메뉴 건너뛰기




Volumn 46, Issue 6, 2006, Pages 2412-2422

Melting point prediction employing k-nearest neighbor algorithms and genetic parameter optimization

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER SIMULATION; DATABASE SYSTEMS; DRUG PRODUCTS; MOLECULAR STRUCTURE; MONTE CARLO METHODS; OPTIMIZATION; PARAMETER ESTIMATION;

EID: 33845748728     PISSN: 15499596     EISSN: 1549960X     Source Type: Journal    
DOI: 10.1021/ci060149f     Document Type: Article
Times cited : (163)

References (58)
  • 1
    • 0025169150 scopus 로고
    • Melting point, boiling point, and symmetry
    • Abramowitz, R.; Yalkowsky, S. H. Melting Point, Boiling Point, and Symmetry. Pharm. Res. 1990, 7, 942-947.
    • (1990) Pharm. Res. , vol.7 , pp. 942-947
    • Abramowitz, R.1    Yalkowsky, S.H.2
  • 2
    • 0035138216 scopus 로고    scopus 로고
    • Estimation of the aqueous solubility I: Application to organic nonelectrolytes
    • Jain, N.; Yalkowsky, S. H. Estimation of the Aqueous Solubility I: Application to Organic Nonelectrolytes. J. Pharm. Sci. 2001, 90, 234-252.
    • (2001) J. Pharm. Sci. , vol.90 , pp. 234-252
    • Jain, N.1    Yalkowsky, S.H.2
  • 3
    • 0035263415 scopus 로고    scopus 로고
    • Prediction of drug solubility by the General Solubility Equation (GSE)
    • Ran, Y.; Yalkowsky, S. H. Prediction of Drug Solubility by the General Solubility Equation (GSE). J. Chem. Inf. Comput. Sci. 2001, 41, 354-357.
    • (2001) J. Chem. Inf. Comput. Sci. , vol.41 , pp. 354-357
    • Ran, Y.1    Yalkowsky, S.H.2
  • 5
    • 3242885550 scopus 로고    scopus 로고
    • Predictive ADMET studies, the challenges and the opportunities
    • Davis, A. M.; Riley, R. J. Predictive ADMET Studies, the Challenges and the Opportunities. Curr. Opin. Chem. Biol. 2004, 8, 378-386.
    • (2004) Curr. Opin. Chem. Biol. , vol.8 , pp. 378-386
    • Davis, A.M.1    Riley, R.J.2
  • 6
    • 0035292910 scopus 로고    scopus 로고
    • Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract
    • Horter, D.; Dressman, J. B. Influence of Physicochemical Properties on Dissolution of Drugs in the Gastrointestinal Tract. Adv. Drug Delivery Rev. 2001, 46, 75-87.
    • (2001) Adv. Drug Delivery Rev. , vol.46 , pp. 75-87
    • Horter, D.1    Dressman, J.B.2
  • 7
    • 0036481691 scopus 로고    scopus 로고
    • Gastrointestinal transit and drug absorption
    • Kimura, T.; Higaki, K. Gastrointestinal Transit and Drug Absorption. Biol. Pharm. Bull. 2002, 25, 149-164.
    • (2002) Biol. Pharm. Bull. , vol.25 , pp. 149-164
    • Kimura, T.1    Higaki, K.2
  • 8
    • 0142057987 scopus 로고    scopus 로고
    • Quantitative structure-property relationships for prediction of boiling point, vapor pressure, and melting point
    • Dearden, J. C. Quantitative Structure-Property Relationships for Prediction of Boiling Point, Vapor Pressure, and Melting Point. Environ. Toxicol. Chem. 2003, 22, 1696-1709.
    • (2003) Environ. Toxicol. Chem. , vol.22 , pp. 1696-1709
    • Dearden, J.C.1
  • 9
    • 0035470796 scopus 로고    scopus 로고
    • Ionic liquids: An industrial cleanup solution
    • Renner, R. Ionic Liquids: An Industrial Cleanup Solution. Environ. Sci. Technol. 2001, 55, 410A-413A.
    • (2001) Environ. Sci. Technol. , vol.55
    • Renner, R.1
  • 10
    • 20544477099 scopus 로고    scopus 로고
    • Prediction of melting points for ionic liquids
    • Trohalaki, S.; Pachter, R. Prediction of Melting Points for Ionic Liquids. QSAR Comb. Sci. 2005, 24, 485-490.
    • (2005) QSAR Comb. Sci. , vol.24 , pp. 485-490
    • Trohalaki, S.1    Pachter, R.2
  • 11
    • 13644277240 scopus 로고    scopus 로고
    • Quantitative structure-property relationships for melting points and densities of ionic liquids
    • Trohalaki, S.; Pachter, R.; Drake, G. W.; Hawkins, T. Quantitative Structure-Property Relationships for Melting Points and Densities of Ionic Liquids. Energy Fuels 2005, 19, 279-284.
    • (2005) Energy Fuels , vol.19 , pp. 279-284
    • Trohalaki, S.1    Pachter, R.2    Drake, G.W.3    Hawkins, T.4
  • 12
    • 20444362720 scopus 로고    scopus 로고
    • General melting point prediction based on a diverse compound data set and artificial neural networks
    • Karthikeyan, M.; Glen, R. C.; Bender, A. General Melting Point Prediction Based on a Diverse Compound Data Set and Artificial Neural Networks. J. Chem. Inf. Model. 2005, 45, 581-590.
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 581-590
    • Karthikeyan, M.1    Glen, R.C.2    Bender, A.3
  • 13
    • 8344220508 scopus 로고    scopus 로고
    • Estimation of melting points of organic compounds
    • Jain, A.; Yang, G.; Yalkowsky, S. H. Estimation of Melting Points of Organic Compounds. Ind. Eng. Chem. Res. 2004, 43, 7618-7621.
    • (2004) Ind. Eng. Chem. Res. , vol.43 , pp. 7618-7621
    • Jain, A.1    Yang, G.2    Yalkowsky, S.H.3
  • 14
    • 0041698448 scopus 로고    scopus 로고
    • Molecular descriptors influencing melting point and their role in classification of solid drugs
    • Bergström, C. A. S.; Norinder, U.; Luthman, K.; Artursson, P. Molecular Descriptors Influencing Melting Point and Their Role in Classification of Solid Drugs. J. Chem. Inf. Comput. Sci. 2003, 43, 1177-1185.
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 1177-1185
    • Bergström, C.A.S.1    Norinder, U.2    Luthman, K.3    Artursson, P.4
  • 16
    • 0033200852 scopus 로고    scopus 로고
    • A combined group contribution and molecular geometry approach for predicting melting points of aliphatic compounds
    • Zhao, L. W.; Yalkowsky, S. H. A Combined Group Contribution and Molecular Geometry Approach for Predicting Melting Points of Aliphatic Compounds. Ind. Eng. Chem. Res. 1999, 38, 3581-3584.
    • (1999) Ind. Eng. Chem. Res. , vol.38 , pp. 3581-3584
    • Zhao, L.W.1    Yalkowsky, S.H.2
  • 17
    • 27144504701 scopus 로고    scopus 로고
    • Two new parameters for predicting the entropy of melting: Eccentricity (epsilon) and spirality (mu)
    • Johnson, J. L. H.; Yalkowsky, S. H. Two New Parameters for Predicting the Entropy of Melting: Eccentricity (epsilon) and Spirality (mu). Ind. Eng. Chem. Res. 2005, 44, 7559-7566.
    • (2005) Ind. Eng. Chem. Res. , vol.44 , pp. 7559-7566
    • Johnson, J.L.H.1    Yalkowsky, S.H.2
  • 18
    • 0032766162 scopus 로고    scopus 로고
    • Predicting the total entropy of melting: Application to pharmaceuticals and environmentally relevant compounds
    • Dannenfelser, R. M.; Yalkowsky, S. H. Predicting the Total Entropy of Melting: Application to Pharmaceuticals and Environmentally Relevant Compounds. J. Pharm. Sci. 1999, 88, 722-724.
    • (1999) J. Pharm. Sci. , vol.88 , pp. 722-724
    • Dannenfelser, R.M.1    Yalkowsky, S.H.2
  • 19
    • 0003505419 scopus 로고    scopus 로고
    • International Union of Pure and Applied Chemistry: Research Triangle Park, NC
    • IUPAC Compendium of Chemical Terminology, 2nd ed.; International Union of Pure and Applied Chemistry: Research Triangle Park, NC, 1997.
    • (1997) IUPAC Compendium of Chemical Terminology, 2nd Ed.
  • 20
    • 33646231725 scopus 로고    scopus 로고
    • QSPR correlation of melting point for drug compounds based on different sources of Molecular Descriptors
    • Modarressi, H.; Dearden, J. C.; Modarress, I. QSPR Correlation of Melting Point for Drug Compounds Based on Different Sources of Molecular Descriptors. J. Chem. Inf. Model. 2006, 46, 930-936.
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 930-936
    • Modarressi, H.1    Dearden, J.C.2    Modarress, I.3
  • 21
    • 33845789211 scopus 로고    scopus 로고
    • accessed Sep 7, 2006
    • Molecular Diversity Preservation International (MDPI). http:// www.mdpi.org/ (accessed Sep 7, 2006).
  • 22
    • 33845725670 scopus 로고    scopus 로고
    • Kansas City, MO. (accessed Sep 7, 2006)
    • CODESSA; Semichem, Inc.: Kansas City, MO. http://www. semichem.com/ (accessed Sep 7, 2006).
    • CODESSA
  • 23
    • 33845790660 scopus 로고    scopus 로고
    • Milano, Italy. (accessed Sep 7, 2006)
    • Dragon; Talete srl: Milano, Italy. http://www.talete.mi.it/ (accessed Sep 7, 2006).
    • Dragon
  • 24
    • 33845760997 scopus 로고    scopus 로고
    • Cambridge, United Kingdom. (accessed Sep 7, 2006)
    • TSAR; Accelrys Ltd.: Cambridge, United Kingdom. http://www. accelrys.com/ (accessed Sep 7, 2006).
    • TSAR
  • 25
    • 33845773940 scopus 로고    scopus 로고
    • ACS Publications, (accessed Sep 7, 2006)
    • ACS Publications, American Chemical Society. http://pubs.acs.org/ (accessed Sep 7, 2006).
  • 26
    • 0004313703 scopus 로고    scopus 로고
    • Chemical Computing Group, Inc.: Montreal, Quebec, Canada
    • MOE (Molecular Operating Environment); Chemical Computing Group, Inc.: Montreal, Quebec, Canada.
    • MOE (Molecular Operating Environment)
  • 27
    • 0037571112 scopus 로고    scopus 로고
    • Merck molecular force field. 1. basis, form, scope, parametrization, and performance of MMFF94
    • Halgren, T. A. Merck Molecular Force Field. 1. Basis, form, scope, parametrization, and performance of MMFF94. J. Comput. Chem. 1996, 17, 490-519.
    • (1996) J. Comput. Chem. , vol.17 , pp. 490-519
    • Halgren, T.A.1
  • 28
    • 33845731807 scopus 로고    scopus 로고
    • MOE (Molecular Operating Environment), QuaSAR-Descriptor. (accessed Sep 7, 2006)
    • MOE (Molecular Operating Environment), QuaSAR-Descriptor. http:// www.chemcomp.com/journal/descr.htm. (accessed Sep 7, 2006).
  • 29
    • 10344230435 scopus 로고    scopus 로고
    • Molecular similarity: A key technique in molecular informatics
    • Bender, A.; Glen, R. C. Molecular Similarity: A Key Technique in Molecular Informatics. Org. Biomol. Chem. 2004, 2, 3204-3218.
    • (2004) Org. Biomol. Chem. , vol.2 , pp. 3204-3218
    • Bender, A.1    Glen, R.C.2
  • 30
    • 0036980746 scopus 로고    scopus 로고
    • Chemical similarity and biological activities
    • Kubinyi, H. Chemical Similarity and Biological Activities. J. Braz. Chem. Soc. 2002, 13, 717-726.
    • (2002) J. Braz. Chem. Soc. , vol.13 , pp. 717-726
    • Kubinyi, H.1
  • 31
    • 28444485615 scopus 로고    scopus 로고
    • Structure-based classification of active and inactive estrogenic compounds by decision tree, LVQ and kNN methods
    • Asikainen, A.; Kolehmainen, M.; Ruuskanen, J.; Tuppurainen, K. Structure-Based Classification of Active and Inactive Estrogenic Compounds by Decision Tree, LVQ and kNN Methods. Chemosphere 2006, 62, 658-673.
    • (2006) Chemosphere , vol.62 , pp. 658-673
    • Asikainen, A.1    Kolehmainen, M.2    Ruuskanen, J.3    Tuppurainen, K.4
  • 32
    • 31744450760 scopus 로고    scopus 로고
    • A new approach to the nearest-neighbour method to discover cluster features in overlaid spatial point processes
    • Pei, T.; Zhu, A. X.; Zhou, C. H.; Li, B. L.; Qin, C. Z. A New Approach to the Nearest-Neighbour Method to Discover Cluster Features in Overlaid Spatial Point Processes. Int. J. Geogr. Inf. Sci. 2006, 20 153-168.
    • (2006) Int. J. Geogr. Inf. Sci. , vol.20 , pp. 153-168
    • Pei, T.1    Zhu, A.X.2    Zhou, C.H.3    Li, B.L.4    Qin, C.Z.5
  • 33
    • 30344473619 scopus 로고    scopus 로고
    • An ensemble-driven k-NN approach to Ill-posed classification problems
    • Chi, M. M.; Bruzzone, L. An Ensemble-Driven k-NN Approach to Ill-Posed Classification Problems. Pattern Recog. Lett. 2006, 27, 301-307.
    • (2006) Pattern Recog. Lett. , vol.27 , pp. 301-307
    • Chi, M.M.1    Bruzzone, L.2
  • 35
    • 33645995377 scopus 로고    scopus 로고
    • Comparative pixel-level exudate recognition in colour retinal images
    • Osareh, A.; Shadgar, B.; Markham, R. Comparative Pixel-Level Exudate Recognition in Colour Retinal Images. Lect. Notes Comput. Sci. 2005, 3656, 894-902.
    • (2005) Lect. Notes Comput. Sci. , vol.3656 , pp. 894-902
    • Osareh, A.1    Shadgar, B.2    Markham, R.3
  • 37
    • 30444459340 scopus 로고    scopus 로고
    • Applicability of the k-Nearest Neighbours (kNN-) method to predict the productivity of harvesting - Basic considerations and first experiences
    • Lemm, R.; Vogel, M.; Felber, A.; Thees, O. Applicability of the k-Nearest Neighbours (kNN-) Method to Predict the Productivity of Harvesting - Basic Considerations and First Experiences. Allg. Forst Jagdztg. 2005, 176, 189-200.
    • (2005) Allg. Forst Jagdztg. , vol.176 , pp. 189-200
    • Lemm, R.1    Vogel, M.2    Felber, A.3    Thees, O.4
  • 38
    • 20444407285 scopus 로고    scopus 로고
    • K nearest neighbors QSAR modeling as a variational problem: Theory and applications
    • Itskowitz, P.; Tropsha, A. k Nearest Neighbors QSAR Modeling as a Variational Problem: Theory and Applications. J. Chem. Inf. Model. 2005, 45, 777-785.
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 777-785
    • Itskowitz, P.1    Tropsha, A.2
  • 39
    • 33244481088 scopus 로고    scopus 로고
    • Three-dimensional QSAR using the k-nearest neighbor method and its interpretation
    • Ajmani, S.; Jadhav, K.; Kulkarni, S. A. Three-Dimensional QSAR Using the k-Nearest Neighbor Method and Its Interpretation. J. Chem. Inf. Model. 2006, 46, 24-31.
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 24-31
    • Ajmani, S.1    Jadhav, K.2    Kulkarni, S.A.3
  • 40
    • 33244488773 scopus 로고    scopus 로고
    • Fully computational model for predicting percutaneous drug absorption
    • Neumann, D.; Kohlbacher, O.; Merkwirth, C.; Lengauer, T. Fully Computational Model for Predicting Percutaneous Drug Absorption. J. Chem. Inf. Model. 2006, 46, 424-429.
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 424-429
    • Neumann, D.1    Kohlbacher, O.2    Merkwirth, C.3    Lengauer, T.4
  • 42
    • 1842607847 scopus 로고    scopus 로고
    • R Development Core Team 2005, R Foundation for Statistical Computing: Vienna, Austria (accessed Sep 7, 2006)
    • R: A Language and Environment for Statistical Computing; R Development Core Team 2005, R Foundation for Statistical Computing: Vienna, Austria. http://www.r-project.org/ (accessed Sep 7, 2006).
    • R: A Language and Environment for Statistical Computing
  • 44
    • 22344432656 scopus 로고    scopus 로고
    • Comparison among five evolutionary-based optimization algorithms
    • Elbeltagi, E.; Hegazy, T.; Grierson, D. Comparison among Five Evolutionary-Based Optimization Algorithms. Adv. Eng. Inf. 2005, 19, 43-53.
    • (2005) Adv. Eng. Inf. , vol.19 , pp. 43-53
    • Elbeltagi, E.1    Hegazy, T.2    Grierson, D.3
  • 45
    • 27144482682 scopus 로고    scopus 로고
    • A hybrid intelligent genetic algorithm
    • Javadi, A. A.; Farmani, R.; Tan, T. P. A Hybrid Intelligent Genetic Algorithm. Adv. Eng. Inf. 2005, 19, 255-262.
    • (2005) Adv. Eng. Inf. , vol.19 , pp. 255-262
    • Javadi, A.A.1    Farmani, R.2    Tan, T.P.3
  • 46
    • 0037841526 scopus 로고    scopus 로고
    • Cross-validation as the objective function for variable-selection techniques
    • Baumann, K. Cross-Validation as the Objective Function for Variable-Selection Techniques. Trends Anal. Chem. 2003, 22, 395-406.
    • (2003) Trends Anal. Chem. , vol.22 , pp. 395-406
    • Baumann, K.1
  • 47
    • 20844448884 scopus 로고    scopus 로고
    • Validation tools for variable subset regression
    • Baumann, K.; Stiefl, N. Validation Tools for Variable Subset Regression. J. Comput.-Aided Mol. Des. 2004, 18, 549-562.
    • (2004) J. Comput.-aided Mol. Des. , vol.18 , pp. 549-562
    • Baumann, K.1    Stiefl, N.2
  • 48
    • 0038724207 scopus 로고    scopus 로고
    • The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR models
    • Tropsha, A.; Gramatica, P.; Gombar, V. K. The Importance of Being Earnest: Validation is the Absolute Essential for Successful Application and Interpretation of QSPR Models. QSAR Comb. Sci. 2003, 22, 69-77.
    • (2003) QSAR Comb. Sci. , vol.22 , pp. 69-77
    • Tropsha, A.1    Gramatica, P.2    Gombar, V.K.3
  • 49
    • 2442648065 scopus 로고    scopus 로고
    • Can we predict lattice energy from molecular structure?
    • Ouvrard, C.; Mitchell, J. B. O. Can We Predict Lattice Energy from Molecular Structure? Acta Crystallogr., Sect. B 2003, 59, 676-685.
    • (2003) Acta Crystallogr., Sect. B , vol.59 , pp. 676-685
    • Ouvrard, C.1    Mitchell, J.B.O.2
  • 50
    • 84891556199 scopus 로고    scopus 로고
    • Tripos Inc.: St. Louis, Missouri
    • Sybyl 6.9; Tripos Inc.: St. Louis, Missouri.
    • Sybyl 6.9
  • 51
    • 0342645323 scopus 로고    scopus 로고
    • Use of structure activity data to compare structure-based clustering methods and descriptors for use in compound selection
    • Brown, R. D.; Martin, Y. C. Use of Structure Activity Data to Compare Structure-Based Clustering Methods and Descriptors for Use in Compound Selection. J. Chem. Inf. Comput. Sci. 1996, 36, 572-584.
    • (1996) J. Chem. Inf. Comput. Sci. , vol.36 , pp. 572-584
    • Brown, R.D.1    Martin, Y.C.2
  • 52
    • 26944443036 scopus 로고    scopus 로고
    • Discussion of measures of enrichment in virtual screening: Comparing the information content of descriptors with increasing levels of sophistication
    • Bender, A.; Glen, R. C. Discussion of Measures of Enrichment in Virtual Screening: Comparing the Information Content of Descriptors with Increasing Levels of Sophistication. J. Chem. Inf. Model. 2005, 45, 1369-1375.
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 1369-1375
    • Bender, A.1    Glen, R.C.2
  • 54
    • 0026075594 scopus 로고
    • Applications of neural networks in quantitative structure-activity relationships of dihydrofolate reductase inhibitors
    • Andrea, T. A.; Kalayeh, H. Applications of Neural Networks in Quantitative Structure-Activity Relationships of Dihydrofolate Reductase Inhibitors. J. Med. Chem. 1991, 34, 2824-2836.
    • (1991) J. Med. Chem. , vol.34 , pp. 2824-2836
    • Andrea, T.A.1    Kalayeh, H.2
  • 55
    • 0002483594 scopus 로고    scopus 로고
    • Multivariate regression outperforms several robust architectures of neural networks in QSAR modeling
    • Lucie, B.; Trinajstic, N. Multivariate Regression Outperforms Several Robust Architectures of Neural Networks in QSAR Modeling. J. Chem. Inf. Comput. Sci. 1999, 39, 121-132.
    • (1999) J. Chem. Inf. Comput. Sci. , vol.39 , pp. 121-132
    • Lucie, B.1    Trinajstic, N.2
  • 56
    • 0000104192 scopus 로고    scopus 로고
    • Nonlinear multivariate regression outperforms several concisely designed neural networks on three QSPR data sets
    • Lucie, B.; Amic, D.; Trinajstic, N. Nonlinear Multivariate Regression Outperforms Several Concisely Designed Neural Networks on Three QSPR Data Sets. J. Chem. Inf. Comput. Sci. 2000, 40, 403-413.
    • (2000) J. Chem. Inf. Comput. Sci. , vol.40 , pp. 403-413
    • Lucie, B.1    Amic, D.2    Trinajstic, N.3
  • 57
    • 18344410789 scopus 로고    scopus 로고
    • Toward generating simpler QSAR models: Nonlinear multivariate regression versus several neural network ensembles and some related methods
    • Lucie, B.; Nadramija, D.; Basic, I.; Trinajstic, N. Toward Generating Simpler QSAR Models: Nonlinear Multivariate Regression versus Several Neural Network Ensembles and Some Related Methods. J. Chem. Inf. Comput. Sci. 2003, 43, 1094-1102.
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 1094-1102
    • Lucie, B.1    Nadramija, D.2    Basic, I.3    Trinajstic, N.4
  • 58
    • 13544270908 scopus 로고    scopus 로고
    • Predicting aqueous solubility from structure
    • Delaney, J. S. Predicting Aqueous Solubility from Structure. Drug Discovery Today 2005, 10, 289-295.
    • (2005) Drug Discovery Today , vol.10 , pp. 289-295
    • Delaney, J.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.