-
1
-
-
2942555037
-
Applying data mining techniques to library design, lead generation and lead optimization
-
D.C. Weaver Applying data mining techniques to library design, lead generation and lead optimization Curr. Opin. Chem. Biol. 8 2004 264 270
-
(2004)
Curr. Opin. Chem. Biol.
, vol.8
, pp. 264-270
-
-
Weaver, D.C.1
-
2
-
-
58849152212
-
Target discovery from data mining approaches
-
Y. Yang Target discovery from data mining approaches Drug Discov. Today 14 2009 147 154
-
(2009)
Drug Discov. Today
, vol.14
, pp. 147-154
-
-
Yang, Y.1
-
3
-
-
73649101005
-
Visualizing the drug target landscape
-
S.J. Campbell Visualizing the drug target landscape Drug Discov. Today 15 2010 3 15
-
(2010)
Drug Discov. Today
, vol.15
, pp. 3-15
-
-
Campbell, S.J.1
-
4
-
-
77649220192
-
Current trends in ligand-based virtual screening: Molecular representations, data mining methods, new application areas, and performance evaluation
-
H. Geppert Current trends in ligand-based virtual screening: molecular representations, data mining methods, new application areas, and performance evaluation J. Chem. Inf. Model. 50 2010 205 216
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 205-216
-
-
Geppert, H.1
-
5
-
-
84864628515
-
Network analysis has diverse roles in drug discovery
-
S. Hasan Network analysis has diverse roles in drug discovery Drug Discov. Today 17 2012 869 874
-
(2012)
Drug Discov. Today
, vol.17
, pp. 869-874
-
-
Hasan, S.1
-
6
-
-
34548288600
-
Virtual screening in drug discovery: A computational perspective
-
S. Reddy Virtual screening in drug discovery: a computational perspective Curr. Prot. Pept. Sci. 8 2007 329 351
-
(2007)
Curr. Prot. Pept. Sci.
, vol.8
, pp. 329-351
-
-
Reddy, S.1
-
7
-
-
38749090154
-
2D QSAR and similarity studies on cruzain inhibitors aimed at improving selectivity over cathepsin L
-
R.F. Freitas 2D QSAR and similarity studies on cruzain inhibitors aimed at improving selectivity over cathepsin L Bioorg. Med. Chem. 16 2008 838 853
-
(2008)
Bioorg. Med. Chem.
, vol.16
, pp. 838-853
-
-
Freitas, R.F.1
-
8
-
-
84880256452
-
Virtual screening strategies in drug discovery: A critical review
-
A. Lavecchia, and C. Di Giovanni Virtual screening strategies in drug discovery: a critical review Curr. Med. Chem. 20 2013 2839 2860
-
(2013)
Curr. Med. Chem.
, vol.20
, pp. 2839-2860
-
-
Lavecchia, A.1
Di Giovanni, C.2
-
9
-
-
0000166488
-
Similarity and dissimilarity: A medicinal chemist's view
-
H. Kubinyi Similarity and dissimilarity: a medicinal chemist's view Persp. Drug Discov. Des. 11 1998 225 252
-
(1998)
Persp. Drug Discov. Des.
, vol.11
, pp. 225-252
-
-
Kubinyi, H.1
-
10
-
-
84906303709
-
Activity cliffs in drug discovery: Dr. Jekyll or Mr. Hyde?
-
M. Cruz-Monteagudo Activity cliffs in drug discovery: Dr. Jekyll or Mr. Hyde? Drug Discov. Today 2014 http://dx.doi.org/10.1016/j.drudis.2014.02.003
-
(2014)
Drug Discov. Today
-
-
Cruz-Monteagudo, M.1
-
11
-
-
33746931581
-
On outliers and activity cliffs - Why QSAR often disappoints
-
1535-1535
-
G.M. Maggiora On outliers and activity cliffs - why QSAR often disappoints J. Chem. Inf. Model. 46 2006 1535-1535
-
(2006)
J. Chem. Inf. Model.
, vol.46
-
-
Maggiora, G.M.1
-
12
-
-
84859179256
-
Exploring activity cliffs in medicinal chemistry
-
D. Stumpfe, and J. Bajorath Exploring activity cliffs in medicinal chemistry J. Med. Chem. 55 2012 2932 2942
-
(2012)
J. Med. Chem.
, vol.55
, pp. 2932-2942
-
-
Stumpfe, D.1
Bajorath, J.2
-
13
-
-
33847207834
-
Molecular similarity analysis in virtual screening: Foundations, limitations and novel approaches
-
H. Eckert, and J. Bajorath Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches Drug Discov. Today 12 2007 225 233
-
(2007)
Drug Discov. Today
, vol.12
, pp. 225-233
-
-
Eckert, H.1
Bajorath, J.2
-
14
-
-
0036835460
-
Integration of virtual and high-throughput screening
-
J. Bajorath Integration of virtual and high-throughput screening Nat. Rev. Drug Discov. 1 2002 882 894
-
(2002)
Nat. Rev. Drug Discov.
, vol.1
, pp. 882-894
-
-
Bajorath, J.1
-
15
-
-
21244468757
-
Searching techniques for databases of two- and three-dimensional chemical structures
-
P. Willett Searching techniques for databases of two- and three-dimensional chemical structures J. Med. Chem. 48 2005 4183 4199
-
(2005)
J. Med. Chem.
, vol.48
, pp. 4183-4199
-
-
Willett, P.1
-
16
-
-
33751246188
-
Similarity-based virtual screening using 2D fingerprints
-
P. Willett Similarity-based virtual screening using 2D fingerprints Drug Discov. Today 11 2006 1046 1053
-
(2006)
Drug Discov. Today
, vol.11
, pp. 1046-1053
-
-
Willett, P.1
-
17
-
-
0035003352
-
3-D pharmacophores in drug discovery
-
J.S. Mason 3-D pharmacophores in drug discovery Curr. Pharm. Des. 7 2001 567 597
-
(2001)
Curr. Pharm. Des.
, vol.7
, pp. 567-597
-
-
Mason, J.S.1
-
18
-
-
0037361940
-
Similarity searching using reduced graphs
-
V.J. Gillet Similarity searching using reduced graphs J. Chem. Inf. Comput. Sci. 43 2003 338 345
-
(2003)
J. Chem. Inf. Comput. Sci.
, vol.43
, pp. 338-345
-
-
Gillet, V.J.1
-
19
-
-
0033598416
-
Prospective identification of biologically active structures by topomer shape similarity searching
-
R.D. Cramer Prospective identification of biologically active structures by topomer shape similarity searching J. Med. Chem. 42 1999 3919 3933
-
(1999)
J. Med. Chem.
, vol.42
, pp. 3919-3933
-
-
Cramer, R.D.1
-
20
-
-
33846212271
-
Comparison of shape-matching and docking as virtual screening tools
-
P.C.D. Hawkins Comparison of shape-matching and docking as virtual screening tools J. Med. Chem. 50 2007 74 82
-
(2007)
J. Med. Chem.
, vol.50
, pp. 74-82
-
-
Hawkins, P.C.D.1
-
21
-
-
37849034064
-
Atomic property fields: Generalized 3D pharmacophoric potential for automated ligand superposition, pharmacophore elucidation and 3D QSAR
-
M. Totrov Atomic property fields: generalized 3D pharmacophoric potential for automated ligand superposition, pharmacophore elucidation and 3D QSAR Chem. Biol. Drug. Des. 71 2008 15 27
-
(2008)
Chem. Biol. Drug. Des.
, vol.71
, pp. 15-27
-
-
Totrov, M.1
-
22
-
-
84872225145
-
Compound activity prediction using models of binding pockets or ligand properties in 3D
-
I. Kufareva Compound activity prediction using models of binding pockets or ligand properties in 3D Curr. Top. Med. Chem. 12 2012 1869 1882
-
(2012)
Curr. Top. Med. Chem.
, vol.12
, pp. 1869-1882
-
-
Kufareva, I.1
-
23
-
-
84904993806
-
Machine learning methods in chemoinformatics
-
J.B.O. Mitchell Machine learning methods in chemoinformatics WIREs Comput. Mol. Sci. 4 2014 468 481
-
(2014)
WIREs Comput. Mol. Sci.
, vol.4
, pp. 468-481
-
-
Mitchell, J.B.O.1
-
25
-
-
0035292795
-
Selected concepts and investigations in compound classification, molecular descriptor analysis, and virtual screening
-
J. Bajorath Selected concepts and investigations in compound classification, molecular descriptor analysis, and virtual screening J. Chem. Inf. Comput. 41 2001 233 245
-
(2001)
J. Chem. Inf. Comput.
, vol.41
, pp. 233-245
-
-
Bajorath, J.1
-
26
-
-
3242672755
-
Approaches to target class combinatorial library design. Chemoinformatics
-
D. Schnur Approaches to target class combinatorial library design. chemoinformatics Methods Mol. Biol. 275 2004 355 378
-
(2004)
Methods Mol. Biol.
, vol.275
, pp. 355-378
-
-
Schnur, D.1
-
27
-
-
0016381211
-
Substructural analysis. A novel approach to the problem of drug design
-
R.D. Cramer Substructural analysis. A novel approach to the problem of drug design J. Med. Chem. 17 1974 533 535
-
(1974)
J. Med. Chem.
, vol.17
, pp. 533-535
-
-
Cramer, R.D.1
-
32
-
-
0345548661
-
Comparison of support vector machine and artificial neural network systems for drug/nondrug classification
-
E. Byvatov Comparison of support vector machine and artificial neural network systems for drug/nondrug classification J. Chem. Inf. Comput. Sci. 43 2003 1882 1889
-
(2003)
J. Chem. Inf. Comput. Sci.
, vol.43
, pp. 1882-1889
-
-
Byvatov, E.1
-
33
-
-
0344254815
-
Drug discovery using support vector machines the case studies of drug-likeness, agrochemical-likeness, and enzyme inhibition predictions
-
V.V. Zernov Drug discovery using support vector machines the case studies of drug-likeness, agrochemical-likeness, and enzyme inhibition predictions J. Chem. Inf. Comput. Sci. 43 2003 2048 2056
-
(2003)
J. Chem. Inf. Comput. Sci.
, vol.43
, pp. 2048-2056
-
-
Zernov, V.V.1
-
34
-
-
0037365194
-
Active learning with support vector machines in the drug discovery process
-
M.K. Warmuth Active learning with support vector machines in the drug discovery process J. Chem. Inf. Comput. Sci. 43 2003 667 673
-
(2003)
J. Chem. Inf. Comput. Sci.
, vol.43
, pp. 667-673
-
-
Warmuth, M.K.1
-
35
-
-
20444410410
-
Virtual screening of molecular databases using a support vector machine
-
R.N. Jorissen, and M.K. Gilson Virtual screening of molecular databases using a support vector machine J. Chem. Inf. Model. 45 2005 549 561
-
(2005)
J. Chem. Inf. Model.
, vol.45
, pp. 549-561
-
-
Jorissen, R.N.1
Gilson, M.K.2
-
36
-
-
77954054048
-
Assessing synthetic accessibility of chemical compounds using machine learning methods
-
Y. Podolyan Assessing synthetic accessibility of chemical compounds using machine learning methods J. Chem. Inf. Model. 50 2010 979 991
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 979-991
-
-
Podolyan, Y.1
-
37
-
-
79952229990
-
Binary classification of aqueous solubility using support vector machines with reduction and recombination feature selection
-
T. Cheng Binary classification of aqueous solubility using support vector machines with reduction and recombination feature selection J. Chem. Inf. Model. 51 2011 229 236
-
(2011)
J. Chem. Inf. Model.
, vol.51
, pp. 229-236
-
-
Cheng, T.1
-
38
-
-
20444432773
-
Kernel-based methods for hyperspectral image classification
-
G. Camps-Valls, and L. Bruzzone Kernel-based methods for hyperspectral image classification IEEE Trans. Geosci. Remote Sens. 43 2005 1351 1362
-
(2005)
IEEE Trans. Geosci. Remote Sens.
, vol.43
, pp. 1351-1362
-
-
Camps-Valls, G.1
Bruzzone, L.2
-
39
-
-
79952170351
-
Large-scale learning of structure-activity relationships using a linear support vector machine and problem-specific metrics
-
G. Hinselmann Large-scale learning of structure-activity relationships using a linear support vector machine and problem-specific metrics J. Chem. Inf. Model. 51 2011 203 213
-
(2011)
J. Chem. Inf. Model.
, vol.51
, pp. 203-213
-
-
Hinselmann, G.1
-
40
-
-
33745756516
-
The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM
-
G.M. Foody, and A. Mathur The use of small training sets containing mixed pixels for accurate hard image classification: training on mixed spectral responses for classification by a SVM Remote Sens. Environ. 103 2006 179 189
-
(2006)
Remote Sens. Environ.
, vol.103
, pp. 179-189
-
-
Foody, G.M.1
Mathur, A.2
-
41
-
-
44449107147
-
Support-vector-machine-based ranking significantly improves the effectiveness of similarity searching using 2D fingerprints and multiple reference compounds
-
H. Geppert Support-vector-machine-based ranking significantly improves the effectiveness of similarity searching using 2D fingerprints and multiple reference compounds J. Chem. Inf. Model. 48 2008 742 746
-
(2008)
J. Chem. Inf. Model.
, vol.48
, pp. 742-746
-
-
Geppert, H.1
-
42
-
-
77952768125
-
Ranking chemical structures for drug discovery: A new machine learning approach
-
S. Agarwal Ranking chemical structures for drug discovery: a new machine learning approach J. Chem. Inf. Model. 50 2010 716 731
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 716-731
-
-
Agarwal, S.1
-
43
-
-
79952593481
-
StructRank: A new approach for ligand-based virtual screening
-
F. Rathke StructRank: a new approach for ligand-based virtual screening J. Chem. Inf. Model. 51 2011 83 92
-
(2011)
J. Chem. Inf. Model.
, vol.51
, pp. 83-92
-
-
Rathke, F.1
-
44
-
-
52749098733
-
Virtual screening of GPCRs: An in silico chemogenomics approach
-
L. Jacob Virtual screening of GPCRs: an in silico chemogenomics approach BMC Bioinformatics 9 2008 363
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 363
-
-
Jacob, L.1
-
45
-
-
52749085437
-
Protein-ligand interaction prediction: An improved chemogenomics approach
-
L. Jacob, and J.-P. Vert Protein-ligand interaction prediction: an improved chemogenomics approach Bioinformatics 24 2008 2149 2156
-
(2008)
Bioinformatics
, vol.24
, pp. 2149-2156
-
-
Jacob, L.1
Vert, J.-P.2
-
46
-
-
51349131079
-
Machine learning for in silico virtual screening and chemical genomics: New strategies
-
J.-P. Vert, and L. Jacob Machine learning for in silico virtual screening and chemical genomics: new strategies Comb. Chem. High. Throughput Screen. 11 2008 677 685
-
(2008)
Comb. Chem. High. Throughput Screen.
, vol.11
, pp. 677-685
-
-
Vert, J.-P.1
Jacob, L.2
-
47
-
-
9444266406
-
On graph kernels: Hardness results and efficient alternatives
-
B. Schölkopf, M.K. Warmuth, Springer-Verlag
-
T. Gärtner On graph kernels: hardness results and efficient alternatives B. Schölkopf, M.K. Warmuth, Learning Theory and Kernel Machines 2003 Springer-Verlag 129 143
-
(2003)
Learning Theory and Kernel Machines
, pp. 129-143
-
-
Gärtner, T.1
-
49
-
-
23844480138
-
Graph kernels for chemical informatics
-
L. Ralaivola Graph kernels for chemical informatics Neural Netw. 18 2005 1093 1110
-
(2005)
Neural Netw.
, vol.18
, pp. 1093-1110
-
-
Ralaivola, L.1
-
50
-
-
33750294461
-
The pharmacophore kernel for virtual screening with support vector machines
-
P. Mahé The pharmacophore kernel for virtual screening with support vector machines J. Chem. Inf. Model. 46 2006 2003 2014
-
(2006)
J. Chem. Inf. Model.
, vol.46
, pp. 2003-2014
-
-
Mahé, P.1
-
51
-
-
34250813174
-
One-to four-dimensional kernels for virtual screening and the prediction of physical, chemical, and biological properties
-
C.-A. Azencott One-to four-dimensional kernels for virtual screening and the prediction of physical, chemical, and biological properties J. Chem. Inf. Model. 47 2007 965 974
-
(2007)
J. Chem. Inf. Model.
, vol.47
, pp. 965-974
-
-
Azencott, C.-A.1
-
52
-
-
33646251586
-
Collaborative filtering on a family of biological targets
-
D. Erhan Collaborative filtering on a family of biological targets J. Chem. Inf. Model. 46 2006 626 635
-
(2006)
J. Chem. Inf. Model.
, vol.46
, pp. 626-635
-
-
Erhan, D.1
-
53
-
-
70350495651
-
Ligand prediction for orphan targets using support vector machines and various target-ligand kernels is dominated by nearest neighbor effects
-
A.M. Wassermann Ligand prediction for orphan targets using support vector machines and various target-ligand kernels is dominated by nearest neighbor effects J. Chem. Inf. Model. 49 2009 2155 2167
-
(2009)
J. Chem. Inf. Model.
, vol.49
, pp. 2155-2167
-
-
Wassermann, A.M.1
-
54
-
-
79960721268
-
Enhancing the accuracy of chemogenomic models with a three-dimensional binding site kernel
-
J. Meslamani, and D. Rognan Enhancing the accuracy of chemogenomic models with a three-dimensional binding site kernel J. Chem. Inf. Model. 5 2011 1593 1603
-
(2011)
J. Chem. Inf. Model.
, vol.5
, pp. 1593-1603
-
-
Meslamani, J.1
Rognan, D.2
-
55
-
-
84866700901
-
Prediction of activity cliffs using support vector machines
-
K. Heikamp Prediction of activity cliffs using support vector machines J. Chem. Inf. Model. 52 2012 2354 2365
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 2354-2365
-
-
Heikamp, K.1
-
56
-
-
80255135618
-
Brainstorming: Weighted voting prediction of inhibitors for protein targets
-
D. Plewczynski Brainstorming: weighted voting prediction of inhibitors for protein targets J. Mol. Model. 17 2011 2133 2141
-
(2011)
J. Mol. Model.
, vol.17
, pp. 2133-2141
-
-
Plewczynski, D.1
-
57
-
-
79960245348
-
Classification of cytochrome P450 inhibitors and noninhibitors using combined classifiers
-
F. Cheng Classification of cytochrome P450 inhibitors and noninhibitors using combined classifiers J. Chem. Inf. Model. 51 2011 99 1011
-
(2011)
J. Chem. Inf. Model.
, vol.51
, pp. 99-1011
-
-
Cheng, F.1
-
58
-
-
80052931564
-
Combined SVM-based and docking-based virtual screening for retrieving novel inhibitors of c-Met
-
Q.-Q. Xie Combined SVM-based and docking-based virtual screening for retrieving novel inhibitors of c-Met Eur. J. Med. Chem. 46 2011 3675 3680
-
(2011)
Eur. J. Med. Chem.
, vol.46
, pp. 3675-3680
-
-
Xie, Q.-Q.1
-
59
-
-
84884576643
-
Computational profiling of bioactive compounds using a target-dependent composite workflow
-
J. Meslamani Computational profiling of bioactive compounds using a target-dependent composite workflow J. Chem. Inf. Model. 53 2013 2322 2333
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 2322-2333
-
-
Meslamani, J.1
-
60
-
-
0001224048
-
Sparse Bayesian learning and the relevance vector machine
-
M. Tipping Sparse Bayesian learning and the relevance vector machine J. Mach. Learn. Res. 1 2001 211 244
-
(2001)
J. Mach. Learn. Res.
, vol.1
, pp. 211-244
-
-
Tipping, M.1
-
61
-
-
79960707576
-
Classifying molecules using a sparse probabilistic kernel binary classifier
-
R. Lowe Classifying molecules using a sparse probabilistic kernel binary classifier J. Chem. Inf. Model. 51 2011 1539 1544
-
(2011)
J. Chem. Inf. Model.
, vol.51
, pp. 1539-1544
-
-
Lowe, R.1
-
62
-
-
54949134905
-
Chemical substructures that enrich for biological activity
-
J. Klekota, and F.P. Roth Chemical substructures that enrich for biological activity Bioinformatics 24 2008 2518 2525
-
(2008)
Bioinformatics
, vol.24
, pp. 2518-2525
-
-
Klekota, J.1
Roth, F.P.2
-
63
-
-
42149109229
-
Gradual in silico filtering for druglike substances
-
N. Schneider Gradual in silico filtering for druglike substances J. Chem. Inf. Model. 48 2008 613 628
-
(2008)
J. Chem. Inf. Model.
, vol.48
, pp. 613-628
-
-
Schneider, N.1
-
64
-
-
37249042636
-
ADME evaluation in drug discovery. 8 the prediction of human intestinal absorption by a support vector machine
-
T. Hou ADME evaluation in drug discovery. 8 the prediction of human intestinal absorption by a support vector machine J. Chem. Inf. Model. 47 2007 2408 2415
-
(2007)
J. Chem. Inf. Model.
, vol.47
, pp. 2408-2415
-
-
Hou, T.1
-
65
-
-
33745373904
-
Classification tree models for the prediction of blood-brain barrier passage of drugs
-
E. Deconinck Classification tree models for the prediction of blood-brain barrier passage of drugs J. Chem. Inf. Model. 46 2006 1410 1419
-
(2006)
J. Chem. Inf. Model.
, vol.46
, pp. 1410-1419
-
-
Deconinck, E.1
-
66
-
-
33645404135
-
In silico human and rat Vss quantitative structure-activity relationship models
-
M.P. Gleeson In silico human and rat Vss quantitative structure-activity relationship models J. Med. Chem. 49 2006 1953 1963
-
(2006)
J. Med. Chem.
, vol.49
, pp. 1953-1963
-
-
Gleeson, M.P.1
-
67
-
-
44049092515
-
Straightforward recursive partitioning model for discarding insoluble compounds in the drug discovery process
-
C. Lamanna Straightforward recursive partitioning model for discarding insoluble compounds in the drug discovery process J. Med. Chem. 51 2008 2891 2897
-
(2008)
J. Med. Chem.
, vol.51
, pp. 2891-2897
-
-
Lamanna, C.1
-
68
-
-
33745341752
-
Combinatorial QSAR modeling of P-glycoprotein substrates
-
P. de Cerqueira Lima Combinatorial QSAR modeling of P-glycoprotein substrates J. Chem. Inf. Model. 46 2006 1245 1254
-
(2006)
J. Chem. Inf. Model.
, vol.46
, pp. 1245-1254
-
-
De Cerqueira Lima, P.1
-
69
-
-
31444431893
-
A recursive-partitioning model for blood-brain barrier permeation
-
S.R. Mente A recursive-partitioning model for blood-brain barrier permeation J. Comput. Aided Mol. Des. 19 2005 465 481
-
(2005)
J. Comput. Aided Mol. Des.
, vol.19
, pp. 465-481
-
-
Mente, S.R.1
-
70
-
-
37349114485
-
Predicting human liver microsomal stability with machine learning techniques
-
Y. Sakiyama Predicting human liver microsomal stability with machine learning techniques J. Mol. Graph. Model. 26 2008 907 915
-
(2008)
J. Mol. Graph. Model.
, vol.26
, pp. 907-915
-
-
Sakiyama, Y.1
-
71
-
-
0028202408
-
Representation design and brute-force induction in a Boeing manufacturing design
-
P. Riddle Representation design and brute-force induction in a Boeing manufacturing design Appl. Artif. Intell. 8 1994 125 147
-
(1994)
Appl. Artif. Intell.
, vol.8
, pp. 125-147
-
-
Riddle, P.1
-
73
-
-
3943113604
-
Theoretical comparison between the Gini Index and Information Gain criteria
-
L.E. Raileanu, and K. Stoffel Theoretical comparison between the Gini Index and Information Gain criteria Ann. Math. Artif. Intell. 41 2004 77 93
-
(2004)
Ann. Math. Artif. Intell.
, vol.41
, pp. 77-93
-
-
Raileanu, L.E.1
Stoffel, K.2
-
74
-
-
0032139235
-
The random subspace method for constructing decision forests
-
T.K. Ho The random subspace method for constructing decision forests ITPAM 20 1998 832 844
-
(1998)
ITPAM
, vol.20
, pp. 832-844
-
-
Ho, T.K.1
-
75
-
-
0030211964
-
Bagging predictors
-
L. Breiman Bagging predictors Mach. Learn. 24 1996 123 140
-
(1996)
Mach. Learn.
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
77
-
-
0030196364
-
Stacked regressions
-
L. Breiman Stacked regressions Mach. Learn. 24 1996 49 64
-
(1996)
Mach. Learn.
, vol.24
, pp. 49-64
-
-
Breiman, L.1
-
78
-
-
0035478854
-
Random forests
-
L. Breiman Random forests Mach. Learn. 45 2001 5 32
-
(2001)
Mach. Learn.
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
79
-
-
0345548657
-
Random forest: A classification and regression tool for compound classification and QSAR modelling
-
V. Svetnik Random forest: a classification and regression tool for compound classification and QSAR modelling J. Chem. Inf. Comput. Sci. 43 2003 1947 1958
-
(2003)
J. Chem. Inf. Comput. Sci.
, vol.43
, pp. 1947-1958
-
-
Svetnik, V.1
-
80
-
-
0037365123
-
Decision forest: Combining the predictions of multiple independent decision tree models
-
W.D. Tong Decision forest: combining the predictions of multiple independent decision tree models J. Chem. Inf. Comput. Sci. 43 2003 525 531
-
(2003)
J. Chem. Inf. Comput. Sci.
, vol.43
, pp. 525-531
-
-
Tong, W.D.1
-
81
-
-
77952825581
-
A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking
-
P.J. Ballester, and J.B.O. Mitchell A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking Bioinformatics 26 2010 1169 1175
-
(2010)
Bioinformatics
, vol.26
, pp. 1169-1175
-
-
Ballester, P.J.1
Mitchell, J.B.O.2
-
82
-
-
34247262566
-
Supervised consensus scoring for docking and virtual screening
-
R. Teramoto, and H. Fukunishi Supervised consensus scoring for docking and virtual screening J. Chem. Inf. Model. 47 2007 526 534
-
(2007)
J. Chem. Inf. Model.
, vol.47
, pp. 526-534
-
-
Teramoto, R.1
Fukunishi, H.2
-
83
-
-
27444445346
-
PostDOCK: A structural, empirical approach to scoring protein ligand complexes
-
C. Springer PostDOCK: a structural, empirical approach to scoring protein ligand complexes J. Med. Chem. 48 2005 6821 6831
-
(2005)
J. Med. Chem.
, vol.48
, pp. 6821-6831
-
-
Springer, C.1
-
84
-
-
0027385177
-
Matching chemistry and shape in molecular docking
-
B.K. Shoichet, and I.D. Kuntz Matching chemistry and shape in molecular docking Protein Eng. 6 1993 723 732
-
(1993)
Protein Eng.
, vol.6
, pp. 723-732
-
-
Shoichet, B.K.1
Kuntz, I.D.2
-
85
-
-
75749126524
-
Combining machine learning and pharmacophore-based interaction fingerprint for in silico screening
-
T. Sato Combining machine learning and pharmacophore-based interaction fingerprint for in silico screening J. Chem. Inf. Model. 50 2010 170 185
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 170-185
-
-
Sato, T.1
-
86
-
-
33646266941
-
Toxicity-indicating structural patterns
-
M. von Korff, and T. Sander Toxicity-indicating structural patterns J. Chem. Inf. Model. 46 2006 536 544
-
(2006)
J. Chem. Inf. Model.
, vol.46
, pp. 536-544
-
-
Von Korff, M.1
Sander, T.2
-
87
-
-
84862651254
-
Predicting the mechanism of phospholipidosis
-
R. Lowe Predicting the mechanism of phospholipidosis J. Cheminformatics 4 2012 2
-
(2012)
J. Cheminformatics
, vol.4
, pp. 2
-
-
Lowe, R.1
-
88
-
-
84883239935
-
In silico target predictions: Defining a benchmarking dataset and comparison of performance of the multiclass Naïve Bayes and Parzen-Rosenblatt Window
-
A. Koutsoukas In silico target predictions: defining a benchmarking dataset and comparison of performance of the multiclass Naïve Bayes and Parzen-Rosenblatt Window J. Chem. Inf. Model. 53 2013 1957 1966
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 1957-1966
-
-
Koutsoukas, A.1
-
89
-
-
58149116805
-
Ligand-target prediction using Winnow and naïve Bayesian algorithms and the implications of overall performance statistics
-
F. Nigsch Ligand-target prediction using Winnow and naïve Bayesian algorithms and the implications of overall performance statistics J. Chem. Inf. Model. 48 2008 2313 2325
-
(2008)
J. Chem. Inf. Model.
, vol.48
, pp. 2313-2325
-
-
Nigsch, F.1
-
90
-
-
0034300831
-
Technical note: Naïve Bayes for regression
-
E. Frank Technical note: naïve Bayes for regression Mach. Learn. 41 2000 5 25
-
(2000)
Mach. Learn.
, vol.41
, pp. 5-25
-
-
Frank, E.1
-
92
-
-
0001655091
-
A generalization of Bayesian Inference
-
A.P. Dempster A generalization of Bayesian Inference J. Royal Stat. Soc. B 30 1968 205 247
-
(1968)
J. Royal Stat. Soc. B
, vol.30
, pp. 205-247
-
-
Dempster, A.P.1
-
93
-
-
39449088858
-
Naïve Bayes classification using 2D pharmacophore feature triplet vectors
-
P. Watson Naïve Bayes classification using 2D pharmacophore feature triplet vectors J. Chem. Inf. Model. 48 2008 166 178
-
(2008)
J. Chem. Inf. Model.
, vol.48
, pp. 166-178
-
-
Watson, P.1
-
94
-
-
35248878132
-
Prediction of ion channel activity using binary kernel discrimination
-
P. Willett Prediction of ion channel activity using binary kernel discrimination J. Chem. Inf. Model. 47 2007 1961 1966
-
(2007)
J. Chem. Inf. Model.
, vol.47
, pp. 1961-1966
-
-
Willett, P.1
-
95
-
-
77954043914
-
Ligand-based virtual screening using Bayesian networks
-
A. Abdo Ligand-based virtual screening using Bayesian networks J. Chem. Inf. Model. 50 2010 1012 1020
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 1012-1020
-
-
Abdo, A.1
-
96
-
-
0002226399
-
Bayesian model selection and model averaging
-
L. Wasserman Bayesian model selection and model averaging J. Math. Psychol. 44 2000 92 107
-
(2000)
J. Math. Psychol.
, vol.44
, pp. 92-107
-
-
Wasserman, L.1
-
97
-
-
67650085842
-
Bayesian model averaging for ligand discovery
-
N. Angelopoulos Bayesian model averaging for ligand discovery J. Chem. Inf. Model. 49 2009 1547 1557
-
(2009)
J. Chem. Inf. Model.
, vol.49
, pp. 1547-1557
-
-
Angelopoulos, N.1
-
98
-
-
60849101543
-
Similarity-based virtual screening with a Bayesian inference network
-
A. Abdo, and N. Salim Similarity-based virtual screening with a Bayesian inference network ChemMedChem 4 2009 210 218
-
(2009)
ChemMedChem
, vol.4
, pp. 210-218
-
-
Abdo, A.1
Salim, N.2
-
99
-
-
84555194677
-
Activity-aware clustering of high throughput screening data and elucidation of orthogonal structure-activity relationships
-
E. Lounkine Activity-aware clustering of high throughput screening data and elucidation of orthogonal structure-activity relationships J. Chem. Inf. Model. 51 2011 3158 3168
-
(2011)
J. Chem. Inf. Model.
, vol.51
, pp. 3158-3168
-
-
Lounkine, E.1
-
100
-
-
0035498337
-
QSAR and k-nearest neighbor classification analysis of selective cyclooxygenase-2 inhibitors using topologically-based numerical descriptors
-
G.W. Kauffman, and P.C. Jurs QSAR and k-nearest neighbor classification analysis of selective cyclooxygenase-2 inhibitors using topologically-based numerical descriptors J. Chem. Inf. Comp. Sci. 41 2001 1553 1560
-
(2001)
J. Chem. Inf. Comp. Sci.
, vol.41
, pp. 1553-1560
-
-
Kauffman, G.W.1
Jurs, P.C.2
-
101
-
-
34547666859
-
Benchmarking of QSAR models for blood-brain barrier permeation
-
D.A. Konovalov Benchmarking of QSAR models for blood-brain barrier permeation J. Chem. Inf. Comp. Sci. 47 2007 1648 1656
-
(2007)
J. Chem. Inf. Comp. Sci.
, vol.47
, pp. 1648-1656
-
-
Konovalov, D.A.1
-
102
-
-
6444224986
-
Three new consensus QSAR models for the prediction of Ames genotoxicity
-
J.R. Votano Three new consensus QSAR models for the prediction of Ames genotoxicity Mutagenesis 19 2004 365 377
-
(2004)
Mutagenesis
, vol.19
, pp. 365-377
-
-
Votano, J.R.1
-
103
-
-
33845748728
-
Melting point prediction employing k-nearest neighbor algorithms and genetic parameter optimization
-
F. Nigsch Melting point prediction employing k-nearest neighbor algorithms and genetic parameter optimization J. Chem. Inf. Model. 46 2006 2412 2422
-
(2006)
J. Chem. Inf. Model.
, vol.46
, pp. 2412-2422
-
-
Nigsch, F.1
-
104
-
-
84860154266
-
EnzML: Multi-label prediction of enzyme classes using InterPro signatures
-
L. De Ferrari EnzML: multi-label prediction of enzyme classes using InterPro signatures BMC Bioinf. 13 2012 61
-
(2012)
BMC Bioinf.
, vol.13
, pp. 61
-
-
De Ferrari, L.1
-
105
-
-
20444407285
-
K-nearest neighbors QSAR modeling as a variational problem: Theory and applications
-
P. Itskowitz, and A. Tropsha k-nearest neighbors QSAR modeling as a variational problem: theory and applications J. Chem. Inf. Model. 45 2005 777 785
-
(2005)
J. Chem. Inf. Model.
, vol.45
, pp. 777-785
-
-
Itskowitz, P.1
Tropsha, A.2
-
106
-
-
20444489197
-
Classifying "kinase inhibitor likeness" by using machine-learning methods
-
H. Briem, and J. Günther Classifying "kinase inhibitor likeness" by using machine-learning methods Chembiochem 6 2005 558 566
-
(2005)
Chembiochem
, vol.6
, pp. 558-566
-
-
Briem, H.1
Günther, J.2
-
107
-
-
22144451452
-
A study on the influence of molecular properties in the psychoactivity of cannabinoid compounds
-
K.M. Honório, and A.B. da Silva A study on the influence of molecular properties in the psychoactivity of cannabinoid compounds J. Mol. Model. 11 2005 200 209
-
(2005)
J. Mol. Model.
, vol.11
, pp. 200-209
-
-
Honório, K.M.1
Da Silva, A.B.2
-
108
-
-
33244481088
-
Three-dimensional QSAR using the k-nearest neighbor method and its interpretation
-
S. Ajmani Three-dimensional QSAR using the k-nearest neighbor method and its interpretation J. Chem. Inf. Model. 46 2006 24 31
-
(2006)
J. Chem. Inf. Model.
, vol.46
, pp. 24-31
-
-
Ajmani, S.1
-
109
-
-
33750982700
-
Prediction of estrogen receptor agonists and characterization of associated molecular descriptors by statistical learning methods
-
H. Li Prediction of estrogen receptor agonists and characterization of associated molecular descriptors by statistical learning methods J. Mol. Graph. Model. 25 2006 313 323
-
(2006)
J. Mol. Graph. Model.
, vol.25
, pp. 313-323
-
-
Li, H.1
-
110
-
-
84875434222
-
Introduction to the artificial neural networks and their applications in QSAR studies
-
J. Patel, and C. Chaudhari Introduction to the artificial neural networks and their applications in QSAR studies ALTEX 22 2005 271
-
(2005)
ALTEX
, vol.22
, pp. 271
-
-
Patel, J.1
Chaudhari, C.2
-
111
-
-
84875462263
-
Artificial neural networks and their applications in pharmaceutical research
-
J.L. Patel, and L.D. Patel Artificial neural networks and their applications in pharmaceutical research Pharmabuzz. 2 2007 8 17
-
(2007)
Pharmabuzz.
, vol.2
, pp. 8-17
-
-
Patel, J.L.1
Patel, L.D.2
-
112
-
-
34948835662
-
Applications of artificial neural networks in medical science
-
J.L. Patel, and R.K. Goyal Applications of artificial neural networks in medical science Curr. Clin. Pharmacol. 2 2007 217 226
-
(2007)
Curr. Clin. Pharmacol.
, vol.2
, pp. 217-226
-
-
Patel, J.L.1
Goyal, R.K.2
-
113
-
-
79959924555
-
Intelligent control based on wavelet decomposition and neural network for predicting of human trajectories with a novel vision-based robotic
-
S. Soyguder Intelligent control based on wavelet decomposition and neural network for predicting of human trajectories with a novel vision-based robotic Expert Syst. Appl. 38 2011 13994 14000
-
(2011)
Expert Syst. Appl.
, vol.38
, pp. 13994-14000
-
-
Soyguder, S.1
-
114
-
-
37149042923
-
The state of play in machine/environment interactions
-
M.J. Aitkenhead, and A.J.S. McDonald The state of play in machine/environment interactions Artif. Intell. Rev. 25 2006 247 276
-
(2006)
Artif. Intell. Rev.
, vol.25
, pp. 247-276
-
-
Aitkenhead, M.J.1
McDonald, A.J.S.2
-
115
-
-
45949096079
-
Computational intelligence approaches for pattern discovery in biological systems
-
G.B. Fogel Computational intelligence approaches for pattern discovery in biological systems Brief Bioinform. 9 2008 307 316
-
(2008)
Brief Bioinform.
, vol.9
, pp. 307-316
-
-
Fogel, G.B.1
-
116
-
-
32244437883
-
Toward physics of the mind: Concepts, emotions, consciousness, and symbols
-
L.I. Perlovsky Toward physics of the mind: concepts, emotions, consciousness, and symbols Phys. Life. Rev. 3 2006 23 55
-
(2006)
Phys. Life. Rev.
, vol.3
, pp. 23-55
-
-
Perlovsky, L.I.1
-
118
-
-
37249061630
-
Ligand-based virtual screening by novelty detection with self-organizing maps
-
D. Hristozov Ligand-based virtual screening by novelty detection with self-organizing maps J. Chem. Inf. Model. 47 2007 2044 2062
-
(2007)
J. Chem. Inf. Model.
, vol.47
, pp. 2044-2062
-
-
Hristozov, D.1
-
119
-
-
84866235733
-
Using self-organizing maps to accelerate similarity search
-
F. Bonachera Using self-organizing maps to accelerate similarity search Bioorg. Med. Chem. 20 2012 5396 5409
-
(2012)
Bioorg. Med. Chem.
, vol.20
, pp. 5396-5409
-
-
Bonachera, F.1
-
120
-
-
0028864978
-
Neural networks with counter-propagation learning strategy used for modelling
-
J. Zupan Neural networks with counter-propagation learning strategy used for modelling Chemom. Intell. Lab. Syst. 27 1995 175 187
-
(1995)
Chemom. Intell. Lab. Syst.
, vol.27
, pp. 175-187
-
-
Zupan, J.1
-
121
-
-
33645242166
-
Kohonen artificial neural network and counter propagation neural network in molecular structure-toxicity studies
-
M. Vracko Kohonen artificial neural network and counter propagation neural network in molecular structure-toxicity studies Curr. Comput. Aided Drug Des. 1 2005 73 78
-
(2005)
Curr. Comput. Aided Drug Des.
, vol.1
, pp. 73-78
-
-
Vracko, M.1
-
122
-
-
0023515080
-
Counterpropagation networks
-
R. Hecht-Nielsen Counterpropagation networks Appl. Optics 26 1987 4979 4984
-
(1987)
Appl. Optics
, vol.26
, pp. 4979-4984
-
-
Hecht-Nielsen, R.1
-
125
-
-
79151478389
-
Ligand-based virtual screening procedure for the prediction and the identification of novel beta-amyloid aggregation inhibitors using Kohonen maps and counterpropagation artificial neural networks
-
A. Afantitis Ligand-based virtual screening procedure for the prediction and the identification of novel beta-amyloid aggregation inhibitors using Kohonen maps and counterpropagation artificial neural networks Eur. J. Med. Chem. 46 2011 497 508
-
(2011)
Eur. J. Med. Chem.
, vol.46
, pp. 497-508
-
-
Afantitis, A.1
-
126
-
-
33845760580
-
Applications of self-organizing neural networks in virtual screening and diversity selection
-
P. Selzer, and P. Ertl Applications of self-organizing neural networks in virtual screening and diversity selection J. Chem. Inf. Model. 46 2006 2319 2323
-
(2006)
J. Chem. Inf. Model.
, vol.46
, pp. 2319-2323
-
-
Selzer, P.1
Ertl, P.2
-
127
-
-
1542435010
-
A SOM projection technique with the growing structure for visualizing high-dimensional data
-
Z. Wu, and G.G. Yen A SOM projection technique with the growing structure for visualizing high-dimensional data Int. J. Neural Syst. 13 2003 353 365
-
(2003)
Int. J. Neural Syst.
, vol.13
, pp. 353-365
-
-
Wu, Z.1
Yen, G.G.2
-
128
-
-
67349138521
-
SOM of SOMs
-
T. Furukawa SOM of SOMs Neural Netw. 22 2009 463 478
-
(2009)
Neural Netw.
, vol.22
, pp. 463-478
-
-
Furukawa, T.1
-
129
-
-
0036784472
-
Associative neural network
-
I.V. Tetko Associative neural network Neural Process. Lett 16 2002 187 199
-
(2002)
Neural Process. Lett
, vol.16
, pp. 187-199
-
-
Tetko, I.V.1
-
130
-
-
30344489020
-
QSAR analysis of phenolic antioxidants using MOLMAP descriptors of local properties
-
S. Gupta QSAR analysis of phenolic antioxidants using MOLMAP descriptors of local properties Bioorg. Med. Chem. 14 2006 1199 1206
-
(2006)
Bioorg. Med. Chem.
, vol.14
, pp. 1199-1206
-
-
Gupta, S.1
-
131
-
-
84925393840
-
Machine learning methods in chemoinformatics for drug discovery
-
M. Karthikeyan, R. Vyas, Springer
-
M. Karthikeyan, and R. Vyas Machine learning methods in chemoinformatics for drug discovery M. Karthikeyan, R. Vyas, Practical Chemoinformatics 2014 Springer 133 194
-
(2014)
Practical Chemoinformatics
, pp. 133-194
-
-
Karthikeyan, M.1
Vyas, R.2
-
132
-
-
72949117724
-
In silico prediction of aqueous solubility: The solubility challenge
-
M. Hewitt In silico prediction of aqueous solubility: the solubility challenge J. Chem. Inf. Model. 49 2009 2572 2587
-
(2009)
J. Chem. Inf. Model.
, vol.49
, pp. 2572-2587
-
-
Hewitt, M.1
-
133
-
-
48549094895
-
A comprehensive comparison of Random Forests and support vector machines for microarray-based cancer classification
-
A. Statnikov A comprehensive comparison of Random Forests and support vector machines for microarray-based cancer classification BMC Bioinformatics 9 2008 319
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 319
-
-
Statnikov, A.1
-
134
-
-
39449138204
-
Why are some properties more difficult to predict than others? A study of QSPR models of solubility, melting point, and Log P
-
L.D. Hughes Why are some properties more difficult to predict than others? A study of QSPR models of solubility, melting point, and Log P J. Chem. Inf. Model. 48 2008 220 232
-
(2008)
J. Chem. Inf. Model.
, vol.48
, pp. 220-232
-
-
Hughes, L.D.1
-
135
-
-
30644464444
-
Gene selection and classification of microarray data using random forest
-
R.D. Uriarte, and S.A. de Andres Gene selection and classification of microarray data using random forest BMC Bioinformatics 7 2006 3
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 3
-
-
Uriarte, R.D.1
De Andres, S.A.2
-
136
-
-
77957730873
-
Predicting phospholipidosis using machine learning
-
R. Lowe Predicting phospholipidosis using machine learning Mol. Pharm. 7 2010 1708 1718
-
(2010)
Mol. Pharm.
, vol.7
, pp. 1708-1718
-
-
Lowe, R.1
-
137
-
-
84883339723
-
A multidimensional analysis of machine learning methods performance in the classification of bioactive compounds
-
S. Smusz A multidimensional analysis of machine learning methods performance in the classification of bioactive compounds Chemom. Intell. Lab. Syst. 128 2013 89 100
-
(2013)
Chemom. Intell. Lab. Syst.
, vol.128
, pp. 89-100
-
-
Smusz, S.1
-
138
-
-
0029306995
-
Statlog: Comparison of classification algorithms on large real-world problems
-
R. King Statlog: comparison of classification algorithms on large real-world problems Appl. Artificial Intell. 9 1995 259 287
-
(1995)
Appl. Artificial Intell.
, vol.9
, pp. 259-287
-
-
King, R.1
-
139
-
-
34250744208
-
An empirical comparison of supervised learning algorithms
-
E.M. Airoldi, D.M. Blei, S.E. Fienberg, A. Goldenberg, E.P. Xing, A.X. Zheng, Springer
-
R. Caruana, and A. Niculescu-Mizil An empirical comparison of supervised learning algorithms E.M. Airoldi, D.M. Blei, S.E. Fienberg, A. Goldenberg, E.P. Xing, A.X. Zheng, Proceedings of the 23rd International Conference on Machine Learning (ICML 2006) 2007 Springer 161 168
-
(2007)
Proceedings of the 23rd International Conference on Machine Learning (ICML 2006)
, pp. 161-168
-
-
Caruana, R.1
Niculescu-Mizil, A.2
-
140
-
-
79960245348
-
Classification of cytochrome P450 inhibitors and noninhibitors using combined classifiers
-
F. Cheng Classification of cytochrome P450 inhibitors and noninhibitors using combined classifiers J. Chem. Inf. Model. 51 2011 996 1011
-
(2011)
J. Chem. Inf. Model.
, vol.51
, pp. 996-1011
-
-
Cheng, F.1
-
141
-
-
66149108701
-
Influence relevance voting: An accurate and interpretable virtual high throughput screening method
-
S.J. Swamidass Influence relevance voting: an accurate and interpretable virtual high throughput screening method J. Chem. Inf. Model. 49 2009 756 766
-
(2009)
J. Chem. Inf. Model.
, vol.49
, pp. 756-766
-
-
Swamidass, S.J.1
-
142
-
-
73349088447
-
GPU accelerated support vector machines for mining high-throughput screening data
-
Q. Liao GPU accelerated support vector machines for mining high-throughput screening data J. Chem. Inf. Model. 49 2009 2718 2725
-
(2009)
J. Chem. Inf. Model.
, vol.49
, pp. 2718-2725
-
-
Liao, Q.1
|