-
1
-
-
0038797944
-
-
2 nd ed.; John Wiley & Sons, Ltd: United Kingdom
-
Webb, A. R. Statistical Pattern Recognition, 2 nd ed.; John Wiley & Sons, Ltd: United Kingdom, 2002.
-
(2002)
Statistical Pattern Recognition
-
-
Webb, A.R.1
-
3
-
-
0003450542
-
-
In, 1 st ed.; Jordan, M. and Lauritzen, S. L., Eds.; Springer: New York
-
Vapnik, V. N. In The Nature of Statistical Learning Theory, 1 st ed.; Jordan, M. and Lauritzen, S. L., Eds.; Springer: New York, 1995.
-
(1995)
The Nature of Statistical Learning Theory
-
-
Vapnik, V.N.1
-
7
-
-
0004255908
-
-
1 st ed.; McGraw-Hill International Editions: New York
-
Mitchell, T. M. Machine Learning, 1 st ed.; McGraw-Hill International Editions: New York, 1997.
-
(1997)
Machine Learning
-
-
Mitchell, T.M.1
-
8
-
-
1842690601
-
Molecular similarity searching using atom environments, information-based feature selection, and a Naïve Bayesian classifier
-
Bender, A.; Mussa, H. Y.; Glen, R. C.; Reiling, S. Molecular similarity searching using atom environments, information-based feature selection, and a Naïve Bayesian classifier J. Chem. Inf. Comput. Sci. 2004, 44, 170-178
-
(2004)
J. Chem. Inf. Comput. Sci.
, vol.44
, pp. 170-178
-
-
Bender, A.1
Mussa, H.Y.2
Glen, R.C.3
Reiling, S.4
-
9
-
-
0035438388
-
Prediction of biological activity for high-throughput screening using binary kernel discrimination
-
Harper, G.; Bradshaw, J.; Gittins, J. C.; Green, D. V. S.; Leach, A. R. Prediction of biological activity for high-throughput screening using binary kernel discrimination J. Chem. Inf. Comput. Sci. 2001, 41, 1295-1300
-
(2001)
J. Chem. Inf. Comput. Sci.
, vol.41
, pp. 1295-1300
-
-
Harper, G.1
Bradshaw, J.2
Gittins, J.C.3
Green, D.V.S.4
Leach, A.R.5
-
10
-
-
41549125090
-
How to winnow actives from inactives: Introducing molecular orthogonal sparse bigrams (MOSBs) and multiclass winnow
-
DOI 10.1021/ci700350n
-
Nigsch, F.; Mitchell, J. B. O. How to winnow actives from inactives: Introducing Molecular Orthogonal Sparse Bigrams (MOSBs) and multiclass winnow J. Chem. Inf. Model. 2008, 48, 306-318 (Pubitemid 351473034)
-
(2008)
Journal of Chemical Information and Modeling
, vol.48
, Issue.2
, pp. 306-318
-
-
Nigsch, F.1
Mitchell, J.B.O.2
-
11
-
-
79952592181
-
Classifying large chemical data sets: Using a regularized potential function method
-
Mussa, H. Y.; Hawizy, L.; Nigsch, F.; Glen, R. C. Classifying large chemical data sets: Using a regularized potential function method J. Chem. Inf. Model. 2011, 51, 4-14
-
(2011)
J. Chem. Inf. Model.
, vol.51
, pp. 4-14
-
-
Mussa, H.Y.1
Hawizy, L.2
Nigsch, F.3
Glen, R.C.4
-
12
-
-
33646238677
-
Virtual screening using binary kernel discrimination: Effect of noisy training data and the optimization of performance
-
PMID: 16562975
-
Chen, B.; Harrison, R. F.; Pasupa, K.; Willett, P.; Wilton, D. J.; Wood, D. J.; Lewell, X. Q. Virtual screening using binary kernel discrimination: Effect of noisy training data and the optimization of performance. J. Chem. Inf. Model. 2006, 46, 478-486, PMID: 16562975.
-
(2006)
J. Chem. Inf. Model.
, vol.46
, pp. 478-486
-
-
Chen, B.1
Harrison, R.F.2
Pasupa, K.3
Willett, P.4
Wilton, D.J.5
Wood, D.J.6
Lewell, X.Q.7
-
13
-
-
60649121880
-
Naive Bayes Classifiers That Perform Well with Continuous Variables
-
In; Webb, G.; Yu, X., Eds.; Springer Berlin/Heidelberg: Germany
-
Bouckaert, R. Naive Bayes Classifiers That Perform Well with Continuous Variables. In AI 2004: Advances in Artificial Intelligence; Webb, G.; Yu, X., Eds.; Springer Berlin/Heidelberg: Germany, 2005; Vol. 3339, pp 85-116.
-
(2005)
AI 2004: Advances in Artificial Intelligence
, vol.3339
, pp. 85-116
-
-
Bouckaert, R.1
-
14
-
-
0001473437
-
On estimation of a probability density function and mode
-
Parzen, E. On estimation of a probability density function and mode Ann. Math. Statist. 1962, 33, 1065-1076
-
(1962)
Ann. Math. Statist.
, vol.33
, pp. 1065-1076
-
-
Parzen, E.1
-
15
-
-
0001224048
-
Sparse Bayesian Learning and the Relevance Vector Machine
-
DOI 10.1162/15324430152748236
-
Tipping, M. E. Sparse Bayesian learning and the relevance vector machine J. Mach. Learn. Res. 2001, 1, 211-244 (Pubitemid 33687203)
-
(2001)
Journal of Machine Learning Research
, vol.1
, Issue.3
, pp. 211-244
-
-
Tipping, M.E.1
-
16
-
-
0003243224
-
Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
-
In; Smola, A. J.; Bartlett, P.; Scholkopf, B.; Schuurman, D., Eds.; MIT Press: Cambridge, MA
-
Platt, J. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In AI 2004: Advances in Large Margin Classifiers; Smola, A. J.; Bartlett, P.; Scholkopf, B.; Schuurman, D., Eds.; MIT Press: Cambridge, MA, 2000; pp 1-11.
-
(2000)
AI 2004: Advances in Large Margin Classifiers
, pp. 1-11
-
-
Platt, J.1
-
18
-
-
0347128520
-
Issues in Bayesian Analysis of Neural Network Models
-
Muller, P.; Insua, D. R. Issues in Bayesian analysis of neural network models Neural. Comput. 1998, 10, 749-770 (Pubitemid 128463175)
-
(1998)
Neural Computation
, vol.10
, Issue.3
, pp. 749-770
-
-
Muller, P.1
Rios Insua, D.2
-
19
-
-
79960713854
-
-
Sparse Bayesian Models (& the RVM). (accessed June 1)
-
Sparse Bayesian Models (& the RVM). http://www.miketipping.com/index. php?page=rvm (accessed June 1, 2011).
-
(2011)
-
-
-
20
-
-
79960728176
-
-
In Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics, Key West, FL, January 3-6,; Bishop, C. M.; Frey, B. J., Eds
-
Tipping, M. E.; Faul, A. Fast Marginal Likelihood Maximisation for Sparse Bayesian Models. In Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics, Key West, FL, January 3-6, 2003; Bishop, C. M.; Frey, B. J., Eds.
-
(2003)
Fast Marginal Likelihood Maximisation for Sparse Bayesian Models
-
-
Tipping, M.E.1
Faul, A.2
-
21
-
-
79960725800
-
-
Accelrys. (accessed June 1)
-
Accelrys. http://accelrys.com/products/databases/bioactivity/mddr.html (accessed June 1, 2011).
-
(2011)
-
-
-
22
-
-
33646250166
-
Virtual screening using binary kernel discrimination: Analysis of pesticide data
-
Wilton, D. J.; Harrison, R. F.; Willett, P.; Delaney, J.; Lawson, K.; Mullier, G. Virtual screening using binary kernel discrimination: Analysis of pesticide data J. Chem. Inf. Model. 2006, 46, 471-477
-
(2006)
J. Chem. Inf. Model.
, vol.46
, pp. 471-477
-
-
Wilton, D.J.1
Harrison, R.F.2
Willett, P.3
Delaney, J.4
Lawson, K.5
Mullier, G.6
-
23
-
-
10244222365
-
Comparison of topological descriptors for similarity-based virtual screening using multiple bioactive reference structures
-
Hert, J.; Willett, P.; Wilton, D. J.; Acklin, P.; Azzaoui, K.; Jacoby, E.; Schuffenhauer, A. Comparison of topological descriptors for similarity-based virtual screening using multiple bioactive reference structures Org. Biomol. Chem. 2004, 2, 3256-3266
-
(2004)
Org. Biomol. Chem.
, vol.2
, pp. 3256-3266
-
-
Hert, J.1
Willett, P.2
Wilton, D.J.3
Acklin, P.4
Azzaoui, K.5
Jacoby, E.6
Schuffenhauer, A.7
-
24
-
-
0017109036
-
Multivariate binary discrimination by the kernel method
-
Aitchison, J.; Aitken, C. G. G. Multivariate binary discrimination by the kernel method Biometrika 1976, 63, 413-420
-
(1976)
Biometrika
, vol.63
, pp. 413-420
-
-
Aitchison, J.1
Aitken, C.G.G.2
-
25
-
-
0000900996
-
A Bound on the Error of Cross Validation Using the Approximation and Estimation Rates, with Consequences for the Training-Test Split
-
Kearns, M. A bound on the error of cross validation using the approximation and estimation rates, with consequences for the training-test split Neural. Comput. 1997, 9, 1143-1161 (Pubitemid 127462796)
-
(1997)
Neural Computation
, vol.9
, Issue.5
, pp. 1143-1161
-
-
Kearns, M.1
-
27
-
-
0002714543
-
-
In; Schölkopf, B.; Burges, C.; Smola, A., Eds.; MIT Press: Cambridge, MA,; Chapter 11
-
Joachims, T. In Advances in Kernel Methods: Support Vector Learning; Schölkopf, B.; Burges, C.; Smola, A., Eds.; MIT Press: Cambridge, MA, 1999; Chapter 11, pp 169-184.
-
(1999)
Advances in Kernel Methods: Support Vector Learning
, pp. 169-184
-
-
Joachims, T.1
-
29
-
-
0003706460
-
-
3 rd ed.; Society for Industrial and Applied Mathematics: Philadelphia, PA
-
Anderson, E.; Bai, Z.; Bischof, C.; Blackford, S.; Demmel, J.; Dongarra, J.; Du Croz, J.; Greenbaum, A.; Hammarling, S.; McKenney, A.; Sorensen, D. LAPACK Users' Guide, 3 rd ed.; Society for Industrial and Applied Mathematics: Philadelphia, PA, 1999.
-
(1999)
LAPACK Users' Guide
-
-
Anderson, E.1
Bai, Z.2
Bischof, C.3
Blackford, S.4
Demmel, J.5
Dongarra, J.6
Du Croz, J.7
Greenbaum, A.8
Hammarling, S.9
McKenney, A.10
Sorensen, D.11
|