-
1
-
-
0000501656
-
Information theory and an extension of the maximum likelihood principle
-
Budapest: Akadémiai Kiadó
-
Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In Proceedings of the 2nd International Symposium on Information Theory (pp. 267-281). Budapest: Akadémiai Kiadó.
-
(1973)
Proceedings of the 2nd International Symposium on Information Theory
, pp. 267-281
-
-
Akaike, H.1
-
2
-
-
0031074521
-
Locally weighted learning
-
Atkeson, C. G., Moore, A. W., & Schaal, S. (1997). Locally weighted learning. Artificial Intelligence Review, 11, 11-73.
-
(1997)
Artificial Intelligence Review
, vol.11
, pp. 11-73
-
-
Atkeson, C.G.1
Moore, A.W.2
Schaal, S.3
-
3
-
-
0003408496
-
-
Irvine, CA: University of California, Department of Information and Computer Science
-
Blake, C., Keogh, E., & Merz, C. J. (1998). UCI repository of machine learning data-bases. Irvine, CA: University of California, Department of Information and Computer Science. [http://www.ics.uci.edu/˜mlearn/MLRepository.html].
-
(1998)
UCI Repository of Machine Learning Data-bases
-
-
Blake, C.1
Keogh, E.2
Merz, C.J.3
-
4
-
-
0003006556
-
Estimating probabilities: A crucial task in machine learning
-
Stockholm, Sweden London: Pitman
-
Cestnik, B. (1990). Estimating probabilities: A crucial task in machine learning. In Proceedings of the 9th European Conference on Artificial Intelligence, Stockholm, Sweden (pp. 147-149). London: Pitman.
-
(1990)
Proceedings of the 9th European Conference on Artificial Intelligence
, pp. 147-149
-
-
Cestnik, B.1
-
5
-
-
34249966007
-
The CN2 Induction Algorithm
-
Clark, P. & Niblett, T. (1989). The CN2 Induction Algorithm. Machine Learning, 3(4), 261-283.
-
(1989)
Machine Learning
, vol.3
, Issue.4
, pp. 261-283
-
-
Clark, P.1
Niblett, T.2
-
6
-
-
0031269184
-
On the optimality of the simple Bayesian classifier under zero-one loss
-
Domingos, P. & Pazzani, M. (1997). On the optimality of the simple Bayesian classifier under zero-one loss. In Machine Learning, 29(2/3), 103-130.
-
(1997)
Machine Learning
, vol.29
, Issue.2-3
, pp. 103-130
-
-
Domingos, P.1
Pazzani, M.2
-
8
-
-
0002593344
-
Multi-interval discretization of continuous-valued attributes for classification learning
-
Chambery, France San Mateo, CA: Morgan Kaufmann
-
Fayyad, U. M. & Irani, K. B. (1993). Multi-interval discretization of continuous-valued attributes for classification learning. In Proceedings of the 13th International Joint Conference on Artificial Intelligence, Chambery, France (pp. 1022-1027). San Mateo, CA: Morgan Kaufmann.
-
(1993)
Proceedings of the 13th International Joint Conference on Artificial Intelligence
, pp. 1022-1027
-
-
Fayyad, U.M.1
Irani, K.B.2
-
9
-
-
0032117676
-
Using model trees for classification
-
Frank, E., Wang, Y., Inglis, S., Holmes, G., & Witten, I. H. (1998). Using model trees for classification. Machine Learning, 32(1), 63-76.
-
(1998)
Machine Learning
, vol.32
, Issue.1
, pp. 63-76
-
-
Frank, E.1
Wang, Y.2
Inglis, S.3
Holmes, G.4
Witten, I.H.5
-
10
-
-
21744462998
-
On bias, variance, 0/1-loss, and the curse-of-dimensionality
-
Friedman, J. (1997). On bias, variance, 0/1-loss, and the curse-of-dimensionality. Data Mining and Knowledge Discovery, 1, 55-77.
-
(1997)
Data Mining and Knowledge Discovery
, vol.1
, pp. 55-77
-
-
Friedman, J.1
-
11
-
-
0031276011
-
Bayesian network classifiers
-
Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian network classifiers. Machine Learning, 29(2/3), 131-163.
-
(1997)
Machine Learning
, vol.29
, Issue.2-3
, pp. 131-163
-
-
Friedman, N.1
Geiger, D.2
Goldszmidt, M.3
-
12
-
-
0001551844
-
Supervised learning from incomplete data via an EM approach
-
San Mateo, CA: Morgan Kaufmann
-
Ghahramani, Z. & Jordan, M. I. (1994). Supervised learning from incomplete data via an EM approach. In Advances in neural information processing systems 6 (pp. 120-127). San Mateo, CA: Morgan Kaufmann.
-
(1994)
Advances in Neural Information Processing Systems
, vol.6
, pp. 120-127
-
-
Ghahramani, Z.1
Jordan, M.I.2
-
13
-
-
0027580356
-
Very simple classification rules perform well on most commonly used datasets
-
Holte, R. C. (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11, 63-91.
-
(1993)
Machine Learning
, vol.11
, pp. 63-91
-
-
Holte, R.C.1
-
14
-
-
0031381525
-
Wrappers for feature subset selection
-
John, G. H. & Kohavi, R. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1/2), 273-324.
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 273-324
-
-
John, G.H.1
Kohavi, R.2
-
16
-
-
0032156226
-
A probabilistic framework for memory-based reasoning
-
Kasif, S., Salzberg, S., Waltz, D., Rachlin, J., & Aha, D. W (1998). A probabilistic framework for memory-based reasoning. Artificial Intelligence, 104(1/2), 297-312.
-
(1998)
Artificial Intelligence
, vol.104
, Issue.1-2
, pp. 297-312
-
-
Kasif, S.1
Salzberg, S.2
Waltz, D.3
Rachlin, J.4
Aha, D.W.5
-
17
-
-
0343799382
-
Numeric prediction using instance-based learning with encoding length selection
-
Dunedin, New Zealand Singapore: Springer-Verlag
-
Kilpatrick, D. & Cameron-Jones, M. (1998). Numeric prediction using instance-based learning with encoding length selection. In Progress in Connectionist-Based Information Systems, Dunedin, New Zealand (pp. 984-987). Singapore: Springer-Verlag.
-
(1998)
Progress in Connectionist-Based Information Systems
, pp. 984-987
-
-
Kilpatrick, D.1
Cameron-Jones, M.2
-
19
-
-
85011898836
-
-
Personal Communication
-
Kononenko, I. (1998). Personal Communication.
-
(1998)
-
-
Kononenko, I.1
-
20
-
-
0026992322
-
An analysis of Bayesian classifiers
-
San Jose, CA Menlo Park, CA: AAAI Press
-
Langley, P., Iba, W., & Thompson, K. (1992). An analysis of Bayesian classifiers. In Proceedings of the 10th National Conference on Artificial Intelligence, San Jose, CA (pp. 223-228). Menlo Park, CA: AAAI Press.
-
(1992)
Proceedings of the 10th National Conference on Artificial Intelligence
, pp. 223-228
-
-
Langley, P.1
Iba, W.2
Thompson, K.3
-
21
-
-
84886741606
-
Induction of recursive Bayesian classifiers
-
Vienna, Austria Berlin: Springer-Verlag
-
Langley, P. (1993). Induction of recursive Bayesian classifiers. In Proceedings of the 8th European Conference on Machine Learning, Vienna, Austria (pp. 153-164). Berlin: Springer-Verlag.
-
(1993)
Proceedings of the 8th European Conference on Machine Learning
, pp. 153-164
-
-
Langley, P.1
-
22
-
-
0001901666
-
Induction of selective Bayesian classifiers
-
Seattle, WA San Mateo, CA: Morgan Kaufmann
-
Langley, P. & Sage, S. (1994). Induction of selective Bayesian classifiers, In Proceedings of the 10th Conference on Uncertainty in Artificial Intelligence, Seattle, WA (pp. 399-406). San Mateo, CA: Morgan Kaufmann.
-
(1994)
Proceedings of the 10th Conference on Uncertainty in Artificial Intelligence
, pp. 399-406
-
-
Langley, P.1
Sage, S.2
-
24
-
-
0008155075
-
Searching for dependencies in Bayesian classifiers
-
New York: Springer-Verlag
-
Pazzani, M. (1996). Searching for dependencies in Bayesian classifiers. In Learning from data: Artificial intelligence and statistics V (pp. 343-348). New York: Springer-Verlag.
-
(1996)
Learning from Data: Artificial Intelligence and Statistics
, vol.5
, pp. 343-348
-
-
Pazzani, M.1
-
30
-
-
84873894260
-
Retrofitting decision tree classifiers using kernel density estimation
-
Tahoe City, CA San Francisco, CA: Morgan Kaufmann
-
Smyth, P., Gray, A., & Fayyad, U. M. (1995). Retrofitting decision tree classifiers using kernel density estimation, In Proceedings of the 12th International Conference on Machine Learning, Tahoe City, CA (pp. 506-514). San Francisco, CA: Morgan Kaufmann.
-
(1995)
Proceedings of the 12th International Conference on Machine Learning
, pp. 506-514
-
-
Smyth, P.1
Gray, A.2
Fayyad, U.M.3
-
31
-
-
85011892962
-
-
Department of Statistics, Carnegie Mellon University
-
StatLib (1999). Department of Statistics, Carnegie Mellon University. [http://lib.stat.cmu.edu].
-
(1999)
-
-
-
32
-
-
0001717058
-
Induction of model trees for predicting continuous classes
-
Prague Prague: University of Economics, Faculty of Informatics and Statistics
-
Wang, Y. & Witten, I. H. (1997). Induction of model trees for predicting continuous classes, In Proceedings of the Poster Papers of the European Conference on Machine Learning, Prague (pp. 128-137). Prague: University of Economics, Faculty of Informatics and Statistics.
-
(1997)
Proceedings of the Poster Papers of the European Conference on Machine Learning
, pp. 128-137
-
-
Wang, Y.1
Witten, I.H.2
|