메뉴 건너뛰기




Volumn 19, Issue 8, 2014, Pages 1069-1080

Activity cliffs in drug discovery: Dr Jekyll or Mr Hyde?

Author keywords

[No Author keywords available]

Indexed keywords

CHEMICAL MODIFICATION; DRUG DEVELOPMENT; DRUG STRUCTURE; GENETIC ALGORITHM; LEARNING ALGORITHM; MACHINE LEARNING; MEDICINAL CHEMISTRY; NOISE REDUCTION; PHARMACOPHORE; QUANTITATIVE STRUCTURE ACTIVITY RELATION; REVIEW; SUPPORT VECTOR MACHINE; ALGORITHM; BIOLOGY; HUMAN; PROCEDURES; STRUCTURE ACTIVITY RELATION;

EID: 84906303709     PISSN: 13596446     EISSN: 18785832     Source Type: Journal    
DOI: 10.1016/j.drudis.2014.02.003     Document Type: Review
Times cited : (144)

References (85)
  • 2
    • 84884633296 scopus 로고    scopus 로고
    • Activity profile relationships between structurally similar promiscuous compounds
    • Y. Hu, and J. Bajorath Activity profile relationships between structurally similar promiscuous compounds Eur. J. Med. Chem. 69C 2013 393 398
    • (2013) Eur. J. Med. Chem. , vol.69 C , pp. 393-398
    • Hu, Y.1    Bajorath, J.2
  • 3
    • 84864240231 scopus 로고    scopus 로고
    • Extending the activity cliff concept: Structural categorization of activity cliffs and systematic identification of different types of cliffs in the ChEMBL database
    • Y. Hu, and J. Bajorath Extending the activity cliff concept: structural categorization of activity cliffs and systematic identification of different types of cliffs in the ChEMBL database J. Chem. Inf. Model. 52 2012 1806 1811
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 1806-1811
    • Hu, Y.1    Bajorath, J.2
  • 4
    • 84862854379 scopus 로고    scopus 로고
    • Systematic identification and classification of three-dimensional activity cliffs
    • Y. Hu et al. Systematic identification and classification of three-dimensional activity cliffs J. Chem. Inf. Model. 52 2012 1490 1498
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 1490-1498
    • Hu, Y.1
  • 5
    • 84859179256 scopus 로고    scopus 로고
    • Exploring activity cliffs in medicinal chemistry
    • D. Stumpfe, and J. Bajorath Exploring activity cliffs in medicinal chemistry J. Med. Chem. 55 2012 2932 2942
    • (2012) J. Med. Chem. , vol.55 , pp. 2932-2942
    • Stumpfe, D.1    Bajorath, J.2
  • 6
    • 84892612846 scopus 로고    scopus 로고
    • Recent progress in understanding activity cliffs and their utility in medicinal chemistry
    • D. Stumpfe et al. Recent progress in understanding activity cliffs and their utility in medicinal chemistry J. Med. Chem. 57 2013 18 28
    • (2013) J. Med. Chem. , vol.57 , pp. 18-28
    • Stumpfe, D.1
  • 7
    • 84876875741 scopus 로고    scopus 로고
    • Activity cliffs: Facts or artifacts?
    • J.L. Medina-Franco Activity cliffs: facts or artifacts? Chem. Biol. Drug. Des. 81 2013 553 556
    • (2013) Chem. Biol. Drug. Des. , vol.81 , pp. 553-556
    • Medina-Franco, J.L.1
  • 8
    • 79957930405 scopus 로고    scopus 로고
    • Quantitative structure-activity relantionships: In silico chemistry or high tech alchemy?
    • D. Horvath Quantitative structure-activity relantionships: in silico chemistry or high tech alchemy? Rev. Roumaine Chim. 55 2010 783 801
    • (2010) Rev. Roumaine Chim. , vol.55 , pp. 783-801
    • Horvath, D.1
  • 9
    • 33746931581 scopus 로고    scopus 로고
    • On outliers and activity cliffs - Why QSAR often disappoints
    • G.M. Maggiora On outliers and activity cliffs - why QSAR often disappoints J. Chem. Inf. Model. 46 2006 1535
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 1535
    • Maggiora, G.M.1
  • 10
    • 34248576316 scopus 로고    scopus 로고
    • Molecular similarity analysis uncovers heterogeneous structure-activity relationships and variable activity landscapes
    • L. Peltason, and J. Bajorath Molecular similarity analysis uncovers heterogeneous structure-activity relationships and variable activity landscapes Chem. Biol. 14 2007 489 497
    • (2007) Chem. Biol. , vol.14 , pp. 489-497
    • Peltason, L.1    Bajorath, J.2
  • 11
    • 67649341994 scopus 로고    scopus 로고
    • Navigating structure-activity landscapes
    • J. Bajorath et al. Navigating structure-activity landscapes Drug Discov. Today 14 2009 698 705
    • (2009) Drug Discov. Today , vol.14 , pp. 698-705
    • Bajorath, J.1
  • 12
    • 70350457007 scopus 로고    scopus 로고
    • Systematic computational analysis of structure-activity relationships: Concepts, challenges and recent advances
    • L. Peltason, and J. Bajorath Systematic computational analysis of structure-activity relationships: concepts, challenges and recent advances Future Med. Chem. 1 2009 451 466
    • (2009) Future Med. Chem. , vol.1 , pp. 451-466
    • Peltason, L.1    Bajorath, J.2
  • 13
    • 77954082092 scopus 로고    scopus 로고
    • Rationalizing three-dimensional activity landscapes and the influence of molecular representations on landscape topology and the formation of activity cliffs
    • L. Peltason et al. Rationalizing three-dimensional activity landscapes and the influence of molecular representations on landscape topology and the formation of activity cliffs J. Chem. Inf. Model. 50 2010 1021 1033
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 1021-1033
    • Peltason, L.1
  • 14
    • 78649844432 scopus 로고    scopus 로고
    • Activity landscape representations for structure-activity relationship analysis
    • A.M. Wassermann et al. Activity landscape representations for structure-activity relationship analysis J. Med. Chem. 53 2010 8209 8223
    • (2010) J. Med. Chem. , vol.53 , pp. 8209-8223
    • Wassermann, A.M.1
  • 15
    • 82355160703 scopus 로고    scopus 로고
    • SAR monitoring of evolving compound data sets using activity landscapes
    • P. Iyer et al. SAR monitoring of evolving compound data sets using activity landscapes J. Chem. Inf. Model. 51 2011 532 540
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 532-540
    • Iyer, P.1
  • 16
    • 84861496589 scopus 로고    scopus 로고
    • Modeling of activity landscapes for drug discovery
    • J. Bajorath Modeling of activity landscapes for drug discovery Expert Opin. Drug Discov. 7 2012 463 473
    • (2012) Expert Opin. Drug Discov. , vol.7 , pp. 463-473
    • Bajorath, J.1
  • 17
    • 79952118736 scopus 로고    scopus 로고
    • Computational analysis of activity and selectivity cliffs
    • L. Peltason, and J. Bajorath Computational analysis of activity and selectivity cliffs Methods Mol. Biol. 672 2011 119 132
    • (2011) Methods Mol. Biol. , vol.672 , pp. 119-132
    • Peltason, L.1    Bajorath, J.2
  • 18
    • 84876847879 scopus 로고    scopus 로고
    • Do medicinal chemists learn from activity cliffs? A systematic evaluation of cliff progression in evolving compound data sets
    • D. Dimova et al. Do medicinal chemists learn from activity cliffs? A systematic evaluation of cliff progression in evolving compound data sets J. Med. Chem. 56 2013 3339 3345
    • (2013) J. Med. Chem. , vol.56 , pp. 3339-3345
    • Dimova, D.1
  • 19
    • 52049114159 scopus 로고    scopus 로고
    • Assessing how well a modeling protocol captures a structure-activity landscape
    • R. Guha, and J.H. Van Drie Assessing how well a modeling protocol captures a structure-activity landscape J. Chem. Inf. Model. 48 2008 1716 1728
    • (2008) J. Chem. Inf. Model. , vol.48 , pp. 1716-1728
    • Guha, R.1    Van Drie, J.H.2
  • 21
    • 36148989137 scopus 로고    scopus 로고
    • SAR index: Quantifying the nature of structure-activity relationships
    • L. Peltason, and J. Bajorath SAR index: quantifying the nature of structure-activity relationships J. Med. Chem. 50 2007 5571 5578
    • (2007) J. Med. Chem. , vol.50 , pp. 5571-5578
    • Peltason, L.1    Bajorath, J.2
  • 22
    • 42149090634 scopus 로고    scopus 로고
    • Structure-activity landscape index: Identifying and quantifying activity cliffs
    • R. Guha, and J.H. Van Drie Structure-activity landscape index: identifying and quantifying activity cliffs J. Chem. Inf. Model. 48 2008 646 658
    • (2008) J. Chem. Inf. Model. , vol.48 , pp. 646-658
    • Guha, R.1    Van Drie, J.H.2
  • 23
    • 84555194686 scopus 로고    scopus 로고
    • Assessing the confidence level of public domain compound activity data and the impact of alternative potency measurements on SAR analysis
    • D. Stumpfe, and J. Bajorath Assessing the confidence level of public domain compound activity data and the impact of alternative potency measurements on SAR analysis J. Chem. Inf. Model. 51 2011 3131 3137
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 3131-3137
    • Stumpfe, D.1    Bajorath, J.2
  • 24
    • 84884546172 scopus 로고    scopus 로고
    • Quantifying the fingerprint descriptor dependence of structure-activity relationship information on a large scale
    • D. Dimova et al. Quantifying the fingerprint descriptor dependence of structure-activity relationship information on a large scale J. Chem. Inf. Model. 53 2013 2275 2281
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 2275-2281
    • Dimova, D.1
  • 25
    • 65249087355 scopus 로고    scopus 로고
    • Characterization of activity landscapes using 2D and 3D similarity methods: Consensus activity cliffs
    • J.L. Medina-Franco et al. Characterization of activity landscapes using 2D and 3D similarity methods: consensus activity cliffs J. Chem. Inf. Model. 49 2009 477 491
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 477-491
    • Medina-Franco, J.L.1
  • 26
    • 84861503290 scopus 로고    scopus 로고
    • MMP-cliffs: Systematic identification of activity cliffs on the basis of matched molecular pairs
    • X. Hu et al. MMP-cliffs: systematic identification of activity cliffs on the basis of matched molecular pairs J. Chem. Inf. Model. 52 2012 1138 1145
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 1138-1145
    • Hu, X.1
  • 27
    • 85016377807 scopus 로고    scopus 로고
    • Structure modification in chemical databases
    • T.I. Oprea, Wiley-VCH
    • P.W. Kenny, and J. Sadowski Structure modification in chemical databases T.I. Oprea, Chemoinformatics in Drug Discovery 2004 Wiley-VCH 271 285
    • (2004) Chemoinformatics in Drug Discovery , pp. 271-285
    • Kenny, P.W.1    Sadowski, J.2
  • 28
    • 84879562497 scopus 로고    scopus 로고
    • Rapid scanning structure-activity relationships in combinatorial data sets: Identification of activity switches
    • J.L. Medina-Franco et al. Rapid scanning structure-activity relationships in combinatorial data sets: identification of activity switches J. Chem. Inf. Model. 53 2013 1475 1485
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1475-1485
    • Medina-Franco, J.L.1
  • 29
    • 84893109925 scopus 로고    scopus 로고
    • Chemoinformatic characterization of activity and selectivity switches of antiprotozoal compounds
    • 10.4155/fmc.13.173
    • R. Aguayo-Ortiz et al. Chemoinformatic characterization of activity and selectivity switches of antiprotozoal compounds Future Med. Chem. 2013 10.4155/fmc.13.173
    • (2013) Future Med. Chem.
    • Aguayo-Ortiz, R.1
  • 30
    • 84859169320 scopus 로고    scopus 로고
    • Exploration of 3D activity cliffs on the basis of compound binding modes and comparison of 2D and 3D cliffs
    • Y. Hu, and J. Bajorath Exploration of 3D activity cliffs on the basis of compound binding modes and comparison of 2D and 3D cliffs J. Chem. Inf. Model. 52 2012 670 677
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 670-677
    • Hu, Y.1    Bajorath, J.2
  • 31
    • 84906303299 scopus 로고    scopus 로고
    • Advancing the activity cliff concept
    • Y. Hu et al. Advancing the activity cliff concept F1000Res. 2 2013 1 11
    • (2013) F1000Res. , vol.2 , pp. 1-11
    • Hu, Y.1
  • 32
    • 0000459353 scopus 로고    scopus 로고
    • The lack of a prior distinctions between learning algorithms and the existence of a priori distinctions between learning algorithms
    • D.H. Wolpert The lack of a prior distinctions between learning algorithms and the existence of a priori distinctions between learning algorithms Neural Comput. 8 1996 1341 1390
    • (1996) Neural Comput. , vol.8 , pp. 1341-1390
    • Wolpert, D.H.1
  • 33
    • 27744590591 scopus 로고    scopus 로고
    • QSAR applicabilty domain estimation by projection of the training set descriptor space: A review
    • J. Jaworska et al. QSAR applicabilty domain estimation by projection of the training set descriptor space: a review Altern. Lab. Anim. 33 2005 445 459
    • (2005) Altern. Lab. Anim. , vol.33 , pp. 445-459
    • Jaworska, J.1
  • 34
    • 84893069416 scopus 로고    scopus 로고
    • An alternative QSAR-based approach for predicting the bioconcentration factor for regulatory purposes
    • A. Gissi et al. An alternative QSAR-based approach for predicting the bioconcentration factor for regulatory purposes ALTEX 31 2014 23 36
    • (2014) ALTEX , vol.31 , pp. 23-36
    • Gissi, A.1
  • 35
    • 77952003134 scopus 로고    scopus 로고
    • Evaluation of quantitative structure-activity relationship modeling strategies: Local and global models
    • E.A. Helgee et al. Evaluation of quantitative structure-activity relationship modeling strategies: local and global models J. Chem. Inf. Model. 50 2010 677 689
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 677-689
    • Helgee, E.A.1
  • 36
    • 79958834912 scopus 로고    scopus 로고
    • ISIDA property-labelled fragment descriptors
    • F. Ruggiu et al. ISIDA property-labelled fragment descriptors Mol. Inf. 29 2010 855 868
    • (2010) Mol. Inf. , vol.29 , pp. 855-868
    • Ruggiu, F.1
  • 37
    • 0036827075 scopus 로고    scopus 로고
    • Reoptimization of MDL keys for use in drug discovery
    • J.L. Durant et al. Reoptimization of MDL keys for use in drug discovery J. Chem. Inf. Comput. Sci. 42 2002 1273 1280
    • (2002) J. Chem. Inf. Comput. Sci. , vol.42 , pp. 1273-1280
    • Durant, J.L.1
  • 38
    • 77952772341 scopus 로고    scopus 로고
    • Extended-connectivity fingerprints
    • D. Rogers, and M. Hahn Extended-connectivity fingerprints J. Chem. Inf. Model. 50 2010 742 754
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 742-754
    • Rogers, D.1    Hahn, M.2
  • 40
    • 0033523672 scopus 로고    scopus 로고
    • 'Scaffold hopping' by topological pharmacophore search: A contribution to virtual screening
    • G. Schneider et al. 'Scaffold hopping' by topological pharmacophore search: a contribution to virtual screening Angew. Chem. Int. Edit. 38 1999 2894 2896
    • (1999) Angew. Chem. Int. Edit. , vol.38 , pp. 2894-2896
    • Schneider, G.1
  • 41
    • 84861193545 scopus 로고    scopus 로고
    • Activity landscape modeling of PPAR ligands with dual-activity difference maps
    • O. Mendez-Lucio et al. Activity landscape modeling of PPAR ligands with dual-activity difference maps Bioorg. Med. Chem. 20 2012 3523 3532
    • (2012) Bioorg. Med. Chem. , vol.20 , pp. 3523-3532
    • Mendez-Lucio, O.1
  • 42
    • 84866263978 scopus 로고    scopus 로고
    • Bioactivity landscape modeling: Chemoinformatic characterization of structure-activity relationships of compounds tested across multiple targets
    • J. Waddell, and J.L. Medina-Franco Bioactivity landscape modeling: chemoinformatic characterization of structure-activity relationships of compounds tested across multiple targets Bioorg. Med. Chem. 20 2012 5443 5452
    • (2012) Bioorg. Med. Chem. , vol.20 , pp. 5443-5452
    • Waddell, J.1    Medina-Franco, J.L.2
  • 43
    • 79959717483 scopus 로고    scopus 로고
    • Consensus models of activity landscapes with multiple chemical, conformer, and property representations
    • A.B. Yongye et al. Consensus models of activity landscapes with multiple chemical, conformer, and property representations J. Chem. Inf. Model. 51 2011 1259 1270
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 1259-1270
    • Yongye, A.B.1
  • 44
    • 0036740917 scopus 로고    scopus 로고
    • Why do we need so many chemical similarity search methods?
    • R.P. Sheridan, and S.K. Kearsley Why do we need so many chemical similarity search methods? Drug Discov. Today 7 2002 903 911
    • (2002) Drug Discov. Today , vol.7 , pp. 903-911
    • Sheridan, R.P.1    Kearsley, S.K.2
  • 45
    • 84878213779 scopus 로고    scopus 로고
    • Compound pathway model to capture SAR progression: Comparison of activity cliff-dependent and -independent pathways
    • D. Stumpfe et al. Compound pathway model to capture SAR progression: comparison of activity cliff-dependent and -independent pathways J. Chem. Inf. Model. 53 2013 1067 1072
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1067-1072
    • Stumpfe, D.1
  • 46
    • 84888061749 scopus 로고    scopus 로고
    • Evolutionary computation and QSAR research
    • V. Aguiar-Pulido et al. Evolutionary computation and QSAR research Curr. Comput. Aided Drug Des. 9 2013 206 225
    • (2013) Curr. Comput. Aided Drug Des. , vol.9 , pp. 206-225
    • Aguiar-Pulido, V.1
  • 47
    • 66849094234 scopus 로고    scopus 로고
    • Drug design with machine learning
    • R.A. Meyers, Springer-Verlag
    • O. Ivanciuc Drug design with machine learning R.A. Meyers, Encyclopedia of Complexity and System Science 2009 Springer-Verlag 2159 2196
    • (2009) Encyclopedia of Complexity and System Science , pp. 2159-2196
    • Ivanciuc, O.1
  • 49
    • 84906317836 scopus 로고    scopus 로고
    • Methods for data analysis
    • J. Gasteier, Wiley-VCH
    • J. Rose Methods for data analysis J. Gasteier, Handbook of Chemoinformatics vol. 3 2003 Wiley-VCH 1081 1097
    • (2003) Handbook of Chemoinformatics , vol.3 , pp. 1081-1097
    • Rose, J.1
  • 50
    • 79952117852 scopus 로고    scopus 로고
    • The ups and downs of structure-activity landscapes
    • R. Guha The ups and downs of structure-activity landscapes Methods Mol. Biol. 672 2011 101 117
    • (2011) Methods Mol. Biol. , vol.672 , pp. 101-117
    • Guha, R.1
  • 52
    • 84875213736 scopus 로고    scopus 로고
    • Activity cliffs in PubChem confirmatory bioassays taking inactive compounds into account
    • Y. Hu et al. Activity cliffs in PubChem confirmatory bioassays taking inactive compounds into account J. Comput. Aided Mol. Des. 27 2013 115 124
    • (2013) J. Comput. Aided Mol. Des. , vol.27 , pp. 115-124
    • Hu, Y.1
  • 54
    • 84896876327 scopus 로고    scopus 로고
    • Classification for imbalanced and overlapping classes using outlier detection and sampling techniques
    • Z. Yang, and D. Gao Classification for imbalanced and overlapping classes using outlier detection and sampling techniques Appl. Math. Inf. Sci. 7 2013 375 381
    • (2013) Appl. Math. Inf. Sci. , vol.7 , pp. 375-381
    • Yang, Z.1    Gao, D.2
  • 55
    • 7244250182 scopus 로고    scopus 로고
    • Data mining in bioinformatics using Weka
    • E. Frank et al. Data mining in bioinformatics using Weka Bioinformatics 20 2004 2479 2481
    • (2004) Bioinformatics , vol.20 , pp. 2479-2481
    • Frank, E.1
  • 56
    • 84898809250 scopus 로고    scopus 로고
    • An instance level analysis of data complexity
    • 10.1007/s10994-013-5422-z
    • M.R. Smith et al. An instance level analysis of data complexity Mach Learning 2014 10.1007/s10994-013-5422-z
    • (2014) Mach Learning
    • Smith, M.R.1
  • 57
    • 75749102958 scopus 로고    scopus 로고
    • SARANEA: A freely available program to mine structure-activity and structure-selectivity relationship information in compound data sets
    • E. Lounkine et al. SARANEA: a freely available program to mine structure-activity and structure-selectivity relationship information in compound data sets J. Chem. Inf. Model. 50 2010 68 78
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 68-78
    • Lounkine, E.1
  • 58
    • 84894311153 scopus 로고    scopus 로고
    • Chemoinformatics profiling of ionic liquids - Uncovering structure-cytotoxicity relationships with network-like similarity graphs
    • 10.1093/toxsci/kft210
    • M. Cruz-Monteagudo, and M.N. Cordeiro Chemoinformatics profiling of ionic liquids - uncovering structure-cytotoxicity relationships with network-like similarity graphs Toxicol. Sci. 2014 10.1093/toxsci/kft210
    • (2014) Toxicol. Sci.
    • Cruz-Monteagudo, M.1    Cordeiro, M.N.2
  • 59
    • 77956964002 scopus 로고    scopus 로고
    • Best practices for QSAR model development, validation, and Exploitation
    • A. Tropsha Best practices for QSAR model development, validation, and Exploitation Mol. Inf. 29 2010 476 488
    • (2010) Mol. Inf. , vol.29 , pp. 476-488
    • Tropsha, A.1
  • 60
    • 70450181710 scopus 로고    scopus 로고
    • How to recognize and work around pitfalls in QSAR studies: A critical review
    • T. Scior et al. How to recognize and work around pitfalls in QSAR studies: a critical review Curr. Med. Chem. 16 2009 4297 4313
    • (2009) Curr. Med. Chem. , vol.16 , pp. 4297-4313
    • Scior, T.1
  • 61
    • 84872826468 scopus 로고    scopus 로고
    • Identifying activity cliff generators of PPAR ligands using SAS maps
    • O. Méndez-Lucio et al. Identifying activity cliff generators of PPAR ligands using SAS maps Mol. Inf. 31 2012 837 846
    • (2012) Mol. Inf. , vol.31 , pp. 837-846
    • Méndez-Lucio, O.1
  • 62
    • 78049349961 scopus 로고    scopus 로고
    • Trust, but verify: On the importance of chemical structure curation in cheminformatics and QSAR modeling research
    • D. Fourches et al. Trust, but verify: on the importance of chemical structure curation in cheminformatics and QSAR modeling research J. Chem. Inf. Model. 50 2010 1189 1204
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 1189-1204
    • Fourches, D.1
  • 65
    • 84862021088 scopus 로고    scopus 로고
    • Searching for coordinated activity cliffs using particle swarm optimization
    • V. Namasivayam, and J. Bajorath Searching for coordinated activity cliffs using particle swarm optimization J. Chem. Inf. Model. 52 2012 927 934
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 927-934
    • Namasivayam, V.1    Bajorath, J.2
  • 66
    • 84866700901 scopus 로고    scopus 로고
    • Prediction of activity cliffs using support vector machines
    • K. Heikamp et al. Prediction of activity cliffs using support vector machines J. Chem. Inf. Model. 52 2012 2354 2365
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 2354-2365
    • Heikamp, K.1
  • 67
    • 33748611921 scopus 로고    scopus 로고
    • Ensemble based systems in decision making
    • R. Polikar Ensemble based systems in decision making IEEE Circuit Syst. Mag. 6 2006 21 44
    • (2006) IEEE Circuit Syst. Mag. , vol.6 , pp. 21-44
    • Polikar, R.1
  • 68
    • 84874425485 scopus 로고    scopus 로고
    • Discovery of novel antimalarial compounds enabled by QSAR-based virtual screening
    • L. Zhang et al. Discovery of novel antimalarial compounds enabled by QSAR-based virtual screening J. Chem. Inf. Model. 53 2013 475 492
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 475-492
    • Zhang, L.1
  • 70
    • 73449112311 scopus 로고    scopus 로고
    • From structure-activity to structure-selectivity relationships: Quantitative assessment, selectivity cliffs, and key compounds
    • L. Peltason et al. From structure-activity to structure-selectivity relationships: quantitative assessment, selectivity cliffs, and key compounds ChemMedChem 4 2009 1864 1873
    • (2009) ChemMedChem , vol.4 , pp. 1864-1873
    • Peltason, L.1
  • 71
    • 70350507116 scopus 로고    scopus 로고
    • Structural interpretation of activity cliffs revealed by systematic analysis of structure-activity relationships in analog series
    • M.T. Sisay et al. Structural interpretation of activity cliffs revealed by systematic analysis of structure-activity relationships in analog series J. Chem. Inf. Model. 49 2009 2179 2189
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 2179-2189
    • Sisay, M.T.1
  • 72
    • 77952000491 scopus 로고    scopus 로고
    • Molecular scaffolds with high propensity to form multi-target activity cliffs
    • Y. Hu, and J. Bajorath Molecular scaffolds with high propensity to form multi-target activity cliffs J. Chem. Inf. Model. 50 2010 500 510
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 500-510
    • Hu, Y.1    Bajorath, J.2
  • 73
    • 78049415439 scopus 로고    scopus 로고
    • Chemical substitutions that introduce activity cliffs across different compound classes and biological targets
    • A.M. Wassermann, and J. Bajorath Chemical substitutions that introduce activity cliffs across different compound classes and biological targets J. Chem. Inf. Model. 50 2010 1248 1256
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 1248-1256
    • Wassermann, A.M.1    Bajorath, J.2
  • 74
    • 79952176447 scopus 로고    scopus 로고
    • Design of multitarget activity landscapes that capture hierarchical activity cliff distributions
    • D. Dimova et al. Design of multitarget activity landscapes that capture hierarchical activity cliff distributions J. Chem. Inf. Model. 51 2011 258 266
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 258-266
    • Dimova, D.1
  • 75
    • 80051982094 scopus 로고    scopus 로고
    • From activity cliffs to activity ridges: Informative data structures for SAR analysis
    • M. Vogt et al. From activity cliffs to activity ridges: informative data structures for SAR analysis J. Chem. Inf. Model. 51 2011 1848 1856
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 1848-1856
    • Vogt, M.1
  • 76
    • 33846108633 scopus 로고    scopus 로고
    • Binding-DB: A web-accessible database of experimentally determined protein-ligand binding affinities
    • T. Liu et al. Binding-DB: a web-accessible database of experimentally determined protein-ligand binding affinities Nucleic Acids Res. 35 2007 D198 D201
    • (2007) Nucleic Acids Res. , vol.35
    • Liu, T.1
  • 77
    • 61749093196 scopus 로고    scopus 로고
    • ChEMBL. An interview with John Overington, team leader, chemogenomics at the European Bioinformatics Institute Outstation of the European Molecular Biology Laboratory (EMBL. EBI). Interview by Wendy A. Warr
    • J. Overington ChEMBL. An interview with John Overington, team leader, chemogenomics at the European Bioinformatics Institute Outstation of the European Molecular Biology Laboratory (EMBL. EBI). Interview by Wendy A. Warr J. Comput. Aided. Mol. Des. 23 2009 195 198
    • (2009) J. Comput. Aided. Mol. Des. , vol.23 , pp. 195-198
    • Overington, J.1
  • 78
    • 79960362109 scopus 로고    scopus 로고
    • Comprehensive analysis of single- and multi-target activity cliffs formed by currently available bioactive compounds
    • A.M. Wassermann et al. Comprehensive analysis of single- and multi-target activity cliffs formed by currently available bioactive compounds Chem. Biol. Drug. Des. 78 2011 224 228
    • (2011) Chem. Biol. Drug. Des. , vol.78 , pp. 224-228
    • Wassermann, A.M.1
  • 79
    • 80052080825 scopus 로고    scopus 로고
    • From activity cliffs to target-specific scoring models and pharmacophore hypotheses
    • B. Seebeck et al. From activity cliffs to target-specific scoring models and pharmacophore hypotheses ChemMedChem 6 2011 1630 1639
    • (2011) ChemMedChem , vol.6 , pp. 1630-1639
    • Seebeck, B.1
  • 80
    • 84866712400 scopus 로고    scopus 로고
    • Frequency of occurrence and potency range distribution of activity cliffs in bioactive compounds
    • D. Stumpfe, and J. Bajorath Frequency of occurrence and potency range distribution of activity cliffs in bioactive compounds J. Chem. Inf. Model. 52 2012 2348 2353
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 2348-2353
    • Stumpfe, D.1    Bajorath, J.2
  • 81
    • 84867783524 scopus 로고    scopus 로고
    • Identification of multitarget activity ridges in high-dimensional bioactivity spaces
    • D. Gupta-Ostermann, and J. Bajorath Identification of multitarget activity ridges in high-dimensional bioactivity spaces J. Chem. Inf. Model. 52 2012 2579 2586
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 2579-2586
    • Gupta-Ostermann, D.1    Bajorath, J.2
  • 82
    • 84870012905 scopus 로고    scopus 로고
    • Matched molecular pair analysis of small molecule microarray data identifies promiscuity cliffs and reveals molecular origins of extreme compound promiscuity
    • D. Dimova et al. Matched molecular pair analysis of small molecule microarray data identifies promiscuity cliffs and reveals molecular origins of extreme compound promiscuity J. Med. Chem. 55 2012 10220 10228
    • (2012) J. Med. Chem. , vol.55 , pp. 10220-10228
    • Dimova, D.1
  • 83
    • 84155162374 scopus 로고    scopus 로고
    • Exploring SAR continuity in the vicinity of activity cliffs
    • V. Namasivayam et al. Exploring SAR continuity in the vicinity of activity cliffs Chem. Biol. Drug. Des. 79 2012 22 29
    • (2012) Chem. Biol. Drug. Des. , vol.79 , pp. 22-29
    • Namasivayam, V.1
  • 84
    • 84875430517 scopus 로고    scopus 로고
    • Introduction of target cliffs as a concept to identify and describe complex molecular selectivity patterns
    • Y. Hu, and J. Bajorath Introduction of target cliffs as a concept to identify and describe complex molecular selectivity patterns J. Chem. Inf. Model. 53 2013 545 552
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 545-552
    • Hu, Y.1    Bajorath, J.2
  • 85
    • 84896517145 scopus 로고    scopus 로고
    • Prediction of individual compounds forming activity cliffs using emerging chemical patterns
    • V. Namasivayam et al. Prediction of individual compounds forming activity cliffs using emerging chemical patterns J. Chem. Inf. Model. 53 2013 3131 3139
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 3131-3139
    • Namasivayam, V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.