메뉴 건너뛰기




Volumn 20, Issue 3, 2015, Pages 318-331

Machine-learning approaches in drug discovery: Methods and applications

Author keywords

[No Author keywords available]

Indexed keywords

ANTICONVULSIVE AGENT; ANTIINFLAMMATORY AGENT; ANTINEOPLASTIC AGENT; CANNABINOID DERIVATIVE; CYTOCHROME P450 INHIBITOR; DOPAMINE 1 RECEPTOR BLOCKING AGENT; ESTROGEN RECEPTOR AGONIST; HORMONE RECEPTOR STIMULATING AGENT; LIGAND; PROTEIN TYROSINE KINASE INHIBITOR; STEROID; UNCLASSIFIED DRUG;

EID: 84925400066     PISSN: 13596446     EISSN: 18785832     Source Type: Journal    
DOI: 10.1016/j.drudis.2014.10.012     Document Type: Review
Times cited : (601)

References (142)
  • 1
    • 2942555037 scopus 로고    scopus 로고
    • Applying data mining techniques to library design, lead generation and lead optimization
    • D.C. Weaver Applying data mining techniques to library design, lead generation and lead optimization Curr. Opin. Chem. Biol. 8 2004 264 270
    • (2004) Curr. Opin. Chem. Biol. , vol.8 , pp. 264-270
    • Weaver, D.C.1
  • 2
    • 58849152212 scopus 로고    scopus 로고
    • Target discovery from data mining approaches
    • Y. Yang Target discovery from data mining approaches Drug Discov. Today 14 2009 147 154
    • (2009) Drug Discov. Today , vol.14 , pp. 147-154
    • Yang, Y.1
  • 3
    • 73649101005 scopus 로고    scopus 로고
    • Visualizing the drug target landscape
    • S.J. Campbell Visualizing the drug target landscape Drug Discov. Today 15 2010 3 15
    • (2010) Drug Discov. Today , vol.15 , pp. 3-15
    • Campbell, S.J.1
  • 4
    • 77649220192 scopus 로고    scopus 로고
    • Current trends in ligand-based virtual screening: Molecular representations, data mining methods, new application areas, and performance evaluation
    • H. Geppert Current trends in ligand-based virtual screening: molecular representations, data mining methods, new application areas, and performance evaluation J. Chem. Inf. Model. 50 2010 205 216
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 205-216
    • Geppert, H.1
  • 5
    • 84864628515 scopus 로고    scopus 로고
    • Network analysis has diverse roles in drug discovery
    • S. Hasan Network analysis has diverse roles in drug discovery Drug Discov. Today 17 2012 869 874
    • (2012) Drug Discov. Today , vol.17 , pp. 869-874
    • Hasan, S.1
  • 6
    • 34548288600 scopus 로고    scopus 로고
    • Virtual screening in drug discovery: A computational perspective
    • S. Reddy Virtual screening in drug discovery: a computational perspective Curr. Prot. Pept. Sci. 8 2007 329 351
    • (2007) Curr. Prot. Pept. Sci. , vol.8 , pp. 329-351
    • Reddy, S.1
  • 7
    • 38749090154 scopus 로고    scopus 로고
    • 2D QSAR and similarity studies on cruzain inhibitors aimed at improving selectivity over cathepsin L
    • R.F. Freitas 2D QSAR and similarity studies on cruzain inhibitors aimed at improving selectivity over cathepsin L Bioorg. Med. Chem. 16 2008 838 853
    • (2008) Bioorg. Med. Chem. , vol.16 , pp. 838-853
    • Freitas, R.F.1
  • 8
    • 84880256452 scopus 로고    scopus 로고
    • Virtual screening strategies in drug discovery: A critical review
    • A. Lavecchia, and C. Di Giovanni Virtual screening strategies in drug discovery: a critical review Curr. Med. Chem. 20 2013 2839 2860
    • (2013) Curr. Med. Chem. , vol.20 , pp. 2839-2860
    • Lavecchia, A.1    Di Giovanni, C.2
  • 9
    • 0000166488 scopus 로고    scopus 로고
    • Similarity and dissimilarity: A medicinal chemist's view
    • H. Kubinyi Similarity and dissimilarity: a medicinal chemist's view Persp. Drug Discov. Des. 11 1998 225 252
    • (1998) Persp. Drug Discov. Des. , vol.11 , pp. 225-252
    • Kubinyi, H.1
  • 10
    • 84906303709 scopus 로고    scopus 로고
    • Activity cliffs in drug discovery: Dr. Jekyll or Mr. Hyde?
    • M. Cruz-Monteagudo Activity cliffs in drug discovery: Dr. Jekyll or Mr. Hyde? Drug Discov. Today 2014 http://dx.doi.org/10.1016/j.drudis.2014.02.003
    • (2014) Drug Discov. Today
    • Cruz-Monteagudo, M.1
  • 11
    • 33746931581 scopus 로고    scopus 로고
    • On outliers and activity cliffs - Why QSAR often disappoints
    • 1535-1535
    • G.M. Maggiora On outliers and activity cliffs - why QSAR often disappoints J. Chem. Inf. Model. 46 2006 1535-1535
    • (2006) J. Chem. Inf. Model. , vol.46
    • Maggiora, G.M.1
  • 12
    • 84859179256 scopus 로고    scopus 로고
    • Exploring activity cliffs in medicinal chemistry
    • D. Stumpfe, and J. Bajorath Exploring activity cliffs in medicinal chemistry J. Med. Chem. 55 2012 2932 2942
    • (2012) J. Med. Chem. , vol.55 , pp. 2932-2942
    • Stumpfe, D.1    Bajorath, J.2
  • 13
    • 33847207834 scopus 로고    scopus 로고
    • Molecular similarity analysis in virtual screening: Foundations, limitations and novel approaches
    • H. Eckert, and J. Bajorath Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches Drug Discov. Today 12 2007 225 233
    • (2007) Drug Discov. Today , vol.12 , pp. 225-233
    • Eckert, H.1    Bajorath, J.2
  • 14
    • 0036835460 scopus 로고    scopus 로고
    • Integration of virtual and high-throughput screening
    • J. Bajorath Integration of virtual and high-throughput screening Nat. Rev. Drug Discov. 1 2002 882 894
    • (2002) Nat. Rev. Drug Discov. , vol.1 , pp. 882-894
    • Bajorath, J.1
  • 15
    • 21244468757 scopus 로고    scopus 로고
    • Searching techniques for databases of two- and three-dimensional chemical structures
    • P. Willett Searching techniques for databases of two- and three-dimensional chemical structures J. Med. Chem. 48 2005 4183 4199
    • (2005) J. Med. Chem. , vol.48 , pp. 4183-4199
    • Willett, P.1
  • 16
    • 33751246188 scopus 로고    scopus 로고
    • Similarity-based virtual screening using 2D fingerprints
    • P. Willett Similarity-based virtual screening using 2D fingerprints Drug Discov. Today 11 2006 1046 1053
    • (2006) Drug Discov. Today , vol.11 , pp. 1046-1053
    • Willett, P.1
  • 17
    • 0035003352 scopus 로고    scopus 로고
    • 3-D pharmacophores in drug discovery
    • J.S. Mason 3-D pharmacophores in drug discovery Curr. Pharm. Des. 7 2001 567 597
    • (2001) Curr. Pharm. Des. , vol.7 , pp. 567-597
    • Mason, J.S.1
  • 18
    • 0037361940 scopus 로고    scopus 로고
    • Similarity searching using reduced graphs
    • V.J. Gillet Similarity searching using reduced graphs J. Chem. Inf. Comput. Sci. 43 2003 338 345
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 338-345
    • Gillet, V.J.1
  • 19
    • 0033598416 scopus 로고    scopus 로고
    • Prospective identification of biologically active structures by topomer shape similarity searching
    • R.D. Cramer Prospective identification of biologically active structures by topomer shape similarity searching J. Med. Chem. 42 1999 3919 3933
    • (1999) J. Med. Chem. , vol.42 , pp. 3919-3933
    • Cramer, R.D.1
  • 20
    • 33846212271 scopus 로고    scopus 로고
    • Comparison of shape-matching and docking as virtual screening tools
    • P.C.D. Hawkins Comparison of shape-matching and docking as virtual screening tools J. Med. Chem. 50 2007 74 82
    • (2007) J. Med. Chem. , vol.50 , pp. 74-82
    • Hawkins, P.C.D.1
  • 21
    • 37849034064 scopus 로고    scopus 로고
    • Atomic property fields: Generalized 3D pharmacophoric potential for automated ligand superposition, pharmacophore elucidation and 3D QSAR
    • M. Totrov Atomic property fields: generalized 3D pharmacophoric potential for automated ligand superposition, pharmacophore elucidation and 3D QSAR Chem. Biol. Drug. Des. 71 2008 15 27
    • (2008) Chem. Biol. Drug. Des. , vol.71 , pp. 15-27
    • Totrov, M.1
  • 22
    • 84872225145 scopus 로고    scopus 로고
    • Compound activity prediction using models of binding pockets or ligand properties in 3D
    • I. Kufareva Compound activity prediction using models of binding pockets or ligand properties in 3D Curr. Top. Med. Chem. 12 2012 1869 1882
    • (2012) Curr. Top. Med. Chem. , vol.12 , pp. 1869-1882
    • Kufareva, I.1
  • 23
    • 84904993806 scopus 로고    scopus 로고
    • Machine learning methods in chemoinformatics
    • J.B.O. Mitchell Machine learning methods in chemoinformatics WIREs Comput. Mol. Sci. 4 2014 468 481
    • (2014) WIREs Comput. Mol. Sci. , vol.4 , pp. 468-481
    • Mitchell, J.B.O.1
  • 25
    • 0035292795 scopus 로고    scopus 로고
    • Selected concepts and investigations in compound classification, molecular descriptor analysis, and virtual screening
    • J. Bajorath Selected concepts and investigations in compound classification, molecular descriptor analysis, and virtual screening J. Chem. Inf. Comput. 41 2001 233 245
    • (2001) J. Chem. Inf. Comput. , vol.41 , pp. 233-245
    • Bajorath, J.1
  • 26
    • 3242672755 scopus 로고    scopus 로고
    • Approaches to target class combinatorial library design. Chemoinformatics
    • D. Schnur Approaches to target class combinatorial library design. chemoinformatics Methods Mol. Biol. 275 2004 355 378
    • (2004) Methods Mol. Biol. , vol.275 , pp. 355-378
    • Schnur, D.1
  • 27
    • 0016381211 scopus 로고
    • Substructural analysis. A novel approach to the problem of drug design
    • R.D. Cramer Substructural analysis. A novel approach to the problem of drug design J. Med. Chem. 17 1974 533 535
    • (1974) J. Med. Chem. , vol.17 , pp. 533-535
    • Cramer, R.D.1
  • 32
    • 0345548661 scopus 로고    scopus 로고
    • Comparison of support vector machine and artificial neural network systems for drug/nondrug classification
    • E. Byvatov Comparison of support vector machine and artificial neural network systems for drug/nondrug classification J. Chem. Inf. Comput. Sci. 43 2003 1882 1889
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 1882-1889
    • Byvatov, E.1
  • 33
    • 0344254815 scopus 로고    scopus 로고
    • Drug discovery using support vector machines the case studies of drug-likeness, agrochemical-likeness, and enzyme inhibition predictions
    • V.V. Zernov Drug discovery using support vector machines the case studies of drug-likeness, agrochemical-likeness, and enzyme inhibition predictions J. Chem. Inf. Comput. Sci. 43 2003 2048 2056
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 2048-2056
    • Zernov, V.V.1
  • 34
    • 0037365194 scopus 로고    scopus 로고
    • Active learning with support vector machines in the drug discovery process
    • M.K. Warmuth Active learning with support vector machines in the drug discovery process J. Chem. Inf. Comput. Sci. 43 2003 667 673
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 667-673
    • Warmuth, M.K.1
  • 35
    • 20444410410 scopus 로고    scopus 로고
    • Virtual screening of molecular databases using a support vector machine
    • R.N. Jorissen, and M.K. Gilson Virtual screening of molecular databases using a support vector machine J. Chem. Inf. Model. 45 2005 549 561
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 549-561
    • Jorissen, R.N.1    Gilson, M.K.2
  • 36
    • 77954054048 scopus 로고    scopus 로고
    • Assessing synthetic accessibility of chemical compounds using machine learning methods
    • Y. Podolyan Assessing synthetic accessibility of chemical compounds using machine learning methods J. Chem. Inf. Model. 50 2010 979 991
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 979-991
    • Podolyan, Y.1
  • 37
    • 79952229990 scopus 로고    scopus 로고
    • Binary classification of aqueous solubility using support vector machines with reduction and recombination feature selection
    • T. Cheng Binary classification of aqueous solubility using support vector machines with reduction and recombination feature selection J. Chem. Inf. Model. 51 2011 229 236
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 229-236
    • Cheng, T.1
  • 38
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • G. Camps-Valls, and L. Bruzzone Kernel-based methods for hyperspectral image classification IEEE Trans. Geosci. Remote Sens. 43 2005 1351 1362
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 39
    • 79952170351 scopus 로고    scopus 로고
    • Large-scale learning of structure-activity relationships using a linear support vector machine and problem-specific metrics
    • G. Hinselmann Large-scale learning of structure-activity relationships using a linear support vector machine and problem-specific metrics J. Chem. Inf. Model. 51 2011 203 213
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 203-213
    • Hinselmann, G.1
  • 40
    • 33745756516 scopus 로고    scopus 로고
    • The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM
    • G.M. Foody, and A. Mathur The use of small training sets containing mixed pixels for accurate hard image classification: training on mixed spectral responses for classification by a SVM Remote Sens. Environ. 103 2006 179 189
    • (2006) Remote Sens. Environ. , vol.103 , pp. 179-189
    • Foody, G.M.1    Mathur, A.2
  • 41
    • 44449107147 scopus 로고    scopus 로고
    • Support-vector-machine-based ranking significantly improves the effectiveness of similarity searching using 2D fingerprints and multiple reference compounds
    • H. Geppert Support-vector-machine-based ranking significantly improves the effectiveness of similarity searching using 2D fingerprints and multiple reference compounds J. Chem. Inf. Model. 48 2008 742 746
    • (2008) J. Chem. Inf. Model. , vol.48 , pp. 742-746
    • Geppert, H.1
  • 42
    • 77952768125 scopus 로고    scopus 로고
    • Ranking chemical structures for drug discovery: A new machine learning approach
    • S. Agarwal Ranking chemical structures for drug discovery: a new machine learning approach J. Chem. Inf. Model. 50 2010 716 731
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 716-731
    • Agarwal, S.1
  • 43
    • 79952593481 scopus 로고    scopus 로고
    • StructRank: A new approach for ligand-based virtual screening
    • F. Rathke StructRank: a new approach for ligand-based virtual screening J. Chem. Inf. Model. 51 2011 83 92
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 83-92
    • Rathke, F.1
  • 44
    • 52749098733 scopus 로고    scopus 로고
    • Virtual screening of GPCRs: An in silico chemogenomics approach
    • L. Jacob Virtual screening of GPCRs: an in silico chemogenomics approach BMC Bioinformatics 9 2008 363
    • (2008) BMC Bioinformatics , vol.9 , pp. 363
    • Jacob, L.1
  • 45
    • 52749085437 scopus 로고    scopus 로고
    • Protein-ligand interaction prediction: An improved chemogenomics approach
    • L. Jacob, and J.-P. Vert Protein-ligand interaction prediction: an improved chemogenomics approach Bioinformatics 24 2008 2149 2156
    • (2008) Bioinformatics , vol.24 , pp. 2149-2156
    • Jacob, L.1    Vert, J.-P.2
  • 46
    • 51349131079 scopus 로고    scopus 로고
    • Machine learning for in silico virtual screening and chemical genomics: New strategies
    • J.-P. Vert, and L. Jacob Machine learning for in silico virtual screening and chemical genomics: new strategies Comb. Chem. High. Throughput Screen. 11 2008 677 685
    • (2008) Comb. Chem. High. Throughput Screen. , vol.11 , pp. 677-685
    • Vert, J.-P.1    Jacob, L.2
  • 47
    • 9444266406 scopus 로고    scopus 로고
    • On graph kernels: Hardness results and efficient alternatives
    • B. Schölkopf, M.K. Warmuth, Springer-Verlag
    • T. Gärtner On graph kernels: hardness results and efficient alternatives B. Schölkopf, M.K. Warmuth, Learning Theory and Kernel Machines 2003 Springer-Verlag 129 143
    • (2003) Learning Theory and Kernel Machines , pp. 129-143
    • Gärtner, T.1
  • 49
    • 23844480138 scopus 로고    scopus 로고
    • Graph kernels for chemical informatics
    • L. Ralaivola Graph kernels for chemical informatics Neural Netw. 18 2005 1093 1110
    • (2005) Neural Netw. , vol.18 , pp. 1093-1110
    • Ralaivola, L.1
  • 50
    • 33750294461 scopus 로고    scopus 로고
    • The pharmacophore kernel for virtual screening with support vector machines
    • P. Mahé The pharmacophore kernel for virtual screening with support vector machines J. Chem. Inf. Model. 46 2006 2003 2014
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 2003-2014
    • Mahé, P.1
  • 51
    • 34250813174 scopus 로고    scopus 로고
    • One-to four-dimensional kernels for virtual screening and the prediction of physical, chemical, and biological properties
    • C.-A. Azencott One-to four-dimensional kernels for virtual screening and the prediction of physical, chemical, and biological properties J. Chem. Inf. Model. 47 2007 965 974
    • (2007) J. Chem. Inf. Model. , vol.47 , pp. 965-974
    • Azencott, C.-A.1
  • 52
    • 33646251586 scopus 로고    scopus 로고
    • Collaborative filtering on a family of biological targets
    • D. Erhan Collaborative filtering on a family of biological targets J. Chem. Inf. Model. 46 2006 626 635
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 626-635
    • Erhan, D.1
  • 53
    • 70350495651 scopus 로고    scopus 로고
    • Ligand prediction for orphan targets using support vector machines and various target-ligand kernels is dominated by nearest neighbor effects
    • A.M. Wassermann Ligand prediction for orphan targets using support vector machines and various target-ligand kernels is dominated by nearest neighbor effects J. Chem. Inf. Model. 49 2009 2155 2167
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 2155-2167
    • Wassermann, A.M.1
  • 54
    • 79960721268 scopus 로고    scopus 로고
    • Enhancing the accuracy of chemogenomic models with a three-dimensional binding site kernel
    • J. Meslamani, and D. Rognan Enhancing the accuracy of chemogenomic models with a three-dimensional binding site kernel J. Chem. Inf. Model. 5 2011 1593 1603
    • (2011) J. Chem. Inf. Model. , vol.5 , pp. 1593-1603
    • Meslamani, J.1    Rognan, D.2
  • 55
    • 84866700901 scopus 로고    scopus 로고
    • Prediction of activity cliffs using support vector machines
    • K. Heikamp Prediction of activity cliffs using support vector machines J. Chem. Inf. Model. 52 2012 2354 2365
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 2354-2365
    • Heikamp, K.1
  • 56
    • 80255135618 scopus 로고    scopus 로고
    • Brainstorming: Weighted voting prediction of inhibitors for protein targets
    • D. Plewczynski Brainstorming: weighted voting prediction of inhibitors for protein targets J. Mol. Model. 17 2011 2133 2141
    • (2011) J. Mol. Model. , vol.17 , pp. 2133-2141
    • Plewczynski, D.1
  • 57
    • 79960245348 scopus 로고    scopus 로고
    • Classification of cytochrome P450 inhibitors and noninhibitors using combined classifiers
    • F. Cheng Classification of cytochrome P450 inhibitors and noninhibitors using combined classifiers J. Chem. Inf. Model. 51 2011 99 1011
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 99-1011
    • Cheng, F.1
  • 58
    • 80052931564 scopus 로고    scopus 로고
    • Combined SVM-based and docking-based virtual screening for retrieving novel inhibitors of c-Met
    • Q.-Q. Xie Combined SVM-based and docking-based virtual screening for retrieving novel inhibitors of c-Met Eur. J. Med. Chem. 46 2011 3675 3680
    • (2011) Eur. J. Med. Chem. , vol.46 , pp. 3675-3680
    • Xie, Q.-Q.1
  • 59
    • 84884576643 scopus 로고    scopus 로고
    • Computational profiling of bioactive compounds using a target-dependent composite workflow
    • J. Meslamani Computational profiling of bioactive compounds using a target-dependent composite workflow J. Chem. Inf. Model. 53 2013 2322 2333
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 2322-2333
    • Meslamani, J.1
  • 60
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • M. Tipping Sparse Bayesian learning and the relevance vector machine J. Mach. Learn. Res. 1 2001 211 244
    • (2001) J. Mach. Learn. Res. , vol.1 , pp. 211-244
    • Tipping, M.1
  • 61
    • 79960707576 scopus 로고    scopus 로고
    • Classifying molecules using a sparse probabilistic kernel binary classifier
    • R. Lowe Classifying molecules using a sparse probabilistic kernel binary classifier J. Chem. Inf. Model. 51 2011 1539 1544
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 1539-1544
    • Lowe, R.1
  • 62
    • 54949134905 scopus 로고    scopus 로고
    • Chemical substructures that enrich for biological activity
    • J. Klekota, and F.P. Roth Chemical substructures that enrich for biological activity Bioinformatics 24 2008 2518 2525
    • (2008) Bioinformatics , vol.24 , pp. 2518-2525
    • Klekota, J.1    Roth, F.P.2
  • 63
    • 42149109229 scopus 로고    scopus 로고
    • Gradual in silico filtering for druglike substances
    • N. Schneider Gradual in silico filtering for druglike substances J. Chem. Inf. Model. 48 2008 613 628
    • (2008) J. Chem. Inf. Model. , vol.48 , pp. 613-628
    • Schneider, N.1
  • 64
    • 37249042636 scopus 로고    scopus 로고
    • ADME evaluation in drug discovery. 8 the prediction of human intestinal absorption by a support vector machine
    • T. Hou ADME evaluation in drug discovery. 8 the prediction of human intestinal absorption by a support vector machine J. Chem. Inf. Model. 47 2007 2408 2415
    • (2007) J. Chem. Inf. Model. , vol.47 , pp. 2408-2415
    • Hou, T.1
  • 65
    • 33745373904 scopus 로고    scopus 로고
    • Classification tree models for the prediction of blood-brain barrier passage of drugs
    • E. Deconinck Classification tree models for the prediction of blood-brain barrier passage of drugs J. Chem. Inf. Model. 46 2006 1410 1419
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 1410-1419
    • Deconinck, E.1
  • 66
    • 33645404135 scopus 로고    scopus 로고
    • In silico human and rat Vss quantitative structure-activity relationship models
    • M.P. Gleeson In silico human and rat Vss quantitative structure-activity relationship models J. Med. Chem. 49 2006 1953 1963
    • (2006) J. Med. Chem. , vol.49 , pp. 1953-1963
    • Gleeson, M.P.1
  • 67
    • 44049092515 scopus 로고    scopus 로고
    • Straightforward recursive partitioning model for discarding insoluble compounds in the drug discovery process
    • C. Lamanna Straightforward recursive partitioning model for discarding insoluble compounds in the drug discovery process J. Med. Chem. 51 2008 2891 2897
    • (2008) J. Med. Chem. , vol.51 , pp. 2891-2897
    • Lamanna, C.1
  • 68
    • 33745341752 scopus 로고    scopus 로고
    • Combinatorial QSAR modeling of P-glycoprotein substrates
    • P. de Cerqueira Lima Combinatorial QSAR modeling of P-glycoprotein substrates J. Chem. Inf. Model. 46 2006 1245 1254
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 1245-1254
    • De Cerqueira Lima, P.1
  • 69
    • 31444431893 scopus 로고    scopus 로고
    • A recursive-partitioning model for blood-brain barrier permeation
    • S.R. Mente A recursive-partitioning model for blood-brain barrier permeation J. Comput. Aided Mol. Des. 19 2005 465 481
    • (2005) J. Comput. Aided Mol. Des. , vol.19 , pp. 465-481
    • Mente, S.R.1
  • 70
    • 37349114485 scopus 로고    scopus 로고
    • Predicting human liver microsomal stability with machine learning techniques
    • Y. Sakiyama Predicting human liver microsomal stability with machine learning techniques J. Mol. Graph. Model. 26 2008 907 915
    • (2008) J. Mol. Graph. Model. , vol.26 , pp. 907-915
    • Sakiyama, Y.1
  • 71
    • 0028202408 scopus 로고
    • Representation design and brute-force induction in a Boeing manufacturing design
    • P. Riddle Representation design and brute-force induction in a Boeing manufacturing design Appl. Artif. Intell. 8 1994 125 147
    • (1994) Appl. Artif. Intell. , vol.8 , pp. 125-147
    • Riddle, P.1
  • 73
    • 3943113604 scopus 로고    scopus 로고
    • Theoretical comparison between the Gini Index and Information Gain criteria
    • L.E. Raileanu, and K. Stoffel Theoretical comparison between the Gini Index and Information Gain criteria Ann. Math. Artif. Intell. 41 2004 77 93
    • (2004) Ann. Math. Artif. Intell. , vol.41 , pp. 77-93
    • Raileanu, L.E.1    Stoffel, K.2
  • 74
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • T.K. Ho The random subspace method for constructing decision forests ITPAM 20 1998 832 844
    • (1998) ITPAM , vol.20 , pp. 832-844
    • Ho, T.K.1
  • 75
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman Bagging predictors Mach. Learn. 24 1996 123 140
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 77
    • 0030196364 scopus 로고    scopus 로고
    • Stacked regressions
    • L. Breiman Stacked regressions Mach. Learn. 24 1996 49 64
    • (1996) Mach. Learn. , vol.24 , pp. 49-64
    • Breiman, L.1
  • 78
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman Random forests Mach. Learn. 45 2001 5 32
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 79
    • 0345548657 scopus 로고    scopus 로고
    • Random forest: A classification and regression tool for compound classification and QSAR modelling
    • V. Svetnik Random forest: a classification and regression tool for compound classification and QSAR modelling J. Chem. Inf. Comput. Sci. 43 2003 1947 1958
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 1947-1958
    • Svetnik, V.1
  • 80
    • 0037365123 scopus 로고    scopus 로고
    • Decision forest: Combining the predictions of multiple independent decision tree models
    • W.D. Tong Decision forest: combining the predictions of multiple independent decision tree models J. Chem. Inf. Comput. Sci. 43 2003 525 531
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 525-531
    • Tong, W.D.1
  • 81
    • 77952825581 scopus 로고    scopus 로고
    • A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking
    • P.J. Ballester, and J.B.O. Mitchell A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking Bioinformatics 26 2010 1169 1175
    • (2010) Bioinformatics , vol.26 , pp. 1169-1175
    • Ballester, P.J.1    Mitchell, J.B.O.2
  • 82
    • 34247262566 scopus 로고    scopus 로고
    • Supervised consensus scoring for docking and virtual screening
    • R. Teramoto, and H. Fukunishi Supervised consensus scoring for docking and virtual screening J. Chem. Inf. Model. 47 2007 526 534
    • (2007) J. Chem. Inf. Model. , vol.47 , pp. 526-534
    • Teramoto, R.1    Fukunishi, H.2
  • 83
    • 27444445346 scopus 로고    scopus 로고
    • PostDOCK: A structural, empirical approach to scoring protein ligand complexes
    • C. Springer PostDOCK: a structural, empirical approach to scoring protein ligand complexes J. Med. Chem. 48 2005 6821 6831
    • (2005) J. Med. Chem. , vol.48 , pp. 6821-6831
    • Springer, C.1
  • 84
    • 0027385177 scopus 로고
    • Matching chemistry and shape in molecular docking
    • B.K. Shoichet, and I.D. Kuntz Matching chemistry and shape in molecular docking Protein Eng. 6 1993 723 732
    • (1993) Protein Eng. , vol.6 , pp. 723-732
    • Shoichet, B.K.1    Kuntz, I.D.2
  • 85
    • 75749126524 scopus 로고    scopus 로고
    • Combining machine learning and pharmacophore-based interaction fingerprint for in silico screening
    • T. Sato Combining machine learning and pharmacophore-based interaction fingerprint for in silico screening J. Chem. Inf. Model. 50 2010 170 185
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 170-185
    • Sato, T.1
  • 86
    • 33646266941 scopus 로고    scopus 로고
    • Toxicity-indicating structural patterns
    • M. von Korff, and T. Sander Toxicity-indicating structural patterns J. Chem. Inf. Model. 46 2006 536 544
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 536-544
    • Von Korff, M.1    Sander, T.2
  • 87
    • 84862651254 scopus 로고    scopus 로고
    • Predicting the mechanism of phospholipidosis
    • R. Lowe Predicting the mechanism of phospholipidosis J. Cheminformatics 4 2012 2
    • (2012) J. Cheminformatics , vol.4 , pp. 2
    • Lowe, R.1
  • 88
    • 84883239935 scopus 로고    scopus 로고
    • In silico target predictions: Defining a benchmarking dataset and comparison of performance of the multiclass Naïve Bayes and Parzen-Rosenblatt Window
    • A. Koutsoukas In silico target predictions: defining a benchmarking dataset and comparison of performance of the multiclass Naïve Bayes and Parzen-Rosenblatt Window J. Chem. Inf. Model. 53 2013 1957 1966
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1957-1966
    • Koutsoukas, A.1
  • 89
    • 58149116805 scopus 로고    scopus 로고
    • Ligand-target prediction using Winnow and naïve Bayesian algorithms and the implications of overall performance statistics
    • F. Nigsch Ligand-target prediction using Winnow and naïve Bayesian algorithms and the implications of overall performance statistics J. Chem. Inf. Model. 48 2008 2313 2325
    • (2008) J. Chem. Inf. Model. , vol.48 , pp. 2313-2325
    • Nigsch, F.1
  • 90
    • 0034300831 scopus 로고    scopus 로고
    • Technical note: Naïve Bayes for regression
    • E. Frank Technical note: naïve Bayes for regression Mach. Learn. 41 2000 5 25
    • (2000) Mach. Learn. , vol.41 , pp. 5-25
    • Frank, E.1
  • 92
    • 0001655091 scopus 로고
    • A generalization of Bayesian Inference
    • A.P. Dempster A generalization of Bayesian Inference J. Royal Stat. Soc. B 30 1968 205 247
    • (1968) J. Royal Stat. Soc. B , vol.30 , pp. 205-247
    • Dempster, A.P.1
  • 93
    • 39449088858 scopus 로고    scopus 로고
    • Naïve Bayes classification using 2D pharmacophore feature triplet vectors
    • P. Watson Naïve Bayes classification using 2D pharmacophore feature triplet vectors J. Chem. Inf. Model. 48 2008 166 178
    • (2008) J. Chem. Inf. Model. , vol.48 , pp. 166-178
    • Watson, P.1
  • 94
    • 35248878132 scopus 로고    scopus 로고
    • Prediction of ion channel activity using binary kernel discrimination
    • P. Willett Prediction of ion channel activity using binary kernel discrimination J. Chem. Inf. Model. 47 2007 1961 1966
    • (2007) J. Chem. Inf. Model. , vol.47 , pp. 1961-1966
    • Willett, P.1
  • 95
    • 77954043914 scopus 로고    scopus 로고
    • Ligand-based virtual screening using Bayesian networks
    • A. Abdo Ligand-based virtual screening using Bayesian networks J. Chem. Inf. Model. 50 2010 1012 1020
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 1012-1020
    • Abdo, A.1
  • 96
    • 0002226399 scopus 로고    scopus 로고
    • Bayesian model selection and model averaging
    • L. Wasserman Bayesian model selection and model averaging J. Math. Psychol. 44 2000 92 107
    • (2000) J. Math. Psychol. , vol.44 , pp. 92-107
    • Wasserman, L.1
  • 97
    • 67650085842 scopus 로고    scopus 로고
    • Bayesian model averaging for ligand discovery
    • N. Angelopoulos Bayesian model averaging for ligand discovery J. Chem. Inf. Model. 49 2009 1547 1557
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 1547-1557
    • Angelopoulos, N.1
  • 98
    • 60849101543 scopus 로고    scopus 로고
    • Similarity-based virtual screening with a Bayesian inference network
    • A. Abdo, and N. Salim Similarity-based virtual screening with a Bayesian inference network ChemMedChem 4 2009 210 218
    • (2009) ChemMedChem , vol.4 , pp. 210-218
    • Abdo, A.1    Salim, N.2
  • 99
    • 84555194677 scopus 로고    scopus 로고
    • Activity-aware clustering of high throughput screening data and elucidation of orthogonal structure-activity relationships
    • E. Lounkine Activity-aware clustering of high throughput screening data and elucidation of orthogonal structure-activity relationships J. Chem. Inf. Model. 51 2011 3158 3168
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 3158-3168
    • Lounkine, E.1
  • 100
    • 0035498337 scopus 로고    scopus 로고
    • QSAR and k-nearest neighbor classification analysis of selective cyclooxygenase-2 inhibitors using topologically-based numerical descriptors
    • G.W. Kauffman, and P.C. Jurs QSAR and k-nearest neighbor classification analysis of selective cyclooxygenase-2 inhibitors using topologically-based numerical descriptors J. Chem. Inf. Comp. Sci. 41 2001 1553 1560
    • (2001) J. Chem. Inf. Comp. Sci. , vol.41 , pp. 1553-1560
    • Kauffman, G.W.1    Jurs, P.C.2
  • 101
    • 34547666859 scopus 로고    scopus 로고
    • Benchmarking of QSAR models for blood-brain barrier permeation
    • D.A. Konovalov Benchmarking of QSAR models for blood-brain barrier permeation J. Chem. Inf. Comp. Sci. 47 2007 1648 1656
    • (2007) J. Chem. Inf. Comp. Sci. , vol.47 , pp. 1648-1656
    • Konovalov, D.A.1
  • 102
    • 6444224986 scopus 로고    scopus 로고
    • Three new consensus QSAR models for the prediction of Ames genotoxicity
    • J.R. Votano Three new consensus QSAR models for the prediction of Ames genotoxicity Mutagenesis 19 2004 365 377
    • (2004) Mutagenesis , vol.19 , pp. 365-377
    • Votano, J.R.1
  • 103
    • 33845748728 scopus 로고    scopus 로고
    • Melting point prediction employing k-nearest neighbor algorithms and genetic parameter optimization
    • F. Nigsch Melting point prediction employing k-nearest neighbor algorithms and genetic parameter optimization J. Chem. Inf. Model. 46 2006 2412 2422
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 2412-2422
    • Nigsch, F.1
  • 104
    • 84860154266 scopus 로고    scopus 로고
    • EnzML: Multi-label prediction of enzyme classes using InterPro signatures
    • L. De Ferrari EnzML: multi-label prediction of enzyme classes using InterPro signatures BMC Bioinf. 13 2012 61
    • (2012) BMC Bioinf. , vol.13 , pp. 61
    • De Ferrari, L.1
  • 105
    • 20444407285 scopus 로고    scopus 로고
    • K-nearest neighbors QSAR modeling as a variational problem: Theory and applications
    • P. Itskowitz, and A. Tropsha k-nearest neighbors QSAR modeling as a variational problem: theory and applications J. Chem. Inf. Model. 45 2005 777 785
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 777-785
    • Itskowitz, P.1    Tropsha, A.2
  • 106
    • 20444489197 scopus 로고    scopus 로고
    • Classifying "kinase inhibitor likeness" by using machine-learning methods
    • H. Briem, and J. Günther Classifying "kinase inhibitor likeness" by using machine-learning methods Chembiochem 6 2005 558 566
    • (2005) Chembiochem , vol.6 , pp. 558-566
    • Briem, H.1    Günther, J.2
  • 107
    • 22144451452 scopus 로고    scopus 로고
    • A study on the influence of molecular properties in the psychoactivity of cannabinoid compounds
    • K.M. Honório, and A.B. da Silva A study on the influence of molecular properties in the psychoactivity of cannabinoid compounds J. Mol. Model. 11 2005 200 209
    • (2005) J. Mol. Model. , vol.11 , pp. 200-209
    • Honório, K.M.1    Da Silva, A.B.2
  • 108
    • 33244481088 scopus 로고    scopus 로고
    • Three-dimensional QSAR using the k-nearest neighbor method and its interpretation
    • S. Ajmani Three-dimensional QSAR using the k-nearest neighbor method and its interpretation J. Chem. Inf. Model. 46 2006 24 31
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 24-31
    • Ajmani, S.1
  • 109
    • 33750982700 scopus 로고    scopus 로고
    • Prediction of estrogen receptor agonists and characterization of associated molecular descriptors by statistical learning methods
    • H. Li Prediction of estrogen receptor agonists and characterization of associated molecular descriptors by statistical learning methods J. Mol. Graph. Model. 25 2006 313 323
    • (2006) J. Mol. Graph. Model. , vol.25 , pp. 313-323
    • Li, H.1
  • 110
    • 84875434222 scopus 로고    scopus 로고
    • Introduction to the artificial neural networks and their applications in QSAR studies
    • J. Patel, and C. Chaudhari Introduction to the artificial neural networks and their applications in QSAR studies ALTEX 22 2005 271
    • (2005) ALTEX , vol.22 , pp. 271
    • Patel, J.1    Chaudhari, C.2
  • 111
    • 84875462263 scopus 로고    scopus 로고
    • Artificial neural networks and their applications in pharmaceutical research
    • J.L. Patel, and L.D. Patel Artificial neural networks and their applications in pharmaceutical research Pharmabuzz. 2 2007 8 17
    • (2007) Pharmabuzz. , vol.2 , pp. 8-17
    • Patel, J.L.1    Patel, L.D.2
  • 112
    • 34948835662 scopus 로고    scopus 로고
    • Applications of artificial neural networks in medical science
    • J.L. Patel, and R.K. Goyal Applications of artificial neural networks in medical science Curr. Clin. Pharmacol. 2 2007 217 226
    • (2007) Curr. Clin. Pharmacol. , vol.2 , pp. 217-226
    • Patel, J.L.1    Goyal, R.K.2
  • 113
    • 79959924555 scopus 로고    scopus 로고
    • Intelligent control based on wavelet decomposition and neural network for predicting of human trajectories with a novel vision-based robotic
    • S. Soyguder Intelligent control based on wavelet decomposition and neural network for predicting of human trajectories with a novel vision-based robotic Expert Syst. Appl. 38 2011 13994 14000
    • (2011) Expert Syst. Appl. , vol.38 , pp. 13994-14000
    • Soyguder, S.1
  • 114
    • 37149042923 scopus 로고    scopus 로고
    • The state of play in machine/environment interactions
    • M.J. Aitkenhead, and A.J.S. McDonald The state of play in machine/environment interactions Artif. Intell. Rev. 25 2006 247 276
    • (2006) Artif. Intell. Rev. , vol.25 , pp. 247-276
    • Aitkenhead, M.J.1    McDonald, A.J.S.2
  • 115
    • 45949096079 scopus 로고    scopus 로고
    • Computational intelligence approaches for pattern discovery in biological systems
    • G.B. Fogel Computational intelligence approaches for pattern discovery in biological systems Brief Bioinform. 9 2008 307 316
    • (2008) Brief Bioinform. , vol.9 , pp. 307-316
    • Fogel, G.B.1
  • 116
    • 32244437883 scopus 로고    scopus 로고
    • Toward physics of the mind: Concepts, emotions, consciousness, and symbols
    • L.I. Perlovsky Toward physics of the mind: concepts, emotions, consciousness, and symbols Phys. Life. Rev. 3 2006 23 55
    • (2006) Phys. Life. Rev. , vol.3 , pp. 23-55
    • Perlovsky, L.I.1
  • 118
    • 37249061630 scopus 로고    scopus 로고
    • Ligand-based virtual screening by novelty detection with self-organizing maps
    • D. Hristozov Ligand-based virtual screening by novelty detection with self-organizing maps J. Chem. Inf. Model. 47 2007 2044 2062
    • (2007) J. Chem. Inf. Model. , vol.47 , pp. 2044-2062
    • Hristozov, D.1
  • 119
    • 84866235733 scopus 로고    scopus 로고
    • Using self-organizing maps to accelerate similarity search
    • F. Bonachera Using self-organizing maps to accelerate similarity search Bioorg. Med. Chem. 20 2012 5396 5409
    • (2012) Bioorg. Med. Chem. , vol.20 , pp. 5396-5409
    • Bonachera, F.1
  • 120
    • 0028864978 scopus 로고
    • Neural networks with counter-propagation learning strategy used for modelling
    • J. Zupan Neural networks with counter-propagation learning strategy used for modelling Chemom. Intell. Lab. Syst. 27 1995 175 187
    • (1995) Chemom. Intell. Lab. Syst. , vol.27 , pp. 175-187
    • Zupan, J.1
  • 121
    • 33645242166 scopus 로고    scopus 로고
    • Kohonen artificial neural network and counter propagation neural network in molecular structure-toxicity studies
    • M. Vracko Kohonen artificial neural network and counter propagation neural network in molecular structure-toxicity studies Curr. Comput. Aided Drug Des. 1 2005 73 78
    • (2005) Curr. Comput. Aided Drug Des. , vol.1 , pp. 73-78
    • Vracko, M.1
  • 122
    • 0023515080 scopus 로고
    • Counterpropagation networks
    • R. Hecht-Nielsen Counterpropagation networks Appl. Optics 26 1987 4979 4984
    • (1987) Appl. Optics , vol.26 , pp. 4979-4984
    • Hecht-Nielsen, R.1
  • 125
    • 79151478389 scopus 로고    scopus 로고
    • Ligand-based virtual screening procedure for the prediction and the identification of novel beta-amyloid aggregation inhibitors using Kohonen maps and counterpropagation artificial neural networks
    • A. Afantitis Ligand-based virtual screening procedure for the prediction and the identification of novel beta-amyloid aggregation inhibitors using Kohonen maps and counterpropagation artificial neural networks Eur. J. Med. Chem. 46 2011 497 508
    • (2011) Eur. J. Med. Chem. , vol.46 , pp. 497-508
    • Afantitis, A.1
  • 126
    • 33845760580 scopus 로고    scopus 로고
    • Applications of self-organizing neural networks in virtual screening and diversity selection
    • P. Selzer, and P. Ertl Applications of self-organizing neural networks in virtual screening and diversity selection J. Chem. Inf. Model. 46 2006 2319 2323
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 2319-2323
    • Selzer, P.1    Ertl, P.2
  • 127
    • 1542435010 scopus 로고    scopus 로고
    • A SOM projection technique with the growing structure for visualizing high-dimensional data
    • Z. Wu, and G.G. Yen A SOM projection technique with the growing structure for visualizing high-dimensional data Int. J. Neural Syst. 13 2003 353 365
    • (2003) Int. J. Neural Syst. , vol.13 , pp. 353-365
    • Wu, Z.1    Yen, G.G.2
  • 128
    • 67349138521 scopus 로고    scopus 로고
    • SOM of SOMs
    • T. Furukawa SOM of SOMs Neural Netw. 22 2009 463 478
    • (2009) Neural Netw. , vol.22 , pp. 463-478
    • Furukawa, T.1
  • 129
    • 0036784472 scopus 로고    scopus 로고
    • Associative neural network
    • I.V. Tetko Associative neural network Neural Process. Lett 16 2002 187 199
    • (2002) Neural Process. Lett , vol.16 , pp. 187-199
    • Tetko, I.V.1
  • 130
    • 30344489020 scopus 로고    scopus 로고
    • QSAR analysis of phenolic antioxidants using MOLMAP descriptors of local properties
    • S. Gupta QSAR analysis of phenolic antioxidants using MOLMAP descriptors of local properties Bioorg. Med. Chem. 14 2006 1199 1206
    • (2006) Bioorg. Med. Chem. , vol.14 , pp. 1199-1206
    • Gupta, S.1
  • 131
    • 84925393840 scopus 로고    scopus 로고
    • Machine learning methods in chemoinformatics for drug discovery
    • M. Karthikeyan, R. Vyas, Springer
    • M. Karthikeyan, and R. Vyas Machine learning methods in chemoinformatics for drug discovery M. Karthikeyan, R. Vyas, Practical Chemoinformatics 2014 Springer 133 194
    • (2014) Practical Chemoinformatics , pp. 133-194
    • Karthikeyan, M.1    Vyas, R.2
  • 132
    • 72949117724 scopus 로고    scopus 로고
    • In silico prediction of aqueous solubility: The solubility challenge
    • M. Hewitt In silico prediction of aqueous solubility: the solubility challenge J. Chem. Inf. Model. 49 2009 2572 2587
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 2572-2587
    • Hewitt, M.1
  • 133
    • 48549094895 scopus 로고    scopus 로고
    • A comprehensive comparison of Random Forests and support vector machines for microarray-based cancer classification
    • A. Statnikov A comprehensive comparison of Random Forests and support vector machines for microarray-based cancer classification BMC Bioinformatics 9 2008 319
    • (2008) BMC Bioinformatics , vol.9 , pp. 319
    • Statnikov, A.1
  • 134
    • 39449138204 scopus 로고    scopus 로고
    • Why are some properties more difficult to predict than others? A study of QSPR models of solubility, melting point, and Log P
    • L.D. Hughes Why are some properties more difficult to predict than others? A study of QSPR models of solubility, melting point, and Log P J. Chem. Inf. Model. 48 2008 220 232
    • (2008) J. Chem. Inf. Model. , vol.48 , pp. 220-232
    • Hughes, L.D.1
  • 135
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • R.D. Uriarte, and S.A. de Andres Gene selection and classification of microarray data using random forest BMC Bioinformatics 7 2006 3
    • (2006) BMC Bioinformatics , vol.7 , pp. 3
    • Uriarte, R.D.1    De Andres, S.A.2
  • 136
    • 77957730873 scopus 로고    scopus 로고
    • Predicting phospholipidosis using machine learning
    • R. Lowe Predicting phospholipidosis using machine learning Mol. Pharm. 7 2010 1708 1718
    • (2010) Mol. Pharm. , vol.7 , pp. 1708-1718
    • Lowe, R.1
  • 137
    • 84883339723 scopus 로고    scopus 로고
    • A multidimensional analysis of machine learning methods performance in the classification of bioactive compounds
    • S. Smusz A multidimensional analysis of machine learning methods performance in the classification of bioactive compounds Chemom. Intell. Lab. Syst. 128 2013 89 100
    • (2013) Chemom. Intell. Lab. Syst. , vol.128 , pp. 89-100
    • Smusz, S.1
  • 138
    • 0029306995 scopus 로고
    • Statlog: Comparison of classification algorithms on large real-world problems
    • R. King Statlog: comparison of classification algorithms on large real-world problems Appl. Artificial Intell. 9 1995 259 287
    • (1995) Appl. Artificial Intell. , vol.9 , pp. 259-287
    • King, R.1
  • 139
    • 34250744208 scopus 로고    scopus 로고
    • An empirical comparison of supervised learning algorithms
    • E.M. Airoldi, D.M. Blei, S.E. Fienberg, A. Goldenberg, E.P. Xing, A.X. Zheng, Springer
    • R. Caruana, and A. Niculescu-Mizil An empirical comparison of supervised learning algorithms E.M. Airoldi, D.M. Blei, S.E. Fienberg, A. Goldenberg, E.P. Xing, A.X. Zheng, Proceedings of the 23rd International Conference on Machine Learning (ICML 2006) 2007 Springer 161 168
    • (2007) Proceedings of the 23rd International Conference on Machine Learning (ICML 2006) , pp. 161-168
    • Caruana, R.1    Niculescu-Mizil, A.2
  • 140
    • 79960245348 scopus 로고    scopus 로고
    • Classification of cytochrome P450 inhibitors and noninhibitors using combined classifiers
    • F. Cheng Classification of cytochrome P450 inhibitors and noninhibitors using combined classifiers J. Chem. Inf. Model. 51 2011 996 1011
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 996-1011
    • Cheng, F.1
  • 141
    • 66149108701 scopus 로고    scopus 로고
    • Influence relevance voting: An accurate and interpretable virtual high throughput screening method
    • S.J. Swamidass Influence relevance voting: an accurate and interpretable virtual high throughput screening method J. Chem. Inf. Model. 49 2009 756 766
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 756-766
    • Swamidass, S.J.1
  • 142
    • 73349088447 scopus 로고    scopus 로고
    • GPU accelerated support vector machines for mining high-throughput screening data
    • Q. Liao GPU accelerated support vector machines for mining high-throughput screening data J. Chem. Inf. Model. 49 2009 2718 2725
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 2718-2725
    • Liao, Q.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.