-
1
-
-
0025169150
-
Melting point, boiling point, and symmetry
-
Abramowitz, R.; Yalkowsky, S. H. Melting Point, Boiling Point, and Symmetry. Pharm. Res. 1990, 7, 942-947.
-
(1990)
Pharm. Res.
, vol.7
, pp. 942-947
-
-
Abramowitz, R.1
Yalkowsky, S.H.2
-
2
-
-
0035138216
-
Estimation of the aqueous solubility I: Application to organic nonelectrolytes
-
Jain, N.; Yalkowsky, S. H. Estimation of the Aqueous Solubility I: Application to Organic Nonelectrolytes. J. Pharm. Sci. 2001, 90, 234-252.
-
(2001)
J. Pharm. Sci.
, vol.90
, pp. 234-252
-
-
Jain, N.1
Yalkowsky, S.H.2
-
3
-
-
0035263415
-
Prediction of drug solubility by the General Solubility Equation (GSE)
-
Ran, Y.; Yalkowsky, S. H. Prediction of Drug Solubility by the General Solubility Equation (GSE). J. Chem. Inf. Comput. Sci. 2001, 41, 354-357.
-
(2001)
J. Chem. Inf. Comput. Sci.
, vol.41
, pp. 354-357
-
-
Ran, Y.1
Yalkowsky, S.H.2
-
5
-
-
3242885550
-
Predictive ADMET studies, the challenges and the opportunities
-
Davis, A. M.; Riley, R. J. Predictive ADMET Studies, the Challenges and the Opportunities. Curr. Opin. Chem. Biol. 2004, 8, 378-386.
-
(2004)
Curr. Opin. Chem. Biol.
, vol.8
, pp. 378-386
-
-
Davis, A.M.1
Riley, R.J.2
-
6
-
-
0035292910
-
Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract
-
Horter, D.; Dressman, J. B. Influence of Physicochemical Properties on Dissolution of Drugs in the Gastrointestinal Tract. Adv. Drug Delivery Rev. 2001, 46, 75-87.
-
(2001)
Adv. Drug Delivery Rev.
, vol.46
, pp. 75-87
-
-
Horter, D.1
Dressman, J.B.2
-
7
-
-
0036481691
-
Gastrointestinal transit and drug absorption
-
Kimura, T.; Higaki, K. Gastrointestinal Transit and Drug Absorption. Biol. Pharm. Bull. 2002, 25, 149-164.
-
(2002)
Biol. Pharm. Bull.
, vol.25
, pp. 149-164
-
-
Kimura, T.1
Higaki, K.2
-
8
-
-
0142057987
-
Quantitative structure-property relationships for prediction of boiling point, vapor pressure, and melting point
-
Dearden, J. C. Quantitative Structure-Property Relationships for Prediction of Boiling Point, Vapor Pressure, and Melting Point. Environ. Toxicol. Chem. 2003, 22, 1696-1709.
-
(2003)
Environ. Toxicol. Chem.
, vol.22
, pp. 1696-1709
-
-
Dearden, J.C.1
-
9
-
-
0035470796
-
Ionic liquids: An industrial cleanup solution
-
Renner, R. Ionic Liquids: An Industrial Cleanup Solution. Environ. Sci. Technol. 2001, 55, 410A-413A.
-
(2001)
Environ. Sci. Technol.
, vol.55
-
-
Renner, R.1
-
10
-
-
20544477099
-
Prediction of melting points for ionic liquids
-
Trohalaki, S.; Pachter, R. Prediction of Melting Points for Ionic Liquids. QSAR Comb. Sci. 2005, 24, 485-490.
-
(2005)
QSAR Comb. Sci.
, vol.24
, pp. 485-490
-
-
Trohalaki, S.1
Pachter, R.2
-
11
-
-
13644277240
-
Quantitative structure-property relationships for melting points and densities of ionic liquids
-
Trohalaki, S.; Pachter, R.; Drake, G. W.; Hawkins, T. Quantitative Structure-Property Relationships for Melting Points and Densities of Ionic Liquids. Energy Fuels 2005, 19, 279-284.
-
(2005)
Energy Fuels
, vol.19
, pp. 279-284
-
-
Trohalaki, S.1
Pachter, R.2
Drake, G.W.3
Hawkins, T.4
-
12
-
-
20444362720
-
General melting point prediction based on a diverse compound data set and artificial neural networks
-
Karthikeyan, M.; Glen, R. C.; Bender, A. General Melting Point Prediction Based on a Diverse Compound Data Set and Artificial Neural Networks. J. Chem. Inf. Model. 2005, 45, 581-590.
-
(2005)
J. Chem. Inf. Model.
, vol.45
, pp. 581-590
-
-
Karthikeyan, M.1
Glen, R.C.2
Bender, A.3
-
13
-
-
8344220508
-
Estimation of melting points of organic compounds
-
Jain, A.; Yang, G.; Yalkowsky, S. H. Estimation of Melting Points of Organic Compounds. Ind. Eng. Chem. Res. 2004, 43, 7618-7621.
-
(2004)
Ind. Eng. Chem. Res.
, vol.43
, pp. 7618-7621
-
-
Jain, A.1
Yang, G.2
Yalkowsky, S.H.3
-
14
-
-
0041698448
-
Molecular descriptors influencing melting point and their role in classification of solid drugs
-
Bergström, C. A. S.; Norinder, U.; Luthman, K.; Artursson, P. Molecular Descriptors Influencing Melting Point and Their Role in Classification of Solid Drugs. J. Chem. Inf. Comput. Sci. 2003, 43, 1177-1185.
-
(2003)
J. Chem. Inf. Comput. Sci.
, vol.43
, pp. 1177-1185
-
-
Bergström, C.A.S.1
Norinder, U.2
Luthman, K.3
Artursson, P.4
-
15
-
-
0011461448
-
Perspective on the relationship between melting points and chemical structure
-
Katritzky, A. R.; Jain, R.; Lomaka, A.; Petrukhin, R.; Maran, U.; Karelson, M. Perspective on the Relationship between Melting Points and Chemical Structure. Cryst. Growth Des. 2001, 1, 261-265.
-
(2001)
Cryst. Growth Des.
, vol.1
, pp. 261-265
-
-
Katritzky, A.R.1
Jain, R.2
Lomaka, A.3
Petrukhin, R.4
Maran, U.5
Karelson, M.6
-
16
-
-
0033200852
-
A combined group contribution and molecular geometry approach for predicting melting points of aliphatic compounds
-
Zhao, L. W.; Yalkowsky, S. H. A Combined Group Contribution and Molecular Geometry Approach for Predicting Melting Points of Aliphatic Compounds. Ind. Eng. Chem. Res. 1999, 38, 3581-3584.
-
(1999)
Ind. Eng. Chem. Res.
, vol.38
, pp. 3581-3584
-
-
Zhao, L.W.1
Yalkowsky, S.H.2
-
17
-
-
27144504701
-
Two new parameters for predicting the entropy of melting: Eccentricity (epsilon) and spirality (mu)
-
Johnson, J. L. H.; Yalkowsky, S. H. Two New Parameters for Predicting the Entropy of Melting: Eccentricity (epsilon) and Spirality (mu). Ind. Eng. Chem. Res. 2005, 44, 7559-7566.
-
(2005)
Ind. Eng. Chem. Res.
, vol.44
, pp. 7559-7566
-
-
Johnson, J.L.H.1
Yalkowsky, S.H.2
-
18
-
-
0032766162
-
Predicting the total entropy of melting: Application to pharmaceuticals and environmentally relevant compounds
-
Dannenfelser, R. M.; Yalkowsky, S. H. Predicting the Total Entropy of Melting: Application to Pharmaceuticals and Environmentally Relevant Compounds. J. Pharm. Sci. 1999, 88, 722-724.
-
(1999)
J. Pharm. Sci.
, vol.88
, pp. 722-724
-
-
Dannenfelser, R.M.1
Yalkowsky, S.H.2
-
19
-
-
0003505419
-
-
International Union of Pure and Applied Chemistry: Research Triangle Park, NC
-
IUPAC Compendium of Chemical Terminology, 2nd ed.; International Union of Pure and Applied Chemistry: Research Triangle Park, NC, 1997.
-
(1997)
IUPAC Compendium of Chemical Terminology, 2nd Ed.
-
-
-
20
-
-
33646231725
-
QSPR correlation of melting point for drug compounds based on different sources of Molecular Descriptors
-
Modarressi, H.; Dearden, J. C.; Modarress, I. QSPR Correlation of Melting Point for Drug Compounds Based on Different Sources of Molecular Descriptors. J. Chem. Inf. Model. 2006, 46, 930-936.
-
(2006)
J. Chem. Inf. Model.
, vol.46
, pp. 930-936
-
-
Modarressi, H.1
Dearden, J.C.2
Modarress, I.3
-
21
-
-
33845789211
-
-
accessed Sep 7, 2006
-
Molecular Diversity Preservation International (MDPI). http:// www.mdpi.org/ (accessed Sep 7, 2006).
-
-
-
-
22
-
-
33845725670
-
-
Kansas City, MO. (accessed Sep 7, 2006)
-
CODESSA; Semichem, Inc.: Kansas City, MO. http://www. semichem.com/ (accessed Sep 7, 2006).
-
CODESSA
-
-
-
23
-
-
33845790660
-
-
Milano, Italy. (accessed Sep 7, 2006)
-
Dragon; Talete srl: Milano, Italy. http://www.talete.mi.it/ (accessed Sep 7, 2006).
-
Dragon
-
-
-
24
-
-
33845760997
-
-
Cambridge, United Kingdom. (accessed Sep 7, 2006)
-
TSAR; Accelrys Ltd.: Cambridge, United Kingdom. http://www. accelrys.com/ (accessed Sep 7, 2006).
-
TSAR
-
-
-
25
-
-
33845773940
-
-
ACS Publications, (accessed Sep 7, 2006)
-
ACS Publications, American Chemical Society. http://pubs.acs.org/ (accessed Sep 7, 2006).
-
-
-
-
26
-
-
0004313703
-
-
Chemical Computing Group, Inc.: Montreal, Quebec, Canada
-
MOE (Molecular Operating Environment); Chemical Computing Group, Inc.: Montreal, Quebec, Canada.
-
MOE (Molecular Operating Environment)
-
-
-
27
-
-
0037571112
-
Merck molecular force field. 1. basis, form, scope, parametrization, and performance of MMFF94
-
Halgren, T. A. Merck Molecular Force Field. 1. Basis, form, scope, parametrization, and performance of MMFF94. J. Comput. Chem. 1996, 17, 490-519.
-
(1996)
J. Comput. Chem.
, vol.17
, pp. 490-519
-
-
Halgren, T.A.1
-
28
-
-
33845731807
-
-
MOE (Molecular Operating Environment), QuaSAR-Descriptor. (accessed Sep 7, 2006)
-
MOE (Molecular Operating Environment), QuaSAR-Descriptor. http:// www.chemcomp.com/journal/descr.htm. (accessed Sep 7, 2006).
-
-
-
-
29
-
-
10344230435
-
Molecular similarity: A key technique in molecular informatics
-
Bender, A.; Glen, R. C. Molecular Similarity: A Key Technique in Molecular Informatics. Org. Biomol. Chem. 2004, 2, 3204-3218.
-
(2004)
Org. Biomol. Chem.
, vol.2
, pp. 3204-3218
-
-
Bender, A.1
Glen, R.C.2
-
30
-
-
0036980746
-
Chemical similarity and biological activities
-
Kubinyi, H. Chemical Similarity and Biological Activities. J. Braz. Chem. Soc. 2002, 13, 717-726.
-
(2002)
J. Braz. Chem. Soc.
, vol.13
, pp. 717-726
-
-
Kubinyi, H.1
-
31
-
-
28444485615
-
Structure-based classification of active and inactive estrogenic compounds by decision tree, LVQ and kNN methods
-
Asikainen, A.; Kolehmainen, M.; Ruuskanen, J.; Tuppurainen, K. Structure-Based Classification of Active and Inactive Estrogenic Compounds by Decision Tree, LVQ and kNN Methods. Chemosphere 2006, 62, 658-673.
-
(2006)
Chemosphere
, vol.62
, pp. 658-673
-
-
Asikainen, A.1
Kolehmainen, M.2
Ruuskanen, J.3
Tuppurainen, K.4
-
32
-
-
31744450760
-
A new approach to the nearest-neighbour method to discover cluster features in overlaid spatial point processes
-
Pei, T.; Zhu, A. X.; Zhou, C. H.; Li, B. L.; Qin, C. Z. A New Approach to the Nearest-Neighbour Method to Discover Cluster Features in Overlaid Spatial Point Processes. Int. J. Geogr. Inf. Sci. 2006, 20 153-168.
-
(2006)
Int. J. Geogr. Inf. Sci.
, vol.20
, pp. 153-168
-
-
Pei, T.1
Zhu, A.X.2
Zhou, C.H.3
Li, B.L.4
Qin, C.Z.5
-
33
-
-
30344473619
-
An ensemble-driven k-NN approach to Ill-posed classification problems
-
Chi, M. M.; Bruzzone, L. An Ensemble-Driven k-NN Approach to Ill-Posed Classification Problems. Pattern Recog. Lett. 2006, 27, 301-307.
-
(2006)
Pattern Recog. Lett.
, vol.27
, pp. 301-307
-
-
Chi, M.M.1
Bruzzone, L.2
-
34
-
-
31644449691
-
BORDER: Efficient computation of boundary points
-
Xia, C. Y.; Hsu, W.; Lee, M. L.; Ooi, B. C. BORDER: Efficient Computation of Boundary Points. IEEE Trans. Knowl. Data Eng. 2006, 18, 289-303.
-
(2006)
IEEE Trans. Knowl. Data Eng.
, vol.18
, pp. 289-303
-
-
Xia, C.Y.1
Hsu, W.2
Lee, M.L.3
Ooi, B.C.4
-
35
-
-
33645995377
-
Comparative pixel-level exudate recognition in colour retinal images
-
Osareh, A.; Shadgar, B.; Markham, R. Comparative Pixel-Level Exudate Recognition in Colour Retinal Images. Lect. Notes Comput. Sci. 2005, 3656, 894-902.
-
(2005)
Lect. Notes Comput. Sci.
, vol.3656
, pp. 894-902
-
-
Osareh, A.1
Shadgar, B.2
Markham, R.3
-
36
-
-
28444457477
-
Monitoring beer during storage by fluorescence spectroscopy
-
Sikorska, E.; Gorecki, T.; Khmelinskii, I. V.; Sikorski, M.; De Keukeleire, D. Monitoring Beer during Storage by Fluorescence Spectroscopy. Food Chem. 2006, 96, 632-639.
-
(2006)
Food Chem.
, vol.96
, pp. 632-639
-
-
Sikorska, E.1
Gorecki, T.2
Khmelinskii, I.V.3
Sikorski, M.4
De Keukeleire, D.5
-
37
-
-
30444459340
-
Applicability of the k-Nearest Neighbours (kNN-) method to predict the productivity of harvesting - Basic considerations and first experiences
-
Lemm, R.; Vogel, M.; Felber, A.; Thees, O. Applicability of the k-Nearest Neighbours (kNN-) Method to Predict the Productivity of Harvesting - Basic Considerations and First Experiences. Allg. Forst Jagdztg. 2005, 176, 189-200.
-
(2005)
Allg. Forst Jagdztg.
, vol.176
, pp. 189-200
-
-
Lemm, R.1
Vogel, M.2
Felber, A.3
Thees, O.4
-
38
-
-
20444407285
-
K nearest neighbors QSAR modeling as a variational problem: Theory and applications
-
Itskowitz, P.; Tropsha, A. k Nearest Neighbors QSAR Modeling as a Variational Problem: Theory and Applications. J. Chem. Inf. Model. 2005, 45, 777-785.
-
(2005)
J. Chem. Inf. Model.
, vol.45
, pp. 777-785
-
-
Itskowitz, P.1
Tropsha, A.2
-
39
-
-
33244481088
-
Three-dimensional QSAR using the k-nearest neighbor method and its interpretation
-
Ajmani, S.; Jadhav, K.; Kulkarni, S. A. Three-Dimensional QSAR Using the k-Nearest Neighbor Method and Its Interpretation. J. Chem. Inf. Model. 2006, 46, 24-31.
-
(2006)
J. Chem. Inf. Model.
, vol.46
, pp. 24-31
-
-
Ajmani, S.1
Jadhav, K.2
Kulkarni, S.A.3
-
40
-
-
33244488773
-
Fully computational model for predicting percutaneous drug absorption
-
Neumann, D.; Kohlbacher, O.; Merkwirth, C.; Lengauer, T. Fully Computational Model for Predicting Percutaneous Drug Absorption. J. Chem. Inf. Model. 2006, 46, 424-429.
-
(2006)
J. Chem. Inf. Model.
, vol.46
, pp. 424-429
-
-
Neumann, D.1
Kohlbacher, O.2
Merkwirth, C.3
Lengauer, T.4
-
42
-
-
1842607847
-
-
R Development Core Team 2005, R Foundation for Statistical Computing: Vienna, Austria (accessed Sep 7, 2006)
-
R: A Language and Environment for Statistical Computing; R Development Core Team 2005, R Foundation for Statistical Computing: Vienna, Austria. http://www.r-project.org/ (accessed Sep 7, 2006).
-
R: A Language and Environment for Statistical Computing
-
-
-
44
-
-
22344432656
-
Comparison among five evolutionary-based optimization algorithms
-
Elbeltagi, E.; Hegazy, T.; Grierson, D. Comparison among Five Evolutionary-Based Optimization Algorithms. Adv. Eng. Inf. 2005, 19, 43-53.
-
(2005)
Adv. Eng. Inf.
, vol.19
, pp. 43-53
-
-
Elbeltagi, E.1
Hegazy, T.2
Grierson, D.3
-
45
-
-
27144482682
-
A hybrid intelligent genetic algorithm
-
Javadi, A. A.; Farmani, R.; Tan, T. P. A Hybrid Intelligent Genetic Algorithm. Adv. Eng. Inf. 2005, 19, 255-262.
-
(2005)
Adv. Eng. Inf.
, vol.19
, pp. 255-262
-
-
Javadi, A.A.1
Farmani, R.2
Tan, T.P.3
-
46
-
-
0037841526
-
Cross-validation as the objective function for variable-selection techniques
-
Baumann, K. Cross-Validation as the Objective Function for Variable-Selection Techniques. Trends Anal. Chem. 2003, 22, 395-406.
-
(2003)
Trends Anal. Chem.
, vol.22
, pp. 395-406
-
-
Baumann, K.1
-
47
-
-
20844448884
-
Validation tools for variable subset regression
-
Baumann, K.; Stiefl, N. Validation Tools for Variable Subset Regression. J. Comput.-Aided Mol. Des. 2004, 18, 549-562.
-
(2004)
J. Comput.-aided Mol. Des.
, vol.18
, pp. 549-562
-
-
Baumann, K.1
Stiefl, N.2
-
48
-
-
0038724207
-
The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR models
-
Tropsha, A.; Gramatica, P.; Gombar, V. K. The Importance of Being Earnest: Validation is the Absolute Essential for Successful Application and Interpretation of QSPR Models. QSAR Comb. Sci. 2003, 22, 69-77.
-
(2003)
QSAR Comb. Sci.
, vol.22
, pp. 69-77
-
-
Tropsha, A.1
Gramatica, P.2
Gombar, V.K.3
-
49
-
-
2442648065
-
Can we predict lattice energy from molecular structure?
-
Ouvrard, C.; Mitchell, J. B. O. Can We Predict Lattice Energy from Molecular Structure? Acta Crystallogr., Sect. B 2003, 59, 676-685.
-
(2003)
Acta Crystallogr., Sect. B
, vol.59
, pp. 676-685
-
-
Ouvrard, C.1
Mitchell, J.B.O.2
-
50
-
-
84891556199
-
-
Tripos Inc.: St. Louis, Missouri
-
Sybyl 6.9; Tripos Inc.: St. Louis, Missouri.
-
Sybyl 6.9
-
-
-
51
-
-
0342645323
-
Use of structure activity data to compare structure-based clustering methods and descriptors for use in compound selection
-
Brown, R. D.; Martin, Y. C. Use of Structure Activity Data to Compare Structure-Based Clustering Methods and Descriptors for Use in Compound Selection. J. Chem. Inf. Comput. Sci. 1996, 36, 572-584.
-
(1996)
J. Chem. Inf. Comput. Sci.
, vol.36
, pp. 572-584
-
-
Brown, R.D.1
Martin, Y.C.2
-
52
-
-
26944443036
-
Discussion of measures of enrichment in virtual screening: Comparing the information content of descriptors with increasing levels of sophistication
-
Bender, A.; Glen, R. C. Discussion of Measures of Enrichment in Virtual Screening: Comparing the Information Content of Descriptors with Increasing Levels of Sophistication. J. Chem. Inf. Model. 2005, 45, 1369-1375.
-
(2005)
J. Chem. Inf. Model.
, vol.45
, pp. 1369-1375
-
-
Bender, A.1
Glen, R.C.2
-
53
-
-
0004272772
-
-
Cambridge University Press: Cambridge, U. K., 628
-
MacKay; D. J. C. Information Theory, Inference, and Learning Algorithms; Cambridge University Press: Cambridge, U. K., 2003; pp xii, 628.
-
(2003)
Information Theory, Inference, and Learning Algorithms
-
-
MacKay, D.J.C.1
-
54
-
-
0026075594
-
Applications of neural networks in quantitative structure-activity relationships of dihydrofolate reductase inhibitors
-
Andrea, T. A.; Kalayeh, H. Applications of Neural Networks in Quantitative Structure-Activity Relationships of Dihydrofolate Reductase Inhibitors. J. Med. Chem. 1991, 34, 2824-2836.
-
(1991)
J. Med. Chem.
, vol.34
, pp. 2824-2836
-
-
Andrea, T.A.1
Kalayeh, H.2
-
55
-
-
0002483594
-
Multivariate regression outperforms several robust architectures of neural networks in QSAR modeling
-
Lucie, B.; Trinajstic, N. Multivariate Regression Outperforms Several Robust Architectures of Neural Networks in QSAR Modeling. J. Chem. Inf. Comput. Sci. 1999, 39, 121-132.
-
(1999)
J. Chem. Inf. Comput. Sci.
, vol.39
, pp. 121-132
-
-
Lucie, B.1
Trinajstic, N.2
-
56
-
-
0000104192
-
Nonlinear multivariate regression outperforms several concisely designed neural networks on three QSPR data sets
-
Lucie, B.; Amic, D.; Trinajstic, N. Nonlinear Multivariate Regression Outperforms Several Concisely Designed Neural Networks on Three QSPR Data Sets. J. Chem. Inf. Comput. Sci. 2000, 40, 403-413.
-
(2000)
J. Chem. Inf. Comput. Sci.
, vol.40
, pp. 403-413
-
-
Lucie, B.1
Amic, D.2
Trinajstic, N.3
-
57
-
-
18344410789
-
Toward generating simpler QSAR models: Nonlinear multivariate regression versus several neural network ensembles and some related methods
-
Lucie, B.; Nadramija, D.; Basic, I.; Trinajstic, N. Toward Generating Simpler QSAR Models: Nonlinear Multivariate Regression versus Several Neural Network Ensembles and Some Related Methods. J. Chem. Inf. Comput. Sci. 2003, 43, 1094-1102.
-
(2003)
J. Chem. Inf. Comput. Sci.
, vol.43
, pp. 1094-1102
-
-
Lucie, B.1
Nadramija, D.2
Basic, I.3
Trinajstic, N.4
-
58
-
-
13544270908
-
Predicting aqueous solubility from structure
-
Delaney, J. S. Predicting Aqueous Solubility from Structure. Drug Discovery Today 2005, 10, 289-295.
-
(2005)
Drug Discovery Today
, vol.10
, pp. 289-295
-
-
Delaney, J.S.1
|