-
1
-
-
65649130829
-
Virtual screening of drugs: score functions, docking, and drug design
-
Breda A., Basso L.A., Santos D.S., de Azevedo W.F. Virtual screening of drugs: score functions, docking, and drug design. Curr. Comput. Aided Drug Des. 2008, 4:265-272.
-
(2008)
Curr. Comput. Aided Drug Des.
, vol.4
, pp. 265-272
-
-
Breda, A.1
Basso, L.A.2
Santos, D.S.3
de Azevedo, W.F.4
-
2
-
-
77649220192
-
Current trends in ligand-based virtual screening: molecular representations, data mining methods, new application areas, and performance evaluation
-
Geppert H., Vogt M., Bajorath J. Current trends in ligand-based virtual screening: molecular representations, data mining methods, new application areas, and performance evaluation. J. Chem. Inf. Model. 2010, 50:205-216.
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 205-216
-
-
Geppert, H.1
Vogt, M.2
Bajorath, J.3
-
4
-
-
33947245022
-
Evaluation of machine-learning methods for ligand-based virtual screening
-
Chen B., Harrison R.F., Papadatos G., Willett P., Wood D.J., Lewell X.Q., Greenidge P., Stiefl N. Evaluation of machine-learning methods for ligand-based virtual screening. J. Comput. Aided Mol. Des. 2007, 21:53-62.
-
(2007)
J. Comput. Aided Mol. Des.
, vol.21
, pp. 53-62
-
-
Chen, B.1
Harrison, R.F.2
Papadatos, G.3
Willett, P.4
Wood, D.J.5
Lewell, X.Q.6
Greenidge, P.7
Stiefl, N.8
-
5
-
-
66849142177
-
How wrong can we get? A review of machine learning approaches and error bars
-
Schwaighofer A., Schroeter T., Mika S., Blanchard G. How wrong can we get? A review of machine learning approaches and error bars. Comb. Chem. High Throughput Screen. 2009, 12:453-468.
-
(2009)
Comb. Chem. High Throughput Screen.
, vol.12
, pp. 453-468
-
-
Schwaighofer, A.1
Schroeter, T.2
Mika, S.3
Blanchard, G.4
-
6
-
-
66249088724
-
Comparative analysis of machine learning methods in ligand-based virtual screening of large compound libraries
-
Ma X.H., Jia J., Zhu F., Xue Y., Li Z.R., Chen Y.Z. Comparative analysis of machine learning methods in ligand-based virtual screening of large compound libraries. Comb. Chem. High Throughput Screen. 2009, 12:344-357.
-
(2009)
Comb. Chem. High Throughput Screen.
, vol.12
, pp. 344-357
-
-
Ma, X.H.1
Jia, J.2
Zhu, F.3
Xue, Y.4
Li, Z.R.5
Chen, Y.Z.6
-
7
-
-
66249104367
-
Structure-based drug screening and ligand-based drug screening with machine learning
-
Fukunishi Y. Structure-based drug screening and ligand-based drug screening with machine learning. Comb. Chem. High Throughput Screen. 2009, 12:397-408.
-
(2009)
Comb. Chem. High Throughput Screen.
, vol.12
, pp. 397-408
-
-
Fukunishi, Y.1
-
8
-
-
79951792796
-
Applications of machine learning and computational intelligence to drug discovery and development
-
Hecht D. Applications of machine learning and computational intelligence to drug discovery and development. Drug Dev. Res. 2011, 72:53-65.
-
(2011)
Drug Dev. Res.
, vol.72
, pp. 53-65
-
-
Hecht, D.1
-
9
-
-
79954520156
-
Classification of Aurora-A kinase inhibitors using self-organizing map (SOM) and support vector machine (SVM)
-
Wang L., Wang Z., Yan A., Yuan Q. Classification of Aurora-A kinase inhibitors using self-organizing map (SOM) and support vector machine (SVM). Mol. Inf. 2011, 30:35-44.
-
(2011)
Mol. Inf.
, vol.30
, pp. 35-44
-
-
Wang, L.1
Wang, Z.2
Yan, A.3
Yuan, Q.4
-
10
-
-
79960245348
-
Classification of cytochrome P450 inhibitors and noninhibitors using combined classifiers
-
Cheng F., Yu Y., Shen J., Yang L., Li W., Liu G., Lee P.W., Tang Y. Classification of cytochrome P450 inhibitors and noninhibitors using combined classifiers. J. Chem. Inf. Model. 2011, 51:996-1011.
-
(2011)
J. Chem. Inf. Model.
, vol.51
, pp. 996-1011
-
-
Cheng, F.1
Yu, Y.2
Shen, J.3
Yang, L.4
Li, W.5
Liu, G.6
Lee, P.W.7
Tang, Y.8
-
11
-
-
55949119785
-
Data mining PubChem using a support vector machine with the signature molecular descriptor: classification of factor XIa inhibitors
-
Weis D.C., Visco D.P., Faulon J.-L. Data mining PubChem using a support vector machine with the signature molecular descriptor: classification of factor XIa inhibitors. J. Mol. Graph. Model. 2008, 27:466-475.
-
(2008)
J. Mol. Graph. Model.
, vol.27
, pp. 466-475
-
-
Weis, D.C.1
Visco, D.P.2
Faulon, J.-L.3
-
12
-
-
20444403742
-
Classification of substrates and inhibitors of P-glycoprotein using unsupervised machine learning approach
-
Wang Y.H., Li Y., Yang S.L., Yang L. Classification of substrates and inhibitors of P-glycoprotein using unsupervised machine learning approach. J. Chem. Inf. Model. 2005, 45:750-757.
-
(2005)
J. Chem. Inf. Model.
, vol.45
, pp. 750-757
-
-
Wang, Y.H.1
Li, Y.2
Yang, S.L.3
Yang, L.4
-
13
-
-
77950918213
-
Consensus model for identification of novel PI3K inhibitors in large chemical library
-
Liew C.Y., Ma X.H., Yap C.W. Consensus model for identification of novel PI3K inhibitors in large chemical library. J. Comput. Aided Mol. Des. 2010, 24:131-141.
-
(2010)
J. Comput. Aided Mol. Des.
, vol.24
, pp. 131-141
-
-
Liew, C.Y.1
Ma, X.H.2
Yap, C.W.3
-
14
-
-
77952685182
-
Identifying novel type ZBGs and nonhydroxamate HDAC inhibitors through a SVM based virtual screening approach
-
Liu X.H., Song H.Y., Zhang J.X., Han B.C., Wei X.N., Ma X.H., Cui W.K., Chen Y.Z. Identifying novel type ZBGs and nonhydroxamate HDAC inhibitors through a SVM based virtual screening approach. Mol. Inf. 2010, 29:407-420.
-
(2010)
Mol. Inf.
, vol.29
, pp. 407-420
-
-
Liu, X.H.1
Song, H.Y.2
Zhang, J.X.3
Han, B.C.4
Wei, X.N.5
Ma, X.H.6
Cui, W.K.7
Chen, Y.Z.8
-
15
-
-
70349941427
-
Virtual screening of Abl inhibitors from large compound libraries by support vector machines
-
Liu X.H., Ma X.H., Tan C.Y., Jiang Y.Y., Go M.L., Low B.C., Chen Y.Z. Virtual screening of Abl inhibitors from large compound libraries by support vector machines. J. Chem. Inf. Model. 2009, 49:2101-2110.
-
(2009)
J. Chem. Inf. Model.
, vol.49
, pp. 2101-2110
-
-
Liu, X.H.1
Ma, X.H.2
Tan, C.Y.3
Jiang, Y.Y.4
Go, M.L.5
Low, B.C.6
Chen, Y.Z.7
-
16
-
-
84877347172
-
Classification of cytochrome P 450 activities using machine learning methods
-
Hammann F., Gutmann H., Baumann U., Helma C., Drewe J. Classification of cytochrome P 450 activities using machine learning methods. Mol. Pharm. 2009, 33:796-801.
-
(2009)
Mol. Pharm.
, vol.33
, pp. 796-801
-
-
Hammann, F.1
Gutmann, H.2
Baumann, U.3
Helma, C.4
Drewe, J.5
-
17
-
-
55249101966
-
Identifying hERG potassium channel inhibitors by machine learning methods
-
Wang M., Yang X.-G., Xue Y. Identifying hERG potassium channel inhibitors by machine learning methods. QSAR Comb. Sci. 2008, 27:1028-1035.
-
(2008)
QSAR Comb. Sci.
, vol.27
, pp. 1028-1035
-
-
Wang, M.1
Yang, X.-G.2
Xue, Y.3
-
18
-
-
43049157546
-
A support vector machines approach for virtual screening of active compounds of single and multiple mechanisms from large libraries at an improved hit-rate and enrichment factor
-
Han L.Y., Ma X.H., Lin H.H., Jia J., Zhu F., Xue Y., Li Z.R., Cao Z.W., Ji Z.L., Chen Y.Z. A support vector machines approach for virtual screening of active compounds of single and multiple mechanisms from large libraries at an improved hit-rate and enrichment factor. J. Mol. Graph. Model. 2008, 26:1276-1286.
-
(2008)
J. Mol. Graph. Model.
, vol.26
, pp. 1276-1286
-
-
Han, L.Y.1
Ma, X.H.2
Lin, H.H.3
Jia, J.4
Zhu, F.5
Xue, Y.6
Li, Z.R.7
Cao, Z.W.8
Ji, Z.L.9
Chen, Y.Z.10
-
19
-
-
47349107115
-
Evaluation of virtual screening performance of support vector machines trained by sparsely distributed active compounds
-
Ma X.H., Wang R., Yang S.Y., Li Z.R., Xue Y., Wei Y.C., Low B.C., Chen Y.Z. Evaluation of virtual screening performance of support vector machines trained by sparsely distributed active compounds. J. Chem. Inf. Model. 2008, 48:1227-1237.
-
(2008)
J. Chem. Inf. Model.
, vol.48
, pp. 1227-1237
-
-
Ma, X.H.1
Wang, R.2
Yang, S.Y.3
Li, Z.R.4
Xue, Y.5
Wei, Y.C.6
Low, B.C.7
Chen, Y.Z.8
-
20
-
-
67349223265
-
KNNsim: k-nearest neighbors similarity with genetic algorithm features optimization enhances the prediction of activity classes for small molecules
-
Plewczynski D. kNNsim: k-nearest neighbors similarity with genetic algorithm features optimization enhances the prediction of activity classes for small molecules. J. Mol. Model. 2009, 15:591-596.
-
(2009)
J. Mol. Model.
, vol.15
, pp. 591-596
-
-
Plewczynski, D.1
-
21
-
-
77952768125
-
Ranking chemical structures for drug discovery: a new machine learning approach
-
Agarwal S., Dugar D., Sengupta S. Ranking chemical structures for drug discovery: a new machine learning approach. J. Chem. Inf. Model. 2010, 50:716-731.
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 716-731
-
-
Agarwal, S.1
Dugar, D.2
Sengupta, S.3
-
22
-
-
33745420796
-
Assessing different classification methods for virtual screening
-
Plewczynski D., Spieser S.H., Koch U. Assessing different classification methods for virtual screening. J. Chem. Inf. Model. 2006, 46:1098-1106.
-
(2006)
J. Chem. Inf. Model.
, vol.46
, pp. 1098-1106
-
-
Plewczynski, D.1
Spieser, S.H.2
Koch, U.3
-
23
-
-
80255135618
-
Brainstorming: weighted voting prediction of inhibitors for protein targets
-
Plewczynski D. Brainstorming: weighted voting prediction of inhibitors for protein targets. J. Mol. Model. 2011, 17:2133-2141.
-
(2011)
J. Mol. Model.
, vol.17
, pp. 2133-2141
-
-
Plewczynski, D.1
-
24
-
-
34247386376
-
Support vector inductive logic programming outperforms the naive Bayes classifier and inductive logic programming for the classification of bioactive chemical compounds
-
Cannon E.O., Amini A., Bender A., Sternberg M.J.E., Muggleton S.H., Glen R.C., Mitchell J.B.O. Support vector inductive logic programming outperforms the naive Bayes classifier and inductive logic programming for the classification of bioactive chemical compounds. J. Comput. Aided Mol. Des. 2007, 21:269-280.
-
(2007)
J. Comput. Aided Mol. Des.
, vol.21
, pp. 269-280
-
-
Cannon, E.O.1
Amini, A.2
Bender, A.3
Sternberg, M.J.E.4
Muggleton, S.H.5
Glen, R.C.6
Mitchell, J.B.O.7
-
25
-
-
33947255489
-
Target specific compound identification using a support vector machine
-
Plewczynski D., Von Grotthuss M., Spieser S.A.H., Rychlewski L., Wyrwicz L.S., Ginalski K., Koch U. Target specific compound identification using a support vector machine. Comb. Chem. High Throughput Screen. 2007, 10:189-196.
-
(2007)
Comb. Chem. High Throughput Screen.
, vol.10
, pp. 189-196
-
-
Plewczynski, D.1
Von Grotthuss, M.2
Spieser, S.A.H.3
Rychlewski, L.4
Wyrwicz, L.S.5
Ginalski, K.6
Koch, U.7
-
26
-
-
70349879097
-
Turbo similarity searching: effect of fingerprint and dataset on virtual-screening performance
-
Gardiner E.J., Gillet V.J., Haranczyk M., Holliday J.D., Malim N., Willett P. Turbo similarity searching: effect of fingerprint and dataset on virtual-screening performance. Analysis 2009, 2:103-114.
-
(2009)
Analysis
, vol.2
, pp. 103-114
-
-
Gardiner, E.J.1
Gillet, V.J.2
Haranczyk, M.3
Holliday, J.D.4
Malim, N.5
Willett, P.6
-
27
-
-
84883327290
-
-
MDDR licensed by Accelrys, Inc., USA; accelrys.com (accessed Sep 02, 2012).
-
MDDR licensed by Accelrys, Inc., USA; accelrys.com (accessed Sep 02, 2012).
-
-
-
-
28
-
-
79955013133
-
Analysis and comparison of 2D fingerprints: insights into database screening performance using eight fingerprint methods
-
Duan J., Sastry M., Dixon S., Lowrie J., Sherman W. Analysis and comparison of 2D fingerprints: insights into database screening performance using eight fingerprint methods. J. Mol. Graph. Model. 2011, 3:P1.
-
(2011)
J. Mol. Graph. Model.
, vol.3
-
-
Duan, J.1
Sastry, M.2
Dixon, S.3
Lowrie, J.4
Sherman, W.5
-
29
-
-
13844312649
-
ZINC - a free database of commercially available compounds for virtual screening
-
Irwin J.J., Shoichet B.K. ZINC - a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 2005, 45:177-182.
-
(2005)
J. Chem. Inf. Model.
, vol.45
, pp. 177-182
-
-
Irwin, J.J.1
Shoichet, B.K.2
-
30
-
-
79953005609
-
Software news and update PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints
-
Yap C.W. Software news and update PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem. 2010, 32:1466-1474.
-
(2010)
J. Comput. Chem.
, vol.32
, pp. 1466-1474
-
-
Yap, C.W.1
-
31
-
-
76749092270
-
The WEKA data mining software: an update
-
Hall M., Frank E., Holmes G., Pfahringer B., Reutemann P., Witten I.H. The WEKA data mining software: an update. SIGKDD Explor. 2009, 11:10-18.
-
(2009)
SIGKDD Explor.
, vol.11
, pp. 10-18
-
-
Hall, M.1
Frank, E.2
Holmes, G.3
Pfahringer, B.4
Reutemann, P.5
Witten, I.H.6
-
32
-
-
33846887419
-
Contemporary QSAR classifiers compared
-
Bruce C.L., Melville J.L., Pickett S.D., Hirst J.D. Contemporary QSAR classifiers compared. J. Chem. Inf. Model. 2007, 47:219-227.
-
(2007)
J. Chem. Inf. Model.
, vol.47
, pp. 219-227
-
-
Bruce, C.L.1
Melville, J.L.2
Pickett, S.D.3
Hirst, J.D.4
-
33
-
-
0029404240
-
Electrotopological state indices for atom types: a novel combination of electronic, topological, and valence state information
-
Hall L.H., Kier L.B. Electrotopological state indices for atom types: a novel combination of electronic, topological, and valence state information. J. Chem. Inf. Model. 1995, 35:1039-1045.
-
(1995)
J. Chem. Inf. Model.
, vol.35
, pp. 1039-1045
-
-
Hall, L.H.1
Kier, L.B.2
-
34
-
-
0037361967
-
The Chemistry Development Kit (CDK): an open-source Java library for chemo- and bioinformatics
-
Steinbeck C., Han Y., Kuhn S., Horlacher O., Luttmann E., Willighagen E. The Chemistry Development Kit (CDK): an open-source Java library for chemo- and bioinformatics. J. Chem. Inf. Comput. Sci. 2003, 43:493-500.
-
(2003)
J. Chem. Inf. Comput. Sci.
, vol.43
, pp. 493-500
-
-
Steinbeck, C.1
Han, Y.2
Kuhn, S.3
Horlacher, O.4
Luttmann, E.5
Willighagen, E.6
-
35
-
-
54949134905
-
Chemical substructures that enrich for biological activity
-
Klekota J., Roth F.P. Chemical substructures that enrich for biological activity. Bioinformatics 2008, 24:2518-2525.
-
(2008)
Bioinformatics
, vol.24
, pp. 2518-2525
-
-
Klekota, J.1
Roth, F.P.2
-
36
-
-
33845800485
-
Novel 2D fingerprints for ligand-based virtual screening
-
Ewing T., Baber J.C., Feher M. Novel 2D fingerprints for ligand-based virtual screening. J. Chem. Inf. Model. 2006, 46:2423-2431.
-
(2006)
J. Chem. Inf. Model.
, vol.46
, pp. 2423-2431
-
-
Ewing, T.1
Baber, J.C.2
Feher, M.3
-
37
-
-
84883405893
-
-
National Center for Biotechnology Information. All resources. Downloads. FTP: Pubchem. (accessed Sep 02, 2012).
-
National Center for Biotechnology Information. All resources. Downloads. FTP: Pubchem. (accessed Sep 02, 2012). ftp://ftp.ncbi.nlm.nih.gov/pubchem/specification.
-
-
-
-
39
-
-
34250779819
-
Data mining tasks and methods: classification: decision-tree discovery
-
Oxford University Press, New York, W. Klösgen, J.M. Zytkow (Eds.)
-
Kohavi R., Quinlan R. Data mining tasks and methods: classification: decision-tree discovery. Handbook of Data Mining and Knowledge Discovery 2002, 267-276. Oxford University Press, New York. W. Klösgen, J.M. Zytkow (Eds.).
-
(2002)
Handbook of Data Mining and Knowledge Discovery
, pp. 267-276
-
-
Kohavi, R.1
Quinlan, R.2
-
40
-
-
84883382153
-
-
C4.5 algorithm and Multivariate Decision Tress. Image Processing Division, National Institute for Space Research` - INPE Sao Jose dos Campos - SP, Brazil. 2006, (accessed Sep 02, 2012).
-
T.S. Korting, C4.5 algorithm and Multivariate Decision Tress. Image Processing Division, National Institute for Space Research` - INPE Sao Jose dos Campos - SP, Brazil. 2006, (accessed Sep 02, 2012). http://www.dpi.inpe.br/~tkorting/projects/c45/material.pdf.
-
-
-
Korting, T.S.1
-
41
-
-
0035478854
-
Random Forests
-
Breiman L. Random Forests. Mach. Learn. 2001, 45:5-32.
-
(2001)
Mach. Learn.
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
42
-
-
0002129041
-
Generating accurate rule sets without global optimization
-
Morgan Kaufmann Publishers Inc., Madison, Wisconsin
-
Frank E., Witten I.H. Generating accurate rule sets without global optimization. Proc 15th International Conference on Machine Learning 1998, 144-151. Morgan Kaufmann Publishers Inc., Madison, Wisconsin.
-
(1998)
Proc 15th International Conference on Machine Learning
, pp. 144-151
-
-
Frank, E.1
Witten, I.H.2
-
44
-
-
0004322632
-
Sequential minimal optimization: a fast algorithm for trainingsupport vector machines
-
Technical Report MSR-TR-98-14
-
Platt J.C. Sequential minimal optimization: a fast algorithm for trainingsupport vector machines. Microsoft Research 1998, 1-21.
-
(1998)
Microsoft Research
, pp. 1-21
-
-
Platt, J.C.1
-
45
-
-
0034247206
-
MultiBoosting: a technique for combining boosting and wagging
-
Webb G.I. MultiBoosting: a technique for combining boosting and wagging. Mach. Learn. 2000, 40:159-196.
-
(2000)
Mach. Learn.
, vol.40
, pp. 159-196
-
-
Webb, G.I.1
-
47
-
-
84877326977
-
Comparing performance of committee based approaches to active learning
-
EXIT, Warsaw, M. Klopotek, A. Przepiorkowski, S. Wierzchon, K. Trojanowski (Eds.)
-
Stefanowski J., Pachocki M. Comparing performance of committee based approaches to active learning. Recent Advances in Intelligent Information Systems 2009, 457-470. EXIT, Warsaw. M. Klopotek, A. Przepiorkowski, S. Wierzchon, K. Trojanowski (Eds.).
-
(2009)
Recent Advances in Intelligent Information Systems
, pp. 457-470
-
-
Stefanowski, J.1
Pachocki, M.2
-
48
-
-
84883333757
-
-
The University of Wakaito. Faculty of Computing and Mathematical Sciences. Department of Computer Science. Machine Learning. Software. Documentation. Weka API. FilteredClassifier. (accessed Sep 02, 2012).
-
The University of Wakaito. Faculty of Computing and Mathematical Sciences. Department of Computer Science. Machine Learning. Software. Documentation. Weka API. FilteredClassifier. (accessed Sep 02, 2012). http://weka.sourceforge.net/doc.stable/.
-
-
-
-
49
-
-
80051681914
-
Prediction of the bonding state of cysteine residues in proteins with machine-learning methods
-
Springer-Verlag, Berlin Heidelberg, (NBI 6685), R. Rizzo, P.J.G. Lisboa (Eds.)
-
Savojardo C., Fariselli P., Martelli P.L., Shukla P., Casadio R. Prediction of the bonding state of cysteine residues in proteins with machine-learning methods. Computational Intelligence Methods for Bioinformatics and Biostatistics 7th International Meeting 2011, 98-111. Springer-Verlag, Berlin Heidelberg, (NBI 6685). R. Rizzo, P.J.G. Lisboa (Eds.).
-
(2011)
Computational Intelligence Methods for Bioinformatics and Biostatistics 7th International Meeting
, pp. 98-111
-
-
Savojardo, C.1
Fariselli, P.2
Martelli, P.L.3
Shukla, P.4
Casadio, R.5
-
50
-
-
0037314097
-
Matrix2png: a utility for visualizing matrix data
-
Pavlidis P., Noble W.S. Matrix2png: a utility for visualizing matrix data. Bioinformatics 2003, 19:295-296.
-
(2003)
Bioinformatics
, vol.19
, pp. 295-296
-
-
Pavlidis, P.1
Noble, W.S.2
|