메뉴 건너뛰기




Volumn 4, Issue 5, 2014, Pages 468-481

Machine learning methods in chemoinformatics

Author keywords

[No Author keywords available]

Indexed keywords

DECISION TREES; LEARNING ALGORITHMS; NEURAL NETWORKS;

EID: 84904993806     PISSN: 17590876     EISSN: 17590884     Source Type: Journal    
DOI: 10.1002/wcms.1183     Document Type: Review
Times cited : (388)

References (111)
  • 1
    • 33947340384 scopus 로고
    • Reaction rates and indicator acidities
    • Hammett LP. Reaction rates and indicator acidities. Chem Rev 1935, 16:67-79.
    • (1935) Chem Rev , vol.16 , pp. 67-79
    • Hammett, L.P.1
  • 2
    • 0040914011 scopus 로고
    • p-σ-π Analysis. A method for the correlation of biological activity and chemical structure
    • Hansch C, Fujita T. p-σ-π Analysis. A method for the correlation of biological activity and chemical structure. J Am Chem Soc 1964, 86:1616-1626.
    • (1964) J Am Chem Soc , vol.86 , pp. 1616-1626
    • Hansch, C.1    Fujita, T.2
  • 3
    • 33751553380 scopus 로고
    • New QSAR techniques eyed for environmental assessments
    • Borman S. New QSAR techniques eyed for environmental assessments. Chem Eng News 1990, 19:20-23.
    • (1990) Chem Eng News , vol.19 , pp. 20-23
    • Borman, S.1
  • 4
    • 70350284077 scopus 로고
    • Pattern recognition in chemical research
    • Klopfenstein CE, Wilkins CL, eds. Academic Press: New York
    • Kowalski BR. Pattern recognition in chemical research. In: Klopfenstein CE, Wilkins CL, eds. Computers in Chemical and Biochemical Research, vol. 2. Academic Press: New York; 1974, 1-76.
    • (1974) Computers in Chemical and Biochemical Research , vol.2 , pp. 1-76
    • Kowalski, B.R.1
  • 5
    • 84880542260 scopus 로고    scopus 로고
    • Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules
    • Lusci A, Pollastri G, Baldi P. Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules. J Chem Inf Model 2013, 53:1563-1575.
    • (2013) J Chem Inf Model , vol.53 , pp. 1563-1575
    • Lusci, A.1    Pollastri, G.2    Baldi, P.3
  • 7
    • 31444452744 scopus 로고
    • Automatic generation of 3D-atomic coordinates for organic molecules
    • Gasteiger J, Rudolph C, Sadowski J. Automatic generation of 3D-atomic coordinates for organic molecules. Tetrahedron Comput Methodol 1990, 3:537-547.
    • (1990) Tetrahedron Comput Methodol , vol.3 , pp. 537-547
    • Gasteiger, J.1    Rudolph, C.2    Sadowski, J.3
  • 8
    • 0028466540 scopus 로고
    • Comparison of automatic three-dimensional model builders using 639 X-ray structures
    • Sadowski J, Gasteiger J, Klebe G. Comparison of automatic three-dimensional model builders using 639 X-ray structures. J Chem Inf Comput Sci 1994, 34:1000-1008.
    • (1994) J Chem Inf Comput Sci , vol.34 , pp. 1000-1008
    • Sadowski, J.1    Gasteiger, J.2    Klebe, G.3
  • 9
    • 0036740917 scopus 로고    scopus 로고
    • Why do we need so many chemical similarity search methods?
    • Sheridan RP, Kearsley SK. Why do we need so many chemical similarity search methods? Drug Discov Today 2002, 7:903-911.
    • (2002) Drug Discov Today , vol.7 , pp. 903-911
    • Sheridan, R.P.1    Kearsley, S.K.2
  • 10
    • 78650689245 scopus 로고    scopus 로고
    • Comprehensive comparison of ligand-based virtual screening tools against the DUD data set reveals limitations of current 3D methods
    • Venkatraman V, Perez-Nueno VI, Mavridis L, Ritchie DW. Comprehensive comparison of ligand-based virtual screening tools against the DUD data set reveals limitations of current 3D methods. J Chem Inf Model 2010, 50:2079-2093.
    • (2010) J Chem Inf Model , vol.50 , pp. 2079-2093
    • Venkatraman, V.1    Perez-Nueno, V.I.2    Mavridis, L.3    Ritchie, D.W.4
  • 12
    • 0000378338 scopus 로고    scopus 로고
    • Novel variable selection quantitative structure-property relationship approach based on the k-nearest-neighbor principle
    • Zheng W, Tropsha A. Novel variable selection quantitative structure-property relationship approach based on the k-nearest-neighbor principle. J Chem Inf Model 2000, 40:185-194.
    • (2000) J Chem Inf Model , vol.40 , pp. 185-194
    • Zheng, W.1    Tropsha, A.2
  • 13
    • 57649213892 scopus 로고    scopus 로고
    • Simultaneous feature selection and parameter optimisation using an artificial ant colony: case study of melting point prediction
    • O'Boyle NM, Palmer DS, Nigsch F, Mitchell JBO. Simultaneous feature selection and parameter optimisation using an artificial ant colony: case study of melting point prediction. Chem Cent J 2008, 2:21.
    • (2008) Chem Cent J , vol.2 , pp. 21
    • O'Boyle, N.M.1    Palmer, D.S.2    Nigsch, F.3    Mitchell, J.B.O.4
  • 14
    • 40449141013 scopus 로고    scopus 로고
    • What is principal component analysis?
    • Ringner M. What is principal component analysis? Nat Biotech 2008, 26:303-304.
    • (2008) Nat Biotech , vol.26 , pp. 303-304
    • Ringner, M.1
  • 15
    • 33746931581 scopus 로고    scopus 로고
    • On outliers and activity cliffs-why QSAR often disappoints
    • Maggiora GM. On outliers and activity cliffs-why QSAR often disappoints. J Chem Inf Model 2006, 46:1535.
    • (2006) J Chem Inf Model , vol.46 , pp. 1535
    • Maggiora, G.M.1
  • 16
    • 0035263415 scopus 로고    scopus 로고
    • Prediction of drug solubility by the general solubility equation (GSE)
    • Ran Y, Yalkowsky SH. Prediction of drug solubility by the general solubility equation (GSE). J Chem Inf Comput Sci 2001, 41:354-357.
    • (2001) J Chem Inf Comput Sci , vol.41 , pp. 354-357
    • Ran, Y.1    Yalkowsky, S.H.2
  • 19
    • 37049075162 scopus 로고
    • Quantitative structure-sublimation enthalpy relationship studied by neural networks, theoretical crystal packing calculations and nonlinear regression analysis
    • Charlton MH, Docherty R, Hutchings MG. Quantitative structure-sublimation enthalpy relationship studied by neural networks, theoretical crystal packing calculations and nonlinear regression analysis. J Chem Soc Perkin Trans 1995, 2:2023-2030.
    • (1995) J Chem Soc Perkin Trans , vol.2 , pp. 2023-2030
    • Charlton, M.H.1    Docherty, R.2    Hutchings, M.G.3
  • 20
    • 2442648065 scopus 로고    scopus 로고
    • Can we predict lattice energy from molecular structure?
    • Ouvrard C, Mitchell JBO. Can we predict lattice energy from molecular structure? Acta Cryst B 2003, 59:676-685.
    • (2003) Acta Cryst B , vol.59 , pp. 676-685
    • Ouvrard, C.1    Mitchell, J.B.O.2
  • 21
    • 84873023995 scopus 로고    scopus 로고
    • Capturing the crystal: prediction of enthalpy of sublimation, crystal lattice energy, and melting points of organic compounds
    • Salahinejad M, Le TC, Winkler DA. Capturing the crystal: prediction of enthalpy of sublimation, crystal lattice energy, and melting points of organic compounds. J Chem Inf Model 2013, 53:223-229.
    • (2013) J Chem Inf Model , vol.53 , pp. 223-229
    • Salahinejad, M.1    Le, T.C.2    Winkler, D.A.3
  • 22
    • 3943074508 scopus 로고    scopus 로고
    • Electrical synapses in the mammalian brain
    • Connors BW, Long MA. Electrical synapses in the mammalian brain. Annu Rev Neurosci 2004, 27:393-418.
    • (2004) Annu Rev Neurosci , vol.27 , pp. 393-418
    • Connors, B.W.1    Long, M.A.2
  • 23
    • 33750982700 scopus 로고    scopus 로고
    • Prediction of estrogen receptor agonists and characterization of associated molecular descriptors by statistical learning methods
    • Li H, Ung C, Yap C, Xue Y, Li Z, Chen Y. Prediction of estrogen receptor agonists and characterization of associated molecular descriptors by statistical learning methods. J Mol Graph Model 2006, 25:313-323.
    • (2006) J Mol Graph Model , vol.25 , pp. 313-323
    • Li, H.1    Ung, C.2    Yap, C.3    Xue, Y.4    Li, Z.5    Chen, Y.6
  • 24
    • 0031434910 scopus 로고    scopus 로고
    • Three-dimensional quantitative structure-activity relationships from molecular similarity matrices and genetic neural networks. 1. Method and validations
    • So SS, Karplus M. Three-dimensional quantitative structure-activity relationships from molecular similarity matrices and genetic neural networks. 1. Method and validations. J Med Chem 1997, 40:4347-4359.
    • (1997) J Med Chem , vol.40 , pp. 4347-4359
    • So, S.S.1    Karplus, M.2
  • 25
    • 20444489197 scopus 로고    scopus 로고
    • Classifying "kinase inhibitor-likeness" by using machine-learning methods
    • Briem H, Günther J. Classifying "kinase inhibitor-likeness" by using machine-learning methods. ChemBioChem Eur J Chem Biol 2005, 6:558-566.
    • (2005) ChemBioChem Eur J Chem Biol , vol.6 , pp. 558-566
    • Briem, H.1    Günther, J.2
  • 26
    • 52649109749 scopus 로고    scopus 로고
    • Classification models for hERG inhibitors by counter-propagation neural networks
    • Thai KMM, Ecker GF. Classification models for hERG inhibitors by counter-propagation neural networks. Chem Biol Drug Des 2008, 72:279-289.
    • (2008) Chem Biol Drug Des , vol.72 , pp. 279-289
    • Thai, K.M.M.1    Ecker, G.F.2
  • 28
    • 33644616650 scopus 로고    scopus 로고
    • Quantitative structure-pharmacokinetic relationships for drug clearance by using statistical learning methods
    • Yap CW, Li ZR, Chen YZ. Quantitative structure-pharmacokinetic relationships for drug clearance by using statistical learning methods. J Mol Graph Model 2006, 24:383-395.
    • (2006) J Mol Graph Model , vol.24 , pp. 383-395
    • Yap, C.W.1    Li, Z.R.2    Chen, Y.Z.3
  • 29
    • 69549086566 scopus 로고    scopus 로고
    • pKa Prediction from quantum chemical topology descriptors
    • Harding AP, Wedge DC, Popelier PLA. pKa Prediction from quantum chemical topology descriptors. J Chem Inf Model 2009, 49:1914-1924.
    • (2009) J Chem Inf Model , vol.49 , pp. 1914-1924
    • Harding, A.P.1    Wedge, D.C.2    Popelier, P.L.A.3
  • 30
    • 39449107168 scopus 로고    scopus 로고
    • Prediction of melting points of organic compounds using extreme learning machines
    • Bhat AU, Merchant SS, Bhagwat SS. Prediction of melting points of organic compounds using extreme learning machines. Ind Eng Chem Res 2008, 47:920-925.
    • (2008) Ind Eng Chem Res , vol.47 , pp. 920-925
    • Bhat, A.U.1    Merchant, S.S.2    Bhagwat, S.S.3
  • 31
    • 33746322753 scopus 로고    scopus 로고
    • An improved structure-property model for predicting melting-point temperatures
    • Godavarthy SS, Robinson RL, Gasem KAM. An improved structure-property model for predicting melting-point temperatures. Ind Eng Chem Res 2006, 45:5117-5126.
    • (2006) Ind Eng Chem Res , vol.45 , pp. 5117-5126
    • Godavarthy, S.S.1    Robinson, R.L.2    Gasem, K.A.M.3
  • 32
    • 84866731321 scopus 로고    scopus 로고
    • Prediction of aqueous solubility of drug-like molecules using a novel algorithm for automatic adjustment of relative importance of descriptors implemented in counter-propagation artificial neural networks
    • Erić S, Kalinić M, Popović A, Zloh M, Kuzmanovski I. Prediction of aqueous solubility of drug-like molecules using a novel algorithm for automatic adjustment of relative importance of descriptors implemented in counter-propagation artificial neural networks. Int J Pharm 2012, 437:232-241.
    • (2012) Int J Pharm , vol.437 , pp. 232-241
    • Erić, S.1    Kalinić, M.2    Popović, A.3    Zloh, M.4    Kuzmanovski, I.5
  • 33
    • 77955557553 scopus 로고    scopus 로고
    • Prediction of intrinsic solubility of generic drugs using MLR, ANN and SVM analyses
    • Louis B, Agrawal VK, Khadikar PV. Prediction of intrinsic solubility of generic drugs using MLR, ANN and SVM analyses. Eur J Med Chem 2010, 45:4018-4025.
    • (2010) Eur J Med Chem , vol.45 , pp. 4018-4025
    • Louis, B.1    Agrawal, V.K.2    Khadikar, P.V.3
  • 34
    • 84867720412 scopus 로고    scopus 로고
    • Improving neural networks by preventing co-adaptation of feature detectors
    • Available at:
    • Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov RR. Improving neural networks by preventing co-adaptation of feature detectors. 2012. Available at: http://arxiv.org/abs/1207.0580.
    • (2012)
    • Hinton, G.E.1    Srivastava, N.2    Krizhevsky, A.3    Sutskever, I.4    Salakhutdinov, R.R.5
  • 36
    • 0141733943 scopus 로고
    • Vox populi
    • Galton F. Vox populi. Nature 1907, 75:450-451.
    • (1907) Nature , vol.75 , pp. 450-451
    • Galton, F.1
  • 37
    • 0033576680 scopus 로고    scopus 로고
    • Consensus scoring: a method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins
    • Charifson PS, Corkery JJ, Murcko MA, Walters WP. Consensus scoring: a method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins. J Med Chem 1999, 42:5100-5109.
    • (1999) J Med Chem , vol.42 , pp. 5100-5109
    • Charifson, P.S.1    Corkery, J.J.2    Murcko, M.A.3    Walters, W.P.4
  • 38
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman L. Random Forests. Mach Learn 2001, 45:5-32.
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 40
    • 3943113604 scopus 로고    scopus 로고
    • Theoretical comparison between the Gini Index and Information Gain criteria
    • Raileanu LE, Stoffel K. Theoretical comparison between the Gini Index and Information Gain criteria. Ann Math Artif Intell 2004, 41:77-93.
    • (2004) Ann Math Artif Intell , vol.41 , pp. 77-93
    • Raileanu, L.E.1    Stoffel, K.2
  • 41
    • 43349090139 scopus 로고    scopus 로고
    • A novel hybrid ultrafast shape descriptor method for use in virtual screening
    • Cannon EO, Nigsch F, Mitchell JBO. A novel hybrid ultrafast shape descriptor method for use in virtual screening. Chem Cent J 2008, 2:3.
    • (2008) Chem Cent J , vol.2 , pp. 3
    • Cannon, E.O.1    Nigsch, F.2    Mitchell, J.B.O.3
  • 42
    • 33845782504 scopus 로고    scopus 로고
    • Chemoinformatics-based classification of prohibited substances employed for doping in sport
    • Cannon EO, Bender A, Palmer DS, Mitchell JBO. Chemoinformatics-based classification of prohibited substances employed for doping in sport. J Chem Inf Model 2006, 46:2369-2380.
    • (2006) J Chem Inf Model , vol.46 , pp. 2369-2380
    • Cannon, E.O.1    Bender, A.2    Palmer, D.S.3    Mitchell, J.B.O.4
  • 45
    • 42149179358 scopus 로고    scopus 로고
    • Hidden active information in a random compound library: extraction using a pseudo-structure-activity relationship model
    • Fukunishi H, Teramoto R, Shimada J. Hidden active information in a random compound library: extraction using a pseudo-structure-activity relationship model. J Chem Inf Model 2008, 48:575-582.
    • (2008) J Chem Inf Model , vol.48 , pp. 575-582
    • Fukunishi, H.1    Teramoto, R.2    Shimada, J.3
  • 46
    • 84862667032 scopus 로고    scopus 로고
    • An investigation into pharmaceutically relevant mutagenicity data and the influence on Ames predictive potential
    • McCarren P, Springer C, Whitehead L. An investigation into pharmaceutically relevant mutagenicity data and the influence on Ames predictive potential. J. Cheminformatics 2011, 3:51.
    • (2011) J. Cheminformatics , vol.3 , pp. 51
    • McCarren, P.1    Springer, C.2    Whitehead, L.3
  • 47
    • 77957730873 scopus 로고    scopus 로고
    • Predicting phospholipidosis using machine learning
    • Lowe R, Glen RC, Mitchell JBO. Predicting phospholipidosis using machine learning. Mol Pharm 2010, 7:1708-1718.
    • (2010) Mol Pharm , vol.7 , pp. 1708-1718
    • Lowe, R.1    Glen, R.C.2    Mitchell, J.B.O.3
  • 48
    • 79958775318 scopus 로고    scopus 로고
    • Development and comparison of hERG Blocker classifiers: assessment on different datasets yields markedly different results
    • Marchese Robinson RL, Glen RC, Mitchell JBO. Development and comparison of hERG Blocker classifiers: assessment on different datasets yields markedly different results. Mol Inf 2011, 30:443-458.
    • (2011) Mol Inf , vol.30 , pp. 443-458
    • Marchese Robinson, R.L.1    Glen, R.C.2    Mitchell, J.B.O.3
  • 49
    • 23844503717 scopus 로고    scopus 로고
    • Application of the random forest method in studies of local lymph node assay based skin sensitization data
    • Li S, Fedorowicz A, Singh H, Soderholm SC. Application of the random forest method in studies of local lymph node assay based skin sensitization data. J Chem Inf Model 2005, 45:952-964.
    • (2005) J Chem Inf Model , vol.45 , pp. 952-964
    • Li, S.1    Fedorowicz, A.2    Singh, H.3    Soderholm, S.C.4
  • 50
    • 37149053761 scopus 로고    scopus 로고
    • Targeted crystallisation of novel carbamazepine solvates based on a retrospective random forest classification
    • Johnston A, Johnston BF, Kennedy AR, Florence AJ. Targeted crystallisation of novel carbamazepine solvates based on a retrospective random forest classification. CrystEngComm 2008, 10:23-25.
    • (2008) CrystEngComm , vol.10 , pp. 23-25
    • Johnston, A.1    Johnston, B.F.2    Kennedy, A.R.3    Florence, A.J.4
  • 52
    • 39449138204 scopus 로고    scopus 로고
    • Why are some properties more difficult to predict than others? A study of QSPR models of solubility, melting point, and log P
    • Hughes LD, Palmer DS, Nigsch F, Mitchell JBO. Why are some properties more difficult to predict than others? A study of QSPR models of solubility, melting point, and log P. J Chem Inf Model 2008, 48:220-232.
    • (2008) J Chem Inf Model , vol.48 , pp. 220-232
    • Hughes, L.D.1    Palmer, D.S.2    Nigsch, F.3    Mitchell, J.B.O.4
  • 53
    • 77952825581 scopus 로고    scopus 로고
    • A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking
    • Ballester PJ, Mitchell JBO. A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking. Bioinformatics 2010, 26:1169-1175.
    • (2010) Bioinformatics , vol.26 , pp. 1169-1175
    • Ballester, P.J.1    Mitchell, J.B.O.2
  • 54
  • 55
    • 75749126524 scopus 로고    scopus 로고
    • Combining machine learning and pharmacophore-based interaction fingerprint for in silico screening
    • Sato T, Honma T, Yokoyama S. Combining machine learning and pharmacophore-based interaction fingerprint for in silico screening. J Chem Inf Model 2010, 50:170-185.
    • (2010) J Chem Inf Model , vol.50 , pp. 170-185
    • Sato, T.1    Honma, T.2    Yokoyama, S.3
  • 56
    • 84883250593 scopus 로고    scopus 로고
    • RF: a random forest-based scoring function for improved affinity prediction of protein-ligand complexes
    • RF: a random forest-based scoring function for improved affinity prediction of protein-ligand complexes. J Chem Inf Model 2013, 53:1923-1933.
    • (2013) J Chem Inf Model , vol.53 , pp. 1923-1933
    • Zilian, D.1    Sotriffer, C.A.2
  • 57
    • 33845703344 scopus 로고    scopus 로고
    • What is a support vector machine?
    • Noble WS. What is a support vector machine? Nat Biotech 2006, 24:1565-1567.
    • (2006) Nat Biotech , vol.24 , pp. 1565-1567
    • Noble, W.S.1
  • 58
    • 69549111057 scopus 로고    scopus 로고
    • Cutting-plane training of structural SVMs
    • Joachims T, Finley T, Yu CN. Cutting-plane training of structural SVMs. Mach Learn 2009, 77:27-59.
    • (2009) Mach Learn , vol.77 , pp. 27-59
    • Joachims, T.1    Finley, T.2    Yu, C.N.3
  • 59
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Hsu CW, Lin CJ. A comparison of methods for multiclass support vector machines. IEEE Trans Neural Netw 2002, 13:415-425.
    • (2002) IEEE Trans Neural Netw , vol.13 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 61
    • 79952178127 scopus 로고    scopus 로고
    • A machine learning-based method to improve docking scoring functions and its application to drug repurposing
    • Kinnings SL, Liu N, Tonge PJ, Jackson RM, Xie L, Bourne PE. A machine learning-based method to improve docking scoring functions and its application to drug repurposing. J Chem Inf Model 2011, 51:408-419.
    • (2011) J Chem Inf Model , vol.51 , pp. 408-419
    • Kinnings, S.L.1    Liu, N.2    Tonge, P.J.3    Jackson, R.M.4    Xie, L.5    Bourne, P.E.6
  • 62
    • 11844265914 scopus 로고    scopus 로고
    • Using support vector classification for SAR of fentanyl derivatives
    • Dong N, Lu WC, Chen NY, Zhu YC, Chen KX. Using support vector classification for SAR of fentanyl derivatives. Acta Pharmacol Sin 2005, 26:107-112.
    • (2005) Acta Pharmacol Sin , vol.26 , pp. 107-112
    • Dong, N.1    Lu, W.C.2    Chen, N.Y.3    Zhu, Y.C.4    Chen, K.X.5
  • 63
    • 39749088786 scopus 로고    scopus 로고
    • hERG classification model based on a combination of support vector machine method and GRIND descriptors
    • Li Q, Jørgensen FS, Oprea T, Brunak S, Taboureau O. hERG classification model based on a combination of support vector machine method and GRIND descriptors. Mol Pharm 2008, 5:117-127.
    • (2008) Mol Pharm , vol.5 , pp. 117-127
    • Li, Q.1    Jørgensen, F.S.2    Oprea, T.3    Brunak, S.4    Taboureau, O.5
  • 64
    • 77951675415 scopus 로고    scopus 로고
    • Prospective validation of a comprehensive in silico hERG model and its applications to commercial compound and drug databases
    • Doddareddy MR, Klaasse EC, Shagufta, IJzerman AP, Bender A. Prospective validation of a comprehensive in silico hERG model and its applications to commercial compound and drug databases. ChemMedChem 2010, 5:716-729.
    • (2010) ChemMedChem , vol.5 , pp. 716-729
    • Doddareddy, M.R.1    Klaasse, E.C.2    Shagufta3    IJzerman, A.P.4    Bender, A.5
  • 65
    • 36148963273 scopus 로고    scopus 로고
    • Prediction of mutagenic toxicity by combination of recursive partitioning and support vector machines
    • Liao Q, Yao J, Yuan S. Prediction of mutagenic toxicity by combination of recursive partitioning and support vector machines. Mol Divers 2007, 11:59-72.
    • (2007) Mol Divers , vol.11 , pp. 59-72
    • Liao, Q.1    Yao, J.2    Yuan, S.3
  • 66
    • 33646266941 scopus 로고    scopus 로고
    • Toxicity-indicating structural patterns
    • von Korff M, Sander T. Toxicity-indicating structural patterns. J Chem Inf Model 2006, 46:536-544.
    • (2006) J Chem Inf Model , vol.46 , pp. 536-544
    • von Korff, M.1    Sander, T.2
  • 67
    • 84864185732 scopus 로고    scopus 로고
    • Structure based model for the prediction of phospholipidosis induction potential of small molecules
    • Sun H, Shahane S, Xia M, Austin CP, Huang R. Structure based model for the prediction of phospholipidosis induction potential of small molecules. J Chem Inf Model 2012, 52:1798-1805.
    • (2012) J Chem Inf Model , vol.52 , pp. 1798-1805
    • Sun, H.1    Shahane, S.2    Xia, M.3    Austin, C.P.4    Huang, R.5
  • 68
    • 79551534528 scopus 로고    scopus 로고
    • Prediction of aqueous solubility of druglike organic compounds using partial least squares, back-propagation network and support vector machine
    • Cao DS, Xu QS, Liang YZ, Chen X, Li HD. Prediction of aqueous solubility of druglike organic compounds using partial least squares, back-propagation network and support vector machine. J Chemometrics 2010, 24:584-595.
    • (2010) J Chemometrics , vol.24 , pp. 584-595
    • Cao, D.S.1    Xu, Q.S.2    Liang, Y.Z.3    Chen, X.4    Li, H.D.5
  • 69
    • 33845748728 scopus 로고    scopus 로고
    • Melting point prediction employing k-nearest neighbor algorithms and genetic parameter optimization
    • Nigsch F, Bender A, van Buuren B, Tissen J, Nigsch E, Mitchell JBO. Melting point prediction employing k-nearest neighbor algorithms and genetic parameter optimization. J Chem Inf Model 2006, 46:2412-2422.
    • (2006) J Chem Inf Model , vol.46 , pp. 2412-2422
    • Nigsch, F.1    Bender, A.2    van Buuren, B.3    Tissen, J.4    Nigsch, E.5    Mitchell, J.B.O.6
  • 70
    • 84860154266 scopus 로고    scopus 로고
    • EnzML: multi-label prediction of enzyme classes using InterPro signatures
    • De Ferrari L, Aitken S, van Hemert J, Goryanin I. EnzML: multi-label prediction of enzyme classes using InterPro signatures. BMC Bioinf 2012, 13:61.
    • (2012) BMC Bioinf , vol.13 , pp. 61
    • De Ferrari, L.1    Aitken, S.2    van Hemert, J.3    Goryanin, I.4
  • 71
    • 20444407285 scopus 로고    scopus 로고
    • k nearest neighbors QSAR modeling as a variational problem: theory and applications
    • Itskowitz P, Tropsha A. k nearest neighbors QSAR modeling as a variational problem: theory and applications. J Chem Inf Model 2005, 45:777-785.
    • (2005) J Chem Inf Model , vol.45 , pp. 777-785
    • Itskowitz, P.1    Tropsha, A.2
  • 72
    • 22144451452 scopus 로고    scopus 로고
    • A study on the influence of molecular properties in the psychoactivity of cannabinoid compounds
    • Honório KM, da Silva AB. A study on the influence of molecular properties in the psychoactivity of cannabinoid compounds. J Mol Model 2005, 11:200-209.
    • (2005) J Mol Model , vol.11 , pp. 200-209
    • Honório, K.M.1    da Silva, A.B.2
  • 73
    • 33244481088 scopus 로고    scopus 로고
    • Three-dimensional QSAR using the k-nearest neighbor method and its interpretation
    • Ajmani S, Jadhav K, Kulkarni SA. Three-dimensional QSAR using the k-nearest neighbor method and its interpretation. J Chem Inf Model 2006, 46:24-31.
    • (2006) J Chem Inf Model , vol.46 , pp. 24-31
    • Ajmani, S.1    Jadhav, K.2    Kulkarni, S.A.3
  • 74
    • 0029088410 scopus 로고
    • Predicting mutagenicity of chemicals using topological and quantum chemical parameters: a similarity based study
    • Basak SC, Grunwald GD. Predicting mutagenicity of chemicals using topological and quantum chemical parameters: a similarity based study. Chemosphere 1995, 31:2529-2546.
    • (1995) Chemosphere , vol.31 , pp. 2529-2546
    • Basak, S.C.1    Grunwald, G.D.2
  • 75
    • 33244488773 scopus 로고    scopus 로고
    • A fully computational model for predicting percutaneous drug absorption
    • Neumann D, Kohlbacher O, Merkwirth C, Lengauer T. A fully computational model for predicting percutaneous drug absorption. J Chem Inf Model 2006, 46:424-429.
    • (2006) J Chem Inf Model , vol.46 , pp. 424-429
    • Neumann, D.1    Kohlbacher, O.2    Merkwirth, C.3    Lengauer, T.4
  • 77
    • 0033553898 scopus 로고    scopus 로고
    • Structure-camphor odour relationships using the generation and selection of pertinent descriptors approach
    • Zakarya D, Chastrette M, Tollabi M, Fkih-Tetouani S. Structure-camphor odour relationships using the generation and selection of pertinent descriptors approach. Chemometrics Intell Lab Syst 1999, 48:35-46.
    • (1999) Chemometrics Intell Lab Syst , vol.48 , pp. 35-46
    • Zakarya, D.1    Chastrette, M.2    Tollabi, M.3    Fkih-Tetouani, S.4
  • 78
    • 3042788380 scopus 로고    scopus 로고
    • Tailored similarity spaces for the prediction of physicochemical properties
    • Gute BD, Basak SC, Mills D, Hawkins DM. Tailored similarity spaces for the prediction of physicochemical properties. Internet Electr J Mol Des 2002, 1:374-387.
    • (2002) Internet Electr J Mol Des , vol.1 , pp. 374-387
    • Gute, B.D.1    Basak, S.C.2    Mills, D.3    Hawkins, D.M.4
  • 79
    • 33646271333 scopus 로고    scopus 로고
    • Model selection based on structural similarity-method description and application to water solubility prediction
    • Kuhne R, Ebert RU, Schuurmann G. Model selection based on structural similarity-method description and application to water solubility prediction. J Chem Inf Model 2006, 46:636-641.
    • (2006) J Chem Inf Model , vol.46 , pp. 636-641
    • Kuhne, R.1    Ebert, R.U.2    Schuurmann, G.3
  • 81
    • 0016381211 scopus 로고
    • Substructural analysis. A novel approach to the problem of drug design
    • Cramer RD, Redl G, Berkhoff CE. Substructural analysis. A novel approach to the problem of drug design. J Med Chem 1974, 17:533-535.
    • (1974) J Med Chem , vol.17 , pp. 533-535
    • Cramer, R.D.1    Redl, G.2    Berkhoff, C.E.3
  • 83
    • 84883239935 scopus 로고    scopus 로고
    • In silico target predictions: defining a benchmarking dataset and comparison of performance of the multiclass Naïve Bayes and Parzen-Rosenblatt Window
    • Koutsoukas A, Lowe R, KalantarMotamedi Y, Mussa HY, Klaffke W, Mitchell JBO, Glen R, Bender A. In silico target predictions: defining a benchmarking dataset and comparison of performance of the multiclass Naïve Bayes and Parzen-Rosenblatt Window. J Chem Inf Model 2013, 53:1957-1966.
    • (2013) J Chem Inf Model , vol.53 , pp. 1957-1966
    • Koutsoukas, A.1    Lowe, R.2    KalantarMotamedi, Y.3    Mussa, H.Y.4    Klaffke, W.5    Mitchell, J.B.O.6    Glen, R.7    Bender, A.8
  • 84
    • 34247386376 scopus 로고    scopus 로고
    • Support vector inductive logic programming outperforms the naive Bayes classifier and inductive logic programming for the classification of bioactive chemical compounds
    • Cannon EO, Amini A, Bender A, Sternberg MJE, Muggleton SH, Glen RC, Mitchell JBO. Support vector inductive logic programming outperforms the naive Bayes classifier and inductive logic programming for the classification of bioactive chemical compounds. J Comput Aided Mol Des 2007, 21:269-280.
    • (2007) J Comput Aided Mol Des , vol.21 , pp. 269-280
    • Cannon, E.O.1    Amini, A.2    Bender, A.3    Sternberg, M.J.E.4    Muggleton, S.H.5    Glen, R.C.6    Mitchell, J.B.O.7
  • 85
    • 58149116805 scopus 로고    scopus 로고
    • Ligand-target prediction using Winnow and naive Bayesian algorithms and the implications of overall performance statistics
    • Nigsch F, Bender A, Jenkins JL, Mitchell JBO. Ligand-target prediction using Winnow and naive Bayesian algorithms and the implications of overall performance statistics. J Chem Inf Model 2008, 48:2313-2325.
    • (2008) J Chem Inf Model , vol.48 , pp. 2313-2325
    • Nigsch, F.1    Bender, A.2    Jenkins, J.L.3    Mitchell, J.B.O.4
  • 87
    • 67249134507 scopus 로고    scopus 로고
    • Efficient ant colony optimization algorithms for structure- and ligand-based drug design
    • Korb O. Efficient ant colony optimization algorithms for structure- and ligand-based drug design. Chem Cent J 2009, 3:O10.
    • (2009) Chem Cent J , vol.3
    • Korb, O.1
  • 88
    • 79960707576 scopus 로고    scopus 로고
    • Classifying molecules using a sparse probabilistic kernel binary classifier
    • Lowe R, Mussa HY, Mitchell JBO, Glen RC. Classifying molecules using a sparse probabilistic kernel binary classifier. J Chem Inf Model 2011, 51:1539-1544.
    • (2011) J Chem Inf Model , vol.51 , pp. 1539-1544
    • Lowe, R.1    Mussa, H.Y.2    Mitchell, J.B.O.3    Glen, R.C.4
  • 89
    • 84880054720 scopus 로고    scopus 로고
    • Predicting the protein targets for athletic performance-enhancing substances
    • Mavridis L, Mitchell JBO. Predicting the protein targets for athletic performance-enhancing substances. J Cheminformatics 2013, 5:31.
    • (2013) J Cheminformatics , vol.5 , pp. 31
    • Mavridis, L.1    Mitchell, J.B.O.2
  • 90
    • 67349172950 scopus 로고    scopus 로고
    • Interpretable features for the activity prediction of short antimicrobial peptides using fuzzy logic
    • Mikut R, Hilpert K. Interpretable features for the activity prediction of short antimicrobial peptides using fuzzy logic. Int J Pept Res Ther 2009, 15:129-137.
    • (2009) Int J Pept Res Ther , vol.15 , pp. 129-137
    • Mikut, R.1    Hilpert, K.2
  • 92
    • 41549125090 scopus 로고    scopus 로고
    • How to winnow actives from inactives: introducing molecular orthogonal sparse bigrams (MOSBs) and multiclass Winnow
    • Nigsch F, Mitchell JBO. How to winnow actives from inactives: introducing molecular orthogonal sparse bigrams (MOSBs) and multiclass Winnow. J Chem Inf Model 2008, 48:306-318.
    • (2008) J Chem Inf Model , vol.48 , pp. 306-318
    • Nigsch, F.1    Mitchell, J.B.O.2
  • 93
    • 49549094711 scopus 로고    scopus 로고
    • Toxicological relationships between proteins obtained from protein target predictions of large toxicity databases
    • Nigsch F, Mitchell JBO. Toxicological relationships between proteins obtained from protein target predictions of large toxicity databases. Toxicol Appl Pharmacol 2008, 231:225-234.
    • (2008) Toxicol Appl Pharmacol , vol.231 , pp. 225-234
    • Nigsch, F.1    Mitchell, J.B.O.2
  • 94
    • 33746275630 scopus 로고    scopus 로고
    • In silico classification of hERG channel blockers: a knowledge-based strategy
    • Dubus E, Ijjaali I, Petitet F, Michel A. In silico classification of hERG channel blockers: a knowledge-based strategy. ChemMedChem 2006, 1:622-630.
    • (2006) ChemMedChem , vol.1 , pp. 622-630
    • Dubus, E.1    Ijjaali, I.2    Petitet, F.3    Michel, A.4
  • 95
    • 28444485615 scopus 로고    scopus 로고
    • Structure-based classification of active and inactive estrogenic compounds by decision tree, LVQ and kNN methods
    • Asikainen A, Kolehmainen M, Ruuskanen J, Tuppurainen K. Structure-based classification of active and inactive estrogenic compounds by decision tree, LVQ and kNN methods. Chemosphere 2006, 62:658-673.
    • (2006) Chemosphere , vol.62 , pp. 658-673
    • Asikainen, A.1    Kolehmainen, M.2    Ruuskanen, J.3    Tuppurainen, K.4
  • 96
    • 33750321101 scopus 로고    scopus 로고
    • Comparative QSAR- and fragments distribution analysis of drugs, druglikes, metabolic substances, and antimicrobial compounds
    • Karakoc E, Sahinalp SC, Cherkasov A. Comparative QSAR- and fragments distribution analysis of drugs, druglikes, metabolic substances, and antimicrobial compounds. J Chem Inf Model 2006, 46:2167-2182.
    • (2006) J Chem Inf Model , vol.46 , pp. 2167-2182
    • Karakoc, E.1    Sahinalp, S.C.2    Cherkasov, A.3
  • 98
    • 33947219434 scopus 로고    scopus 로고
    • kScore: a novel machine learning approach that is not dependent on the data structure of the training set
    • Oloff S, Muegge I. kScore: a novel machine learning approach that is not dependent on the data structure of the training set. J Comput Aided Mol Des 2007, 21:87-95.
    • (2007) J Comput Aided Mol Des , vol.21 , pp. 87-95
    • Oloff, S.1    Muegge, I.2
  • 99
    • 0038724207 scopus 로고    scopus 로고
    • The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models
    • Tropsha A, Gramatica P, Gombar VK. The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci 2003, 2:69-77.
    • (2003) QSAR Comb Sci , vol.2 , pp. 69-77
    • Tropsha, A.1    Gramatica, P.2    Gombar, V.K.3
  • 100
    • 84862848391 scopus 로고    scopus 로고
    • Machine learning methods for property prediction in chemoinformatics: quo vadis?
    • Varnek A, Baskin I. Machine learning methods for property prediction in chemoinformatics: quo vadis? J Chem Inf Model 2012, 52:1413-1437.
    • (2012) J Chem Inf Model , vol.52 , pp. 1413-1437
    • Varnek, A.1    Baskin, I.2
  • 101
    • 3242726813 scopus 로고    scopus 로고
    • Monte Carlo cross-validation for selecting a model and estimating the prediction error in multivariate calibration
    • Xu QS, Liang YZ, Du YP. Monte Carlo cross-validation for selecting a model and estimating the prediction error in multivariate calibration. J Chemometrics 2004, 18:112-120.
    • (2004) J Chemometrics , vol.18 , pp. 112-120
    • Xu, Q.S.1    Liang, Y.Z.2    Du, Y.P.3
  • 102
    • 37349097759 scopus 로고    scopus 로고
    • Y-Randomization and its variants in QSPR/QSAR
    • Rücker C, G R, Meringer M. y-Randomization and its variants in QSPR/QSAR. J Chem Inf Model 2007, 47:2345-2357.
    • (2007) J Chem Inf Model , vol.47 , pp. 2345-2357
    • Rücker, C.1    Rücker, G.2    Meringer, M.3
  • 103
    • 65649138430 scopus 로고    scopus 로고
    • A systematic analysis of performance measures for classification tasks
    • Sokolova M, Lapalme G. A systematic analysis of performance measures for classification tasks. Inf Process Manage 2009, 45:427-437.
    • (2009) Inf Process Manage , vol.45 , pp. 427-437
    • Sokolova, M.1    Lapalme, G.2
  • 104
    • 0033931867 scopus 로고    scopus 로고
    • Assessing the accuracy of prediction algorithms for classification: an overview
    • Baldi P, Brunak S, Chauvin Y, Andersen CAF, Nielsen H. Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 2000, 16:412-424.
    • (2000) Bioinformatics , vol.16 , pp. 412-424
    • Baldi, P.1    Brunak, S.2    Chauvin, Y.3    Andersen, C.A.F.4    Nielsen, H.5
  • 105
    • 33745420796 scopus 로고    scopus 로고
    • Assessing different classification methods for virtual screening
    • Plewczynski D, Spieser SAH, Koch U. Assessing different classification methods for virtual screening. J Chem Inf Model 2006, 46:1098-1106.
    • (2006) J Chem Inf Model , vol.46 , pp. 1098-1106
    • Plewczynski, D.1    Spieser, S.A.H.2    Koch, U.3
  • 108
    • 1842525842 scopus 로고    scopus 로고
    • Use of physicochemical calculation of pKa and CLogP to predict phospholipidosis-inducing potential: A case study with structurally related piperazines
    • Ploemen JPHTM, Kelder J, Hafmans T, van de Sandt H, van Burgsteden JA, Saleminki PJ, van Esch E. Use of physicochemical calculation of pKa and CLogP to predict phospholipidosis-inducing potential: a case study with structurally related piperazines. Exp Toxicol Pathol 2004, 55:347-355.
    • (2004) Exp Toxicol Pathol , vol.55 , pp. 347-355
    • Ploemen, J.P.H.T.M.1    Kelder, J.2    Hafmans, T.3    van de Sandt, H.4    van Burgsteden, J.A.5    Saleminki, P.J.6    van Esch, E.7
  • 109
    • 84904989398 scopus 로고    scopus 로고
    • R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2006. ISBN 3-900051-07-0.
    • R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2006. ISBN 3-900051-07-0.
  • 110
    • 72949101619 scopus 로고    scopus 로고
    • Interpretation of nonlinear QSAR models applied to Ames mutagenicity data
    • Carlsson L, Helgee EA, Boyer S. Interpretation of nonlinear QSAR models applied to Ames mutagenicity data. J Chem Inf Model 2009, 49:2551-2558.
    • (2009) J Chem Inf Model , vol.49 , pp. 2551-2558
    • Carlsson, L.1    Helgee, E.A.2    Boyer, S.3
  • 111
    • 84879570665 scopus 로고    scopus 로고
    • Beyond the scope of Free-Wilson analysis: building interpretable QSAR models with machine learning algorithms
    • Chen H, Carlsson L, Eriksson M, Varkonyi P, Norinder U, Nilsson I. Beyond the scope of Free-Wilson analysis: building interpretable QSAR models with machine learning algorithms. J Chem Inf Model 2013, 53:1324-1336.
    • (2013) J Chem Inf Model , vol.53 , pp. 1324-1336
    • Chen, H.1    Carlsson, L.2    Eriksson, M.3    Varkonyi, P.4    Norinder, U.5    Nilsson, I.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.