메뉴 건너뛰기




Volumn 26, Issue 6, 2008, Pages 907-915

Predicting human liver microsomal stability with machine learning techniques

Author keywords

ADMET; In silico; Machine learning; Metabolic stability; Random forest

Indexed keywords

BIOLOGICAL ORGANS; COMPUTER SIMULATION; LOGISTICS; MATHEMATICAL MODELS; METABOLISM; REGRESSION ANALYSIS;

EID: 37349114485     PISSN: 10933263     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jmgm.2007.06.005     Document Type: Article
Times cited : (83)

References (46)
  • 1
    • 0037204551 scopus 로고    scopus 로고
    • Computer systems for the prediction of xenobiotic metabolism
    • Langowski J., and Long A. Computer systems for the prediction of xenobiotic metabolism. Adv. Drug Deliv. Rev. 54 (2002) 407-415
    • (2002) Adv. Drug Deliv. Rev. , vol.54 , pp. 407-415
    • Langowski, J.1    Long, A.2
  • 2
    • 4344645978 scopus 로고    scopus 로고
    • Can the pharmaceutical industry reduce attrition rates?
    • Kola I., and Landis J. Can the pharmaceutical industry reduce attrition rates?. Nat. Rev. Drug Discov. 3 (2004) 711-715
    • (2004) Nat. Rev. Drug Discov. , vol.3 , pp. 711-715
    • Kola, I.1    Landis, J.2
  • 3
    • 0037364162 scopus 로고    scopus 로고
    • ADMET in silico modelling: towards prediction paradise?
    • van de Waterbeemd H., and Gifford E. ADMET in silico modelling: towards prediction paradise?. Nat. Rev. Drug Discov. 2 (2003) 192-204
    • (2003) Nat. Rev. Drug Discov. , vol.2 , pp. 192-204
    • van de Waterbeemd, H.1    Gifford, E.2
  • 5
    • 0038121705 scopus 로고    scopus 로고
    • Development and validation of k-nearest-neighbor QSPR models of metabolic stability of drug candidates
    • Shen M., Xiao Y., Golbraikh A., Gombar V.K., and Tropsha A. Development and validation of k-nearest-neighbor QSPR models of metabolic stability of drug candidates. J. Med. Chem. 46 (2003) 3013-3020
    • (2003) J. Med. Chem. , vol.46 , pp. 3013-3020
    • Shen, M.1    Xiao, Y.2    Golbraikh, A.3    Gombar, V.K.4    Tropsha, A.5
  • 6
    • 18144369259 scopus 로고    scopus 로고
    • Development of CYP3A4 inhibition models: comparisons of machine-learning techniques and molecular descriptors
    • Arimoto R., Prasad M.A., and Gifford E.M. Development of CYP3A4 inhibition models: comparisons of machine-learning techniques and molecular descriptors. J. Biomol. Screen. 10 (2005) 197-205
    • (2005) J. Biomol. Screen. , vol.10 , pp. 197-205
    • Arimoto, R.1    Prasad, M.A.2    Gifford, E.M.3
  • 8
    • 23444437988 scopus 로고    scopus 로고
    • A rapid computational filter for cytochrome P450 1A2 inhibition potential of compound libraries
    • Chohan K.K., Paine S.W., Mistry J., Barton P., and Davis A.M. A rapid computational filter for cytochrome P450 1A2 inhibition potential of compound libraries. J. Med. Chem. 48 (2005) 5154-5161
    • (2005) J. Med. Chem. , vol.48 , pp. 5154-5161
    • Chohan, K.K.1    Paine, S.W.2    Mistry, J.3    Barton, P.4    Davis, A.M.5
  • 9
    • 0042357537 scopus 로고    scopus 로고
    • Generation and validation of rapid computational filters for cyp2d6 and cyp3a4
    • Ekins S., Berbaum J., and Harrison R.K. Generation and validation of rapid computational filters for cyp2d6 and cyp3a4. Drug Metab. Dispos. 31 (2003) 1077-1080
    • (2003) Drug Metab. Dispos. , vol.31 , pp. 1077-1080
    • Ekins, S.1    Berbaum, J.2    Harrison, R.K.3
  • 10
    • 22144466197 scopus 로고    scopus 로고
    • A support vector machine approach to classify human cytochrome P450 3A4 inhibitors
    • Kriegl J.M., Arnhold T., Beck B., and Fox T. A support vector machine approach to classify human cytochrome P450 3A4 inhibitors. J. Comput. Aided Mol. Des. 19 (2005) 189-201
    • (2005) J. Comput. Aided Mol. Des. , vol.19 , pp. 189-201
    • Kriegl, J.M.1    Arnhold, T.2    Beck, B.3    Fox, T.4
  • 12
    • 0037059925 scopus 로고    scopus 로고
    • A neural network based virtual screening of cytochrome P450 3A4 inhibitors
    • Molnar L., and Keseru G.M. A neural network based virtual screening of cytochrome P450 3A4 inhibitors. Bioorg. Med. Chem. Lett. 12 (2002) 419-421
    • (2002) Bioorg. Med. Chem. Lett. , vol.12 , pp. 419-421
    • Molnar, L.1    Keseru, G.M.2
  • 13
    • 13944268698 scopus 로고    scopus 로고
    • Greater than the sum of its parts: combining models for useful ADMET prediction
    • O'Brien S.E., and de Groot M.J. Greater than the sum of its parts: combining models for useful ADMET prediction. J. Med. Chem. 48 (2005) 1287-1291
    • (2005) J. Med. Chem. , vol.48 , pp. 1287-1291
    • O'Brien, S.E.1    de Groot, M.J.2
  • 14
    • 0041698413 scopus 로고    scopus 로고
    • Use of robust classification techniques for the prediction of human cytochrome P450 2D6 inhibition
    • Susnow R.G., and Dixon S.L. Use of robust classification techniques for the prediction of human cytochrome P450 2D6 inhibition. J. Chem. Inf. Comput. Sci. 43 (2003) 1308-1315
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 1308-1315
    • Susnow, R.G.1    Dixon, S.L.2
  • 15
    • 33748104432 scopus 로고    scopus 로고
    • Application of support vector machines to in silico prediction of cytochrome p450 enzyme substrates and inhibitors
    • Yap C.W., Xue Y., Li Z.R., and Chen Y.Z. Application of support vector machines to in silico prediction of cytochrome p450 enzyme substrates and inhibitors. Curr. Top Med. Chem. 6 (2006) 1593-1607
    • (2006) Curr. Top Med. Chem. , vol.6 , pp. 1593-1607
    • Yap, C.W.1    Xue, Y.2    Li, Z.R.3    Chen, Y.Z.4
  • 16
    • 0033569516 scopus 로고    scopus 로고
    • Pharmacogenomics: translating functional genomics into rational therapeutics
    • Evans W.E., and Relling M.V. Pharmacogenomics: translating functional genomics into rational therapeutics. Science 286 (1999) 487-491
    • (1999) Science , vol.286 , pp. 487-491
    • Evans, W.E.1    Relling, M.V.2
  • 17
    • 0034105896 scopus 로고    scopus 로고
    • In vitro-in vivo scaling of CYP kinetic data not consistent with the classical Michaelis-Menten model
    • Houston J.B., and Kenworthy K.E. In vitro-in vivo scaling of CYP kinetic data not consistent with the classical Michaelis-Menten model. Drug Metab. Dispos. 28 (2000) 246-254
    • (2000) Drug Metab. Dispos. , vol.28 , pp. 246-254
    • Houston, J.B.1    Kenworthy, K.E.2
  • 19
    • 33748124863 scopus 로고    scopus 로고
    • Machine learning techniques for in silico modeling of drug metabolism
    • Fox T., and Kriegl J.M. Machine learning techniques for in silico modeling of drug metabolism. Curr. Top. Med. Chem. 6 (2006) 1579-1591
    • (2006) Curr. Top. Med. Chem. , vol.6 , pp. 1579-1591
    • Fox, T.1    Kriegl, J.M.2
  • 21
    • 0032733974 scopus 로고    scopus 로고
    • Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: an examination of in vitro half-life approach and nonspecific binding to microsomes
    • Obach R.S. Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: an examination of in vitro half-life approach and nonspecific binding to microsomes. Drug Metab. Dispos. 27 (1999) 1350-1359
    • (1999) Drug Metab. Dispos. , vol.27 , pp. 1350-1359
    • Obach, R.S.1
  • 22
    • 0035289779 scopus 로고    scopus 로고
    • Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings
    • Lipinski C.A., Lombardo F., Dominy B.W., and Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46 (2001) 3-26
    • (2001) Adv. Drug Deliv. Rev. , vol.46 , pp. 3-26
    • Lipinski, C.A.1    Lombardo, F.2    Dominy, B.W.3    Feeney, P.J.4
  • 23
    • 37349126390 scopus 로고    scopus 로고
    • The MDL Drug Data Report (MDDR) database 2005.2 is an online version of the Drug Data Report journal by Prous Science Publishers and is distributed by MDL Information Systems, Inc. Coverage: 1988-2005; updated monthly. Focus: Drugs launched or under development, as referenced in the patent literature, conference proceedings, and other sources; descriptions of therapeutic action and biological activity; tracking of compounds through development phases. Size: 164,647 molecules.
  • 25
    • 0016772212 scopus 로고
    • Comparison of the predicted and observed secondary structure of T4 phage lysozyme
    • Matthews B.W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta 405 (1975) 442-451
    • (1975) Biochim. Biophys. Acta , vol.405 , pp. 442-451
    • Matthews, B.W.1
  • 26
    • 0033931867 scopus 로고    scopus 로고
    • Assessing the accuracy of prediction algorithms for classification: an overview
    • Baldi P., Brunak S., Chauvin Y., Andersen C.A., and Nielsen H. Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16 (2000) 412-424
    • (2000) Bioinformatics , vol.16 , pp. 412-424
    • Baldi, P.1    Brunak, S.2    Chauvin, Y.3    Andersen, C.A.4    Nielsen, H.5
  • 28
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breimann L. Random forests. Mach. Learn. 45 (2001) 5-32
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breimann, L.1
  • 29
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of online learning and an application to boosting
    • Freund Y., and Schapire R.E. A decision-theoretic generalization of online learning and an application to boosting. J. Comput. Syst. Sci. 55 (1997) 119-139
    • (1997) J. Comput. Syst. Sci. , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 31
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breimann L. Bagging predictors. Machine Learn. 24 (1996) 123-140
    • (1996) Machine Learn. , vol.24 , pp. 123-140
    • Breimann, L.1
  • 32
    • 37349109788 scopus 로고    scopus 로고
    • L. Breimann, Friedman. J.H., Olschen. R.A., Stone. C.J., Classification and Regression Trees, Wadsworth, 1984.
  • 33
    • 0030769940 scopus 로고    scopus 로고
    • Analysis of large structure-activity data set using recursive partitioning
    • Hawkins D.M., Young S.S., and Rusinko A.I. Analysis of large structure-activity data set using recursive partitioning. Quant. Struct. Acta Relat. 16 (1997) 296-302
    • (1997) Quant. Struct. Acta Relat. , vol.16 , pp. 296-302
    • Hawkins, D.M.1    Young, S.S.2    Rusinko, A.I.3
  • 37
    • 28944433024 scopus 로고    scopus 로고
    • Applying recursive partitioning to a prospective study of factors associated with adherence to mammography screening guidelines
    • Calvocoressi L., Stolar M., Kasl S.V., Claus E.B., and Jones B.A. Applying recursive partitioning to a prospective study of factors associated with adherence to mammography screening guidelines. Am J. Epidemiol. 162 (2005) 1215-1224
    • (2005) Am J. Epidemiol. , vol.162 , pp. 1215-1224
    • Calvocoressi, L.1    Stolar, M.2    Kasl, S.V.3    Claus, E.B.4    Jones, B.A.5
  • 39
    • 28944450149 scopus 로고    scopus 로고
    • Prediction of protein-protein interactions using random decision forest framework
    • Chen X.W., and Liu M. Prediction of protein-protein interactions using random decision forest framework. Bioinformatics 21 (2005) 4394-4400
    • (2005) Bioinformatics , vol.21 , pp. 4394-4400
    • Chen, X.W.1    Liu, M.2
  • 41
    • 33846857994 scopus 로고    scopus 로고
    • Random forest prediction of mutagenicity from empirical physicochemical descriptors
    • Zhang Q.Y., and Aires-de-Sousa J. Random forest prediction of mutagenicity from empirical physicochemical descriptors. J. Chem. Inf. Model. 47 (2007) 1-8
    • (2007) J. Chem. Inf. Model. , vol.47 , pp. 1-8
    • Zhang, Q.Y.1    Aires-de-Sousa, J.2
  • 42
    • 33645675081 scopus 로고    scopus 로고
    • A hybrid mixture discriminant analysis-random forest computational model for the prediction of volume of distribution of drugs in human
    • Lombardo F., Obach R.S., Dicapua F.M., Bakken G.A., Lu J., Potter D.M., Gao F., Miller M.D., and Zhang Y. A hybrid mixture discriminant analysis-random forest computational model for the prediction of volume of distribution of drugs in human. J. Med. Chem. 49 (2006) 2262-2267
    • (2006) J. Med. Chem. , vol.49 , pp. 2262-2267
    • Lombardo, F.1    Obach, R.S.2    Dicapua, F.M.3    Bakken, G.A.4    Lu, J.5    Potter, D.M.6    Gao, F.7    Miller, M.D.8    Zhang, Y.9
  • 43
    • 33845782504 scopus 로고    scopus 로고
    • Chemoinformatics-based classification of prohibited substances employed for doping in sport
    • Cannon E.O., Bender A., Palmer D.S., and Mitchell J.B.O. Chemoinformatics-based classification of prohibited substances employed for doping in sport. J. Chem. Inf. Model. 46 (2006) 2369-2380
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 2369-2380
    • Cannon, E.O.1    Bender, A.2    Palmer, D.S.3    Mitchell, J.B.O.4
  • 44
    • 33847096395 scopus 로고    scopus 로고
    • Bias in random forest variable importance measures: illustrations, sources and a solution
    • Strobl C., Boulesteix A.L., Zeileis A., and Hothorn T. Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinformatics 8 (2007) 25
    • (2007) BMC Bioinformatics , vol.8 , pp. 25
    • Strobl, C.1    Boulesteix, A.L.2    Zeileis, A.3    Hothorn, T.4
  • 45
    • 33947517339 scopus 로고    scopus 로고
    • Application and comparison of classification algorithms for recognition of Alzheimer's disease in electrical brain activity EEG
    • Lehmann C., Koenig T., Jelic V., Prichep L., John R.E., Wahlund L.O., Dodge Y., and Dierks T. Application and comparison of classification algorithms for recognition of Alzheimer's disease in electrical brain activity EEG. J. Neurosci. Methods 161 (2007) 342-350
    • (2007) J. Neurosci. Methods , vol.161 , pp. 342-350
    • Lehmann, C.1    Koenig, T.2    Jelic, V.3    Prichep, L.4    John, R.E.5    Wahlund, L.O.6    Dodge, Y.7    Dierks, T.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.