메뉴 건너뛰기




Volumn 51, Issue 7, 2011, Pages 1539-1544

Classifying molecules using a sparse probabilistic kernel binary classifier

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARKING; DECISION MAKING; MOLECULES; RISK MANAGEMENT; SUPPORT VECTOR MACHINES;

EID: 79960707576     PISSN: 15499596     EISSN: 1549960X     Source Type: Journal    
DOI: 10.1021/ci200128w     Document Type: Article
Times cited : (20)

References (29)
  • 1
  • 3
    • 0003450542 scopus 로고
    • In, 1 st ed.; Jordan, M. and Lauritzen, S. L., Eds.; Springer: New York
    • Vapnik, V. N. In The Nature of Statistical Learning Theory, 1 st ed.; Jordan, M. and Lauritzen, S. L., Eds.; Springer: New York, 1995.
    • (1995) The Nature of Statistical Learning Theory
    • Vapnik, V.N.1
  • 7
    • 0004255908 scopus 로고    scopus 로고
    • 1 st ed.; McGraw-Hill International Editions: New York
    • Mitchell, T. M. Machine Learning, 1 st ed.; McGraw-Hill International Editions: New York, 1997.
    • (1997) Machine Learning
    • Mitchell, T.M.1
  • 8
    • 1842690601 scopus 로고    scopus 로고
    • Molecular similarity searching using atom environments, information-based feature selection, and a Naïve Bayesian classifier
    • Bender, A.; Mussa, H. Y.; Glen, R. C.; Reiling, S. Molecular similarity searching using atom environments, information-based feature selection, and a Naïve Bayesian classifier J. Chem. Inf. Comput. Sci. 2004, 44, 170-178
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , pp. 170-178
    • Bender, A.1    Mussa, H.Y.2    Glen, R.C.3    Reiling, S.4
  • 9
    • 0035438388 scopus 로고    scopus 로고
    • Prediction of biological activity for high-throughput screening using binary kernel discrimination
    • Harper, G.; Bradshaw, J.; Gittins, J. C.; Green, D. V. S.; Leach, A. R. Prediction of biological activity for high-throughput screening using binary kernel discrimination J. Chem. Inf. Comput. Sci. 2001, 41, 1295-1300
    • (2001) J. Chem. Inf. Comput. Sci. , vol.41 , pp. 1295-1300
    • Harper, G.1    Bradshaw, J.2    Gittins, J.C.3    Green, D.V.S.4    Leach, A.R.5
  • 10
    • 41549125090 scopus 로고    scopus 로고
    • How to winnow actives from inactives: Introducing molecular orthogonal sparse bigrams (MOSBs) and multiclass winnow
    • DOI 10.1021/ci700350n
    • Nigsch, F.; Mitchell, J. B. O. How to winnow actives from inactives: Introducing Molecular Orthogonal Sparse Bigrams (MOSBs) and multiclass winnow J. Chem. Inf. Model. 2008, 48, 306-318 (Pubitemid 351473034)
    • (2008) Journal of Chemical Information and Modeling , vol.48 , Issue.2 , pp. 306-318
    • Nigsch, F.1    Mitchell, J.B.O.2
  • 11
    • 79952592181 scopus 로고    scopus 로고
    • Classifying large chemical data sets: Using a regularized potential function method
    • Mussa, H. Y.; Hawizy, L.; Nigsch, F.; Glen, R. C. Classifying large chemical data sets: Using a regularized potential function method J. Chem. Inf. Model. 2011, 51, 4-14
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 4-14
    • Mussa, H.Y.1    Hawizy, L.2    Nigsch, F.3    Glen, R.C.4
  • 12
    • 33646238677 scopus 로고    scopus 로고
    • Virtual screening using binary kernel discrimination: Effect of noisy training data and the optimization of performance
    • PMID: 16562975
    • Chen, B.; Harrison, R. F.; Pasupa, K.; Willett, P.; Wilton, D. J.; Wood, D. J.; Lewell, X. Q. Virtual screening using binary kernel discrimination: Effect of noisy training data and the optimization of performance. J. Chem. Inf. Model. 2006, 46, 478-486, PMID: 16562975.
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 478-486
    • Chen, B.1    Harrison, R.F.2    Pasupa, K.3    Willett, P.4    Wilton, D.J.5    Wood, D.J.6    Lewell, X.Q.7
  • 13
    • 60649121880 scopus 로고    scopus 로고
    • Naive Bayes Classifiers That Perform Well with Continuous Variables
    • In; Webb, G.; Yu, X., Eds.; Springer Berlin/Heidelberg: Germany
    • Bouckaert, R. Naive Bayes Classifiers That Perform Well with Continuous Variables. In AI 2004: Advances in Artificial Intelligence; Webb, G.; Yu, X., Eds.; Springer Berlin/Heidelberg: Germany, 2005; Vol. 3339, pp 85-116.
    • (2005) AI 2004: Advances in Artificial Intelligence , vol.3339 , pp. 85-116
    • Bouckaert, R.1
  • 14
    • 0001473437 scopus 로고
    • On estimation of a probability density function and mode
    • Parzen, E. On estimation of a probability density function and mode Ann. Math. Statist. 1962, 33, 1065-1076
    • (1962) Ann. Math. Statist. , vol.33 , pp. 1065-1076
    • Parzen, E.1
  • 15
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian Learning and the Relevance Vector Machine
    • DOI 10.1162/15324430152748236
    • Tipping, M. E. Sparse Bayesian learning and the relevance vector machine J. Mach. Learn. Res. 2001, 1, 211-244 (Pubitemid 33687203)
    • (2001) Journal of Machine Learning Research , vol.1 , Issue.3 , pp. 211-244
    • Tipping, M.E.1
  • 16
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • In; Smola, A. J.; Bartlett, P.; Scholkopf, B.; Schuurman, D., Eds.; MIT Press: Cambridge, MA
    • Platt, J. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In AI 2004: Advances in Large Margin Classifiers; Smola, A. J.; Bartlett, P.; Scholkopf, B.; Schuurman, D., Eds.; MIT Press: Cambridge, MA, 2000; pp 1-11.
    • (2000) AI 2004: Advances in Large Margin Classifiers , pp. 1-11
    • Platt, J.1
  • 18
    • 0347128520 scopus 로고    scopus 로고
    • Issues in Bayesian Analysis of Neural Network Models
    • Muller, P.; Insua, D. R. Issues in Bayesian analysis of neural network models Neural. Comput. 1998, 10, 749-770 (Pubitemid 128463175)
    • (1998) Neural Computation , vol.10 , Issue.3 , pp. 749-770
    • Muller, P.1    Rios Insua, D.2
  • 19
    • 79960713854 scopus 로고    scopus 로고
    • Sparse Bayesian Models (& the RVM). (accessed June 1)
    • Sparse Bayesian Models (& the RVM). http://www.miketipping.com/index. php?page=rvm (accessed June 1, 2011).
    • (2011)
  • 20
    • 79960728176 scopus 로고    scopus 로고
    • In Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics, Key West, FL, January 3-6,; Bishop, C. M.; Frey, B. J., Eds
    • Tipping, M. E.; Faul, A. Fast Marginal Likelihood Maximisation for Sparse Bayesian Models. In Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics, Key West, FL, January 3-6, 2003; Bishop, C. M.; Frey, B. J., Eds.
    • (2003) Fast Marginal Likelihood Maximisation for Sparse Bayesian Models
    • Tipping, M.E.1    Faul, A.2
  • 21
    • 79960725800 scopus 로고    scopus 로고
    • Accelrys. (accessed June 1)
    • Accelrys. http://accelrys.com/products/databases/bioactivity/mddr.html (accessed June 1, 2011).
    • (2011)
  • 23
    • 10244222365 scopus 로고    scopus 로고
    • Comparison of topological descriptors for similarity-based virtual screening using multiple bioactive reference structures
    • Hert, J.; Willett, P.; Wilton, D. J.; Acklin, P.; Azzaoui, K.; Jacoby, E.; Schuffenhauer, A. Comparison of topological descriptors for similarity-based virtual screening using multiple bioactive reference structures Org. Biomol. Chem. 2004, 2, 3256-3266
    • (2004) Org. Biomol. Chem. , vol.2 , pp. 3256-3266
    • Hert, J.1    Willett, P.2    Wilton, D.J.3    Acklin, P.4    Azzaoui, K.5    Jacoby, E.6    Schuffenhauer, A.7
  • 24
    • 0017109036 scopus 로고
    • Multivariate binary discrimination by the kernel method
    • Aitchison, J.; Aitken, C. G. G. Multivariate binary discrimination by the kernel method Biometrika 1976, 63, 413-420
    • (1976) Biometrika , vol.63 , pp. 413-420
    • Aitchison, J.1    Aitken, C.G.G.2
  • 25
    • 0000900996 scopus 로고    scopus 로고
    • A Bound on the Error of Cross Validation Using the Approximation and Estimation Rates, with Consequences for the Training-Test Split
    • Kearns, M. A bound on the error of cross validation using the approximation and estimation rates, with consequences for the training-test split Neural. Comput. 1997, 9, 1143-1161 (Pubitemid 127462796)
    • (1997) Neural Computation , vol.9 , Issue.5 , pp. 1143-1161
    • Kearns, M.1
  • 27
    • 0002714543 scopus 로고    scopus 로고
    • In; Schölkopf, B.; Burges, C.; Smola, A., Eds.; MIT Press: Cambridge, MA,; Chapter 11
    • Joachims, T. In Advances in Kernel Methods: Support Vector Learning; Schölkopf, B.; Burges, C.; Smola, A., Eds.; MIT Press: Cambridge, MA, 1999; Chapter 11, pp 169-184.
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 169-184
    • Joachims, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.