM to recognize branched DNA and protect genome stability
    • Fox, D. et al. The histone-fold complex MHF is remodeled by FANCM to recognize branched DNA and protect genome stability. Cell Res. 24, 560-575 (2014).
    • (2014) Cell Res. , vol.24 , pp. 560-575
    • Fox, D.1
  • 121
    • 84891803918 scopus 로고    scopus 로고
    • The MHF complex senses branched DNA by binding a pair of crossover DNA duplexes
    • Zhao, Q. et al. The MHF complex senses branched DNA by binding a pair of crossover DNA duplexes. Nature Commun. 5, 2987 (2014).
    • (2014) Nature Commun. , vol.5 , pp. 2987
    • Zhao, Q.1
  • 122
    • 77949701960 scopus 로고    scopus 로고
    • A histone-fold complex and FANCM form a conserved DNA-remodeling complex to maintain genome stability
    • Yan, Z. et al. A histone-fold complex and FANCM form a conserved DNA-remodeling complex to maintain genome stability. Mol. Cell 37, 865-878 (2010).
    • (2010) Mol. Cell , vol.37 , pp. 865-878
    • Yan, Z.1
  • 123
    • 77149123028 scopus 로고    scopus 로고
    • FANCM regulates DNA chain elongation and is stabilized by S-phase checkpoint signalling
    • Luke-Glaser, S., Luke, B., Grossi, S. & Constantinou, A. FANCM regulates DNA chain elongation and is stabilized by S-phase checkpoint signalling. EMBO J. 29, 795-805 (2009).
    • (2009) EMBO J. , vol.29 , pp. 795-805
    • Luke-Glaser, S.1    Luke, B.2    Grossi, S.3    Constantinou, A.4
  • 124
    • 77149135723 scopus 로고    scopus 로고
    • ATR activation and replication fork restart are defective in FANCM-deficient cells
    • Schwab, R. A., Blackford, A. N. & Niedzwiedz, W. ATR activation and replication fork restart are defective in FANCM-deficient cells. EMBO J. 29, 806-818 (2010).
    • (2010) EMBO J. , vol.29 , pp. 806-818
    • Schwab, R.A.1    Blackford, A.N.2    Niedzwiedz, W.3
  • 125
    • 84859255818 scopus 로고    scopus 로고
    • The DNA translocase activity of FANCM protects stalled replication forks
    • Blackford, A. N. et al. The DNA translocase activity of FANCM protects stalled replication forks. Hum. Mol. Genet. 21, 2005-2016 (2012).
    • (2012) Hum. Mol. Genet. , vol.21 , pp. 2005-2016
    • Blackford, A.N.1
  • 126
    • 55049111236 scopus 로고    scopus 로고
    • FANCM and FAAP24 function in ATR-mediated checkpoint signaling independently of the Fanconi anemia core complex
    • Collis, S. J. et al. FANCM and FAAP24 function in ATR-mediated checkpoint signaling independently of the Fanconi anemia core complex. Mol. Cell 32, 313-324 (2008).
    • (2008) Mol. Cell , vol.32 , pp. 313-324
    • Collis, S.J.1
  • 127
    • 77955997707 scopus 로고    scopus 로고
    • Replication termination at eukaryotic chromosomes is mediated by Top2 and occurs at genomic loci containing pausing elements
    • Fachinetti, D. et al. Replication termination at eukaryotic chromosomes is mediated by Top2 and occurs at genomic loci containing pausing elements. Mol. Cell 39, 595-605 (2010).
    • (2010) Mol. Cell , vol.39 , pp. 595-605
    • Fachinetti, D.1
  • 128
    • 77956003710 scopus 로고    scopus 로고
    • Termination at sTop2
    • Alver, R. C. & Bielinsky, A.-K. Termination at sTop2. Mol. Cell 39, 487-489 (2010).
    • (2010) Mol. Cell , vol.39 , pp. 487-489
    • Alver, R.C.1    Bielinsky, A.-K.2
  • 129
    • 84908248970 scopus 로고    scopus 로고
    • Cdc48 and a ubiquitin ligase drive disassembly of the CMG helicase at the end of DNA replication
    • Maric, M., Maculins, T., De Piccoli, G. & Labib, K. Cdc48 and a ubiquitin ligase drive disassembly of the CMG helicase at the end of DNA replication. Science 346, 1253596 (2014).
    • (2014) Science , vol.346 , pp. 1253596
    • Maric, M.1    Maculins, T.2    De Piccoli, G.3    Labib, K.4
  • 130
    • 84908257634 scopus 로고    scopus 로고
    • Polyubiquitylation drives replisome disassembly at the termination of DNA replication
    • Moreno, S. P., Bailey, R., Campion, N., Herron, S. & Gambus, A. Polyubiquitylation drives replisome disassembly at the termination of DNA replication. Science 346, 477-481 (2014).
    • (2014) Science , vol.346 , pp. 477-481
    • Moreno, S.P.1    Bailey, R.2    Campion, N.3    Herron, S.4    Gambus, A.5
  • 133
    • 0033032373 scopus 로고    scopus 로고
    • Termination of DNA replication of bacterial and plasmid chromosomes
    • Bussiere, D. E. & Bastia, D. Termination of DNA replication of bacterial and plasmid chromosomes. Mol. Microbiol. 31, 1611-1618 (1999).
    • (1999) Mol. Microbiol. , vol.31 , pp. 1611-1618
    • Bussiere, D.E.1    Bastia, D.2
  • 134
    • 56749098227 scopus 로고    scopus 로고
    • The replication fork trap and termination of chromosome replication
    • Duggin, I. G., Wake, R. G., Bell, S. D. & Hill, T. M. The replication fork trap and termination of chromosome replication. Mol. Microbiol. 70, 1323-1333 (2008).
    • (2008) Mol. Microbiol. , vol.70 , pp. 1323-1333
    • Duggin, I.G.1    Wake, R.G.2    Bell, S.D.3    Hill, T.M.4
  • 135
    • 84859255872 scopus 로고    scopus 로고
    • The role of shelterin in maintaining telomere integrity
    • Longhese, M. P., Anbalagan, S., Martina, M. & Bonetti, D. The role of shelterin in maintaining telomere integrity. Front. Biosci. 17, 1715-1728 (2012).
    • (2012) Front. Biosci. , vol.17 , pp. 1715-1728
    • Longhese, M.P.1    Anbalagan, S.2    Martina, M.3    Bonetti, D.4
  • 138
    • 33947127410 scopus 로고    scopus 로고
    • Strength in numbers: Preventing rereplication via multiple mechanisms in eukaryotic cells
    • Arias, E. E. & Walter, J. C. Strength in numbers: preventing rereplication via multiple mechanisms in eukaryotic cells. Genes Dev. 21, 497-518 (2007).
    • (2007) Genes Dev. , vol.21 , pp. 497-518
    • Arias, E.E.1    Walter, J.C.2
  • 139
    • 84857430552 scopus 로고    scopus 로고
    • Chromatin replication and epigenome maintenance
    • Alabert, C. & Groth, A. Chromatin replication and epigenome maintenance. Nature Rev. Mol. Cell. Biol. 13, 153-167 (2012).
    • (2012) Nature Rev. Mol. Cell. Biol. , vol.13 , pp. 153-167
    • Alabert, C.1    Groth, A.2
  • 141
    • 84888816884 scopus 로고    scopus 로고
    • Visualization and interpretation of eukaryotic DNA replication intermediates in vivo by electron microscopy
    • Neelsen, K. J., Ray Chaudhuri, A., Follonier, C., Herrador, R. & Lopes, M. Visualization and interpretation of eukaryotic DNA replication intermediates in vivo by electron microscopy. Methods Mol. Biol. 1094, 177-208 (2014).
    • (2014) Methods Mol. Biol. , vol.1094 , pp. 177-208
    • Neelsen, K.J.1    Ray Chaudhuri, A.2    Follonier, C.3    Herrador, R.4    Lopes, M.5
  • 142
    • 79959635260 scopus 로고    scopus 로고
    • DNA interstrand crosslink repair and cancer
    • Deans, A. J. & West, S. C. DNA interstrand crosslink repair and cancer. Nature Rev. Cancer 11, 467-480 (2011).
    • (2011) Nature Rev. Cancer , vol.11 , pp. 467-480
    • Deans, A.J.1    West, S.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.