메뉴 건너뛰기




Volumn 128, Issue , 2013, Pages 89-100

A multidimensional analysis of machine learning methods performance in the classification of bioactive compounds

Author keywords

Classification; Drug design; Machine learning; Virtual screening

Indexed keywords

CYCLOOXYGENASE 2 INHIBITOR; HUMAN IMMUNODEFICIENCY VIRUS PROTEINASE INHIBITOR; METALLOPROTEINASE INHIBITOR; MUSCARINIC M1 RECEPTOR AGONIST; SEROTONIN 1A AGONIST;

EID: 84883339723     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2013.08.003     Document Type: Article
Times cited : (32)

References (50)
  • 2
    • 77649220192 scopus 로고    scopus 로고
    • Current trends in ligand-based virtual screening: molecular representations, data mining methods, new application areas, and performance evaluation
    • Geppert H., Vogt M., Bajorath J. Current trends in ligand-based virtual screening: molecular representations, data mining methods, new application areas, and performance evaluation. J. Chem. Inf. Model. 2010, 50:205-216.
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 205-216
    • Geppert, H.1    Vogt, M.2    Bajorath, J.3
  • 6
    • 66249088724 scopus 로고    scopus 로고
    • Comparative analysis of machine learning methods in ligand-based virtual screening of large compound libraries
    • Ma X.H., Jia J., Zhu F., Xue Y., Li Z.R., Chen Y.Z. Comparative analysis of machine learning methods in ligand-based virtual screening of large compound libraries. Comb. Chem. High Throughput Screen. 2009, 12:344-357.
    • (2009) Comb. Chem. High Throughput Screen. , vol.12 , pp. 344-357
    • Ma, X.H.1    Jia, J.2    Zhu, F.3    Xue, Y.4    Li, Z.R.5    Chen, Y.Z.6
  • 7
    • 66249104367 scopus 로고    scopus 로고
    • Structure-based drug screening and ligand-based drug screening with machine learning
    • Fukunishi Y. Structure-based drug screening and ligand-based drug screening with machine learning. Comb. Chem. High Throughput Screen. 2009, 12:397-408.
    • (2009) Comb. Chem. High Throughput Screen. , vol.12 , pp. 397-408
    • Fukunishi, Y.1
  • 8
    • 79951792796 scopus 로고    scopus 로고
    • Applications of machine learning and computational intelligence to drug discovery and development
    • Hecht D. Applications of machine learning and computational intelligence to drug discovery and development. Drug Dev. Res. 2011, 72:53-65.
    • (2011) Drug Dev. Res. , vol.72 , pp. 53-65
    • Hecht, D.1
  • 9
    • 79954520156 scopus 로고    scopus 로고
    • Classification of Aurora-A kinase inhibitors using self-organizing map (SOM) and support vector machine (SVM)
    • Wang L., Wang Z., Yan A., Yuan Q. Classification of Aurora-A kinase inhibitors using self-organizing map (SOM) and support vector machine (SVM). Mol. Inf. 2011, 30:35-44.
    • (2011) Mol. Inf. , vol.30 , pp. 35-44
    • Wang, L.1    Wang, Z.2    Yan, A.3    Yuan, Q.4
  • 10
    • 79960245348 scopus 로고    scopus 로고
    • Classification of cytochrome P450 inhibitors and noninhibitors using combined classifiers
    • Cheng F., Yu Y., Shen J., Yang L., Li W., Liu G., Lee P.W., Tang Y. Classification of cytochrome P450 inhibitors and noninhibitors using combined classifiers. J. Chem. Inf. Model. 2011, 51:996-1011.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 996-1011
    • Cheng, F.1    Yu, Y.2    Shen, J.3    Yang, L.4    Li, W.5    Liu, G.6    Lee, P.W.7    Tang, Y.8
  • 11
    • 55949119785 scopus 로고    scopus 로고
    • Data mining PubChem using a support vector machine with the signature molecular descriptor: classification of factor XIa inhibitors
    • Weis D.C., Visco D.P., Faulon J.-L. Data mining PubChem using a support vector machine with the signature molecular descriptor: classification of factor XIa inhibitors. J. Mol. Graph. Model. 2008, 27:466-475.
    • (2008) J. Mol. Graph. Model. , vol.27 , pp. 466-475
    • Weis, D.C.1    Visco, D.P.2    Faulon, J.-L.3
  • 12
    • 20444403742 scopus 로고    scopus 로고
    • Classification of substrates and inhibitors of P-glycoprotein using unsupervised machine learning approach
    • Wang Y.H., Li Y., Yang S.L., Yang L. Classification of substrates and inhibitors of P-glycoprotein using unsupervised machine learning approach. J. Chem. Inf. Model. 2005, 45:750-757.
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 750-757
    • Wang, Y.H.1    Li, Y.2    Yang, S.L.3    Yang, L.4
  • 13
    • 77950918213 scopus 로고    scopus 로고
    • Consensus model for identification of novel PI3K inhibitors in large chemical library
    • Liew C.Y., Ma X.H., Yap C.W. Consensus model for identification of novel PI3K inhibitors in large chemical library. J. Comput. Aided Mol. Des. 2010, 24:131-141.
    • (2010) J. Comput. Aided Mol. Des. , vol.24 , pp. 131-141
    • Liew, C.Y.1    Ma, X.H.2    Yap, C.W.3
  • 14
    • 77952685182 scopus 로고    scopus 로고
    • Identifying novel type ZBGs and nonhydroxamate HDAC inhibitors through a SVM based virtual screening approach
    • Liu X.H., Song H.Y., Zhang J.X., Han B.C., Wei X.N., Ma X.H., Cui W.K., Chen Y.Z. Identifying novel type ZBGs and nonhydroxamate HDAC inhibitors through a SVM based virtual screening approach. Mol. Inf. 2010, 29:407-420.
    • (2010) Mol. Inf. , vol.29 , pp. 407-420
    • Liu, X.H.1    Song, H.Y.2    Zhang, J.X.3    Han, B.C.4    Wei, X.N.5    Ma, X.H.6    Cui, W.K.7    Chen, Y.Z.8
  • 15
    • 70349941427 scopus 로고    scopus 로고
    • Virtual screening of Abl inhibitors from large compound libraries by support vector machines
    • Liu X.H., Ma X.H., Tan C.Y., Jiang Y.Y., Go M.L., Low B.C., Chen Y.Z. Virtual screening of Abl inhibitors from large compound libraries by support vector machines. J. Chem. Inf. Model. 2009, 49:2101-2110.
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 2101-2110
    • Liu, X.H.1    Ma, X.H.2    Tan, C.Y.3    Jiang, Y.Y.4    Go, M.L.5    Low, B.C.6    Chen, Y.Z.7
  • 16
    • 84877347172 scopus 로고    scopus 로고
    • Classification of cytochrome P 450 activities using machine learning methods
    • Hammann F., Gutmann H., Baumann U., Helma C., Drewe J. Classification of cytochrome P 450 activities using machine learning methods. Mol. Pharm. 2009, 33:796-801.
    • (2009) Mol. Pharm. , vol.33 , pp. 796-801
    • Hammann, F.1    Gutmann, H.2    Baumann, U.3    Helma, C.4    Drewe, J.5
  • 17
    • 55249101966 scopus 로고    scopus 로고
    • Identifying hERG potassium channel inhibitors by machine learning methods
    • Wang M., Yang X.-G., Xue Y. Identifying hERG potassium channel inhibitors by machine learning methods. QSAR Comb. Sci. 2008, 27:1028-1035.
    • (2008) QSAR Comb. Sci. , vol.27 , pp. 1028-1035
    • Wang, M.1    Yang, X.-G.2    Xue, Y.3
  • 18
    • 43049157546 scopus 로고    scopus 로고
    • A support vector machines approach for virtual screening of active compounds of single and multiple mechanisms from large libraries at an improved hit-rate and enrichment factor
    • Han L.Y., Ma X.H., Lin H.H., Jia J., Zhu F., Xue Y., Li Z.R., Cao Z.W., Ji Z.L., Chen Y.Z. A support vector machines approach for virtual screening of active compounds of single and multiple mechanisms from large libraries at an improved hit-rate and enrichment factor. J. Mol. Graph. Model. 2008, 26:1276-1286.
    • (2008) J. Mol. Graph. Model. , vol.26 , pp. 1276-1286
    • Han, L.Y.1    Ma, X.H.2    Lin, H.H.3    Jia, J.4    Zhu, F.5    Xue, Y.6    Li, Z.R.7    Cao, Z.W.8    Ji, Z.L.9    Chen, Y.Z.10
  • 19
    • 47349107115 scopus 로고    scopus 로고
    • Evaluation of virtual screening performance of support vector machines trained by sparsely distributed active compounds
    • Ma X.H., Wang R., Yang S.Y., Li Z.R., Xue Y., Wei Y.C., Low B.C., Chen Y.Z. Evaluation of virtual screening performance of support vector machines trained by sparsely distributed active compounds. J. Chem. Inf. Model. 2008, 48:1227-1237.
    • (2008) J. Chem. Inf. Model. , vol.48 , pp. 1227-1237
    • Ma, X.H.1    Wang, R.2    Yang, S.Y.3    Li, Z.R.4    Xue, Y.5    Wei, Y.C.6    Low, B.C.7    Chen, Y.Z.8
  • 20
    • 67349223265 scopus 로고    scopus 로고
    • KNNsim: k-nearest neighbors similarity with genetic algorithm features optimization enhances the prediction of activity classes for small molecules
    • Plewczynski D. kNNsim: k-nearest neighbors similarity with genetic algorithm features optimization enhances the prediction of activity classes for small molecules. J. Mol. Model. 2009, 15:591-596.
    • (2009) J. Mol. Model. , vol.15 , pp. 591-596
    • Plewczynski, D.1
  • 21
    • 77952768125 scopus 로고    scopus 로고
    • Ranking chemical structures for drug discovery: a new machine learning approach
    • Agarwal S., Dugar D., Sengupta S. Ranking chemical structures for drug discovery: a new machine learning approach. J. Chem. Inf. Model. 2010, 50:716-731.
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 716-731
    • Agarwal, S.1    Dugar, D.2    Sengupta, S.3
  • 22
    • 33745420796 scopus 로고    scopus 로고
    • Assessing different classification methods for virtual screening
    • Plewczynski D., Spieser S.H., Koch U. Assessing different classification methods for virtual screening. J. Chem. Inf. Model. 2006, 46:1098-1106.
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 1098-1106
    • Plewczynski, D.1    Spieser, S.H.2    Koch, U.3
  • 23
    • 80255135618 scopus 로고    scopus 로고
    • Brainstorming: weighted voting prediction of inhibitors for protein targets
    • Plewczynski D. Brainstorming: weighted voting prediction of inhibitors for protein targets. J. Mol. Model. 2011, 17:2133-2141.
    • (2011) J. Mol. Model. , vol.17 , pp. 2133-2141
    • Plewczynski, D.1
  • 24
    • 34247386376 scopus 로고    scopus 로고
    • Support vector inductive logic programming outperforms the naive Bayes classifier and inductive logic programming for the classification of bioactive chemical compounds
    • Cannon E.O., Amini A., Bender A., Sternberg M.J.E., Muggleton S.H., Glen R.C., Mitchell J.B.O. Support vector inductive logic programming outperforms the naive Bayes classifier and inductive logic programming for the classification of bioactive chemical compounds. J. Comput. Aided Mol. Des. 2007, 21:269-280.
    • (2007) J. Comput. Aided Mol. Des. , vol.21 , pp. 269-280
    • Cannon, E.O.1    Amini, A.2    Bender, A.3    Sternberg, M.J.E.4    Muggleton, S.H.5    Glen, R.C.6    Mitchell, J.B.O.7
  • 26
    • 70349879097 scopus 로고    scopus 로고
    • Turbo similarity searching: effect of fingerprint and dataset on virtual-screening performance
    • Gardiner E.J., Gillet V.J., Haranczyk M., Holliday J.D., Malim N., Willett P. Turbo similarity searching: effect of fingerprint and dataset on virtual-screening performance. Analysis 2009, 2:103-114.
    • (2009) Analysis , vol.2 , pp. 103-114
    • Gardiner, E.J.1    Gillet, V.J.2    Haranczyk, M.3    Holliday, J.D.4    Malim, N.5    Willett, P.6
  • 27
    • 84883327290 scopus 로고    scopus 로고
    • MDDR licensed by Accelrys, Inc., USA; accelrys.com (accessed Sep 02, 2012).
    • MDDR licensed by Accelrys, Inc., USA; accelrys.com (accessed Sep 02, 2012).
  • 28
    • 79955013133 scopus 로고    scopus 로고
    • Analysis and comparison of 2D fingerprints: insights into database screening performance using eight fingerprint methods
    • Duan J., Sastry M., Dixon S., Lowrie J., Sherman W. Analysis and comparison of 2D fingerprints: insights into database screening performance using eight fingerprint methods. J. Mol. Graph. Model. 2011, 3:P1.
    • (2011) J. Mol. Graph. Model. , vol.3
    • Duan, J.1    Sastry, M.2    Dixon, S.3    Lowrie, J.4    Sherman, W.5
  • 29
    • 13844312649 scopus 로고    scopus 로고
    • ZINC - a free database of commercially available compounds for virtual screening
    • Irwin J.J., Shoichet B.K. ZINC - a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 2005, 45:177-182.
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 177-182
    • Irwin, J.J.1    Shoichet, B.K.2
  • 30
    • 79953005609 scopus 로고    scopus 로고
    • Software news and update PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints
    • Yap C.W. Software news and update PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem. 2010, 32:1466-1474.
    • (2010) J. Comput. Chem. , vol.32 , pp. 1466-1474
    • Yap, C.W.1
  • 33
    • 0029404240 scopus 로고
    • Electrotopological state indices for atom types: a novel combination of electronic, topological, and valence state information
    • Hall L.H., Kier L.B. Electrotopological state indices for atom types: a novel combination of electronic, topological, and valence state information. J. Chem. Inf. Model. 1995, 35:1039-1045.
    • (1995) J. Chem. Inf. Model. , vol.35 , pp. 1039-1045
    • Hall, L.H.1    Kier, L.B.2
  • 35
    • 54949134905 scopus 로고    scopus 로고
    • Chemical substructures that enrich for biological activity
    • Klekota J., Roth F.P. Chemical substructures that enrich for biological activity. Bioinformatics 2008, 24:2518-2525.
    • (2008) Bioinformatics , vol.24 , pp. 2518-2525
    • Klekota, J.1    Roth, F.P.2
  • 36
    • 33845800485 scopus 로고    scopus 로고
    • Novel 2D fingerprints for ligand-based virtual screening
    • Ewing T., Baber J.C., Feher M. Novel 2D fingerprints for ligand-based virtual screening. J. Chem. Inf. Model. 2006, 46:2423-2431.
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 2423-2431
    • Ewing, T.1    Baber, J.C.2    Feher, M.3
  • 37
    • 84883405893 scopus 로고    scopus 로고
    • National Center for Biotechnology Information. All resources. Downloads. FTP: Pubchem. (accessed Sep 02, 2012).
    • National Center for Biotechnology Information. All resources. Downloads. FTP: Pubchem. (accessed Sep 02, 2012). ftp://ftp.ncbi.nlm.nih.gov/pubchem/specification.
  • 39
    • 34250779819 scopus 로고    scopus 로고
    • Data mining tasks and methods: classification: decision-tree discovery
    • Oxford University Press, New York, W. Klösgen, J.M. Zytkow (Eds.)
    • Kohavi R., Quinlan R. Data mining tasks and methods: classification: decision-tree discovery. Handbook of Data Mining and Knowledge Discovery 2002, 267-276. Oxford University Press, New York. W. Klösgen, J.M. Zytkow (Eds.).
    • (2002) Handbook of Data Mining and Knowledge Discovery , pp. 267-276
    • Kohavi, R.1    Quinlan, R.2
  • 40
    • 84883382153 scopus 로고    scopus 로고
    • C4.5 algorithm and Multivariate Decision Tress. Image Processing Division, National Institute for Space Research` - INPE Sao Jose dos Campos - SP, Brazil. 2006, (accessed Sep 02, 2012).
    • T.S. Korting, C4.5 algorithm and Multivariate Decision Tress. Image Processing Division, National Institute for Space Research` - INPE Sao Jose dos Campos - SP, Brazil. 2006, (accessed Sep 02, 2012). http://www.dpi.inpe.br/~tkorting/projects/c45/material.pdf.
    • Korting, T.S.1
  • 41
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman L. Random Forests. Mach. Learn. 2001, 45:5-32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 42
    • 0002129041 scopus 로고    scopus 로고
    • Generating accurate rule sets without global optimization
    • Morgan Kaufmann Publishers Inc., Madison, Wisconsin
    • Frank E., Witten I.H. Generating accurate rule sets without global optimization. Proc 15th International Conference on Machine Learning 1998, 144-151. Morgan Kaufmann Publishers Inc., Madison, Wisconsin.
    • (1998) Proc 15th International Conference on Machine Learning , pp. 144-151
    • Frank, E.1    Witten, I.H.2
  • 44
    • 0004322632 scopus 로고    scopus 로고
    • Sequential minimal optimization: a fast algorithm for trainingsupport vector machines
    • Technical Report MSR-TR-98-14
    • Platt J.C. Sequential minimal optimization: a fast algorithm for trainingsupport vector machines. Microsoft Research 1998, 1-21.
    • (1998) Microsoft Research , pp. 1-21
    • Platt, J.C.1
  • 45
    • 0034247206 scopus 로고    scopus 로고
    • MultiBoosting: a technique for combining boosting and wagging
    • Webb G.I. MultiBoosting: a technique for combining boosting and wagging. Mach. Learn. 2000, 40:159-196.
    • (2000) Mach. Learn. , vol.40 , pp. 159-196
    • Webb, G.I.1
  • 47
    • 84877326977 scopus 로고    scopus 로고
    • Comparing performance of committee based approaches to active learning
    • EXIT, Warsaw, M. Klopotek, A. Przepiorkowski, S. Wierzchon, K. Trojanowski (Eds.)
    • Stefanowski J., Pachocki M. Comparing performance of committee based approaches to active learning. Recent Advances in Intelligent Information Systems 2009, 457-470. EXIT, Warsaw. M. Klopotek, A. Przepiorkowski, S. Wierzchon, K. Trojanowski (Eds.).
    • (2009) Recent Advances in Intelligent Information Systems , pp. 457-470
    • Stefanowski, J.1    Pachocki, M.2
  • 48
    • 84883333757 scopus 로고    scopus 로고
    • The University of Wakaito. Faculty of Computing and Mathematical Sciences. Department of Computer Science. Machine Learning. Software. Documentation. Weka API. FilteredClassifier. (accessed Sep 02, 2012).
    • The University of Wakaito. Faculty of Computing and Mathematical Sciences. Department of Computer Science. Machine Learning. Software. Documentation. Weka API. FilteredClassifier. (accessed Sep 02, 2012). http://weka.sourceforge.net/doc.stable/.
  • 50
    • 0037314097 scopus 로고    scopus 로고
    • Matrix2png: a utility for visualizing matrix data
    • Pavlidis P., Noble W.S. Matrix2png: a utility for visualizing matrix data. Bioinformatics 2003, 19:295-296.
    • (2003) Bioinformatics , vol.19 , pp. 295-296
    • Pavlidis, P.1    Noble, W.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.