-
1
-
-
78649336706
-
The DNA damage response: making it safe to play with knives
-
Ciccia A, Elledge SJ, (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40: 179–204.
-
(2010)
Mol Cell
, vol.40
, pp. 179-204
-
-
Ciccia, A.1
Elledge, S.J.2
-
3
-
-
79952235291
-
Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications
-
Polo SE, Jackson SP, (2011) Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev 25: 409–433.
-
(2011)
Genes Dev
, vol.25
, pp. 409-433
-
-
Polo, S.E.1
Jackson, S.P.2
-
4
-
-
80755187806
-
Double-strand break end resection and repair pathway choice
-
Symington LS, Gautier J, (2011) Double-strand break end resection and repair pathway choice. Annu Rev Genet 45: 247–271.
-
(2011)
Annu Rev Genet
, vol.45
, pp. 247-271
-
-
Symington, L.S.1
Gautier, J.2
-
5
-
-
84865364870
-
Playing the end game: DNA double-strand break repair pathway choice
-
Chapman JR, Taylor MR, Boulton SJ, (2012) Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 47: 497–510.
-
(2012)
Mol Cell
, vol.47
, pp. 497-510
-
-
Chapman, J.R.1
Taylor, M.R.2
Boulton, S.J.3
-
6
-
-
33750990221
-
Phosphorylation of Rad55 on serines 2, 8, and 14 is required for efficient homologous recombination in the recovery of stalled replication forks
-
Herzberg K, Bashkirov VI, Rolfsmeier M, Haghnazari E, McDonald WH, et al. (2006) Phosphorylation of Rad55 on serines 2, 8, and 14 is required for efficient homologous recombination in the recovery of stalled replication forks. Mol Cell Biol 26: 8396–8409.
-
(2006)
Mol Cell Biol
, vol.26
, pp. 8396-8409
-
-
Herzberg, K.1
Bashkirov, V.I.2
Rolfsmeier, M.3
Haghnazari, E.4
McDonald, W.H.5
-
7
-
-
34547499407
-
Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases
-
Smolka MB, Albuquerque CP, Chen SH, Zhou H, (2007) Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases. Proc Natl Acad Sci USA 104: 10364–10369.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 10364-10369
-
-
Smolka, M.B.1
Albuquerque, C.P.2
Chen, S.H.3
Zhou, H.4
-
8
-
-
80052492286
-
Cell cycle regulation of DNA double-strand break end resection by Cdk1-dependent Dna2 phosphorylation
-
Chen X, Niu H, Chung WH, Zhu Z, Papusha A, et al. (2011) Cell cycle regulation of DNA double-strand break end resection by Cdk1-dependent Dna2 phosphorylation. Nat Struct Mol Biol 18: 1015–1019.
-
(2011)
Nat Struct Mol Biol
, vol.18
, pp. 1015-1019
-
-
Chen, X.1
Niu, H.2
Chung, W.H.3
Zhu, Z.4
Papusha, A.5
-
9
-
-
80053544629
-
Regulatory control of the resolution of DNA recombination intermediates during meiosis and mitosis
-
Matos J, Blanco MG, Maslen S, Skehel JM, West SC, (2011) Regulatory control of the resolution of DNA recombination intermediates during meiosis and mitosis. Cell 147: 158–172.
-
(2011)
Cell
, vol.147
, pp. 158-172
-
-
Matos, J.1
Blanco, M.G.2
Maslen, S.3
Skehel, J.M.4
West, S.C.5
-
10
-
-
85016362060
-
Sumoylation and the DNA Damage Response
-
Cremona CA, Sarangi P, Zhao X, (2012) Sumoylation and the DNA Damage Response. Biomolecules 2: 376–388.
-
(2012)
Biomolecules
, vol.2
, pp. 376-388
-
-
Cremona, C.A.1
Sarangi, P.2
Zhao, X.3
-
11
-
-
84876886904
-
Regulation of DNA damage responses by ubiquitin and SUMO
-
Jackson SP, Durocher D, (2013) Regulation of DNA damage responses by ubiquitin and SUMO. Mol Cell 49: 795–807.
-
(2013)
Mol Cell
, vol.49
, pp. 795-807
-
-
Jackson, S.P.1
Durocher, D.2
-
12
-
-
84898745559
-
Two-way communications between ubiquitin-like modifiers and DNA
-
Ulrich HD, (2014) Two-way communications between ubiquitin-like modifiers and DNA. Nat Struct Mol Biol 21: 317–324.
-
(2014)
Nat Struct Mol Biol
, vol.21
, pp. 317-324
-
-
Ulrich, H.D.1
-
13
-
-
84888617317
-
Control of nuclear activities by substrate-selective and protein-group SUMOylation
-
Jentsch S, Psakhye I, (2013) Control of nuclear activities by substrate-selective and protein-group SUMOylation. Annu Rev Genet 47: 167–186.
-
(2013)
Annu Rev Genet
, vol.47
, pp. 167-186
-
-
Jentsch, S.1
Psakhye, I.2
-
14
-
-
0842281642
-
Ubc9 is required for damage-tolerance and damage-induced interchromosomal homologous recombination in S. cerevisiae
-
Maeda D, Seki M, Onoda F, Branzei D, Kawabe Y, et al. (2004) Ubc9 is required for damage-tolerance and damage-induced interchromosomal homologous recombination in S. cerevisiae. DNA Repair 3: 335–341.
-
(2004)
DNA Repair
, vol.3
, pp. 335-341
-
-
Maeda, D.1
Seki, M.2
Onoda, F.3
Branzei, D.4
Kawabe, Y.5
-
15
-
-
72449163470
-
The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress
-
Morris JR, Boutell C, Keppler M, Densham R, Weekes D, et al. (2009) The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress. Nature 462: 886–890.
-
(2009)
Nature
, vol.462
, pp. 886-890
-
-
Morris, J.R.1
Boutell, C.2
Keppler, M.3
Densham, R.4
Weekes, D.5
-
16
-
-
72449175818
-
Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks
-
Galanty Y, Belotserkovskaya R, Coates J, Polo S, Miller KM, et al. (2009) Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks. Nature 462: 935–939.
-
(2009)
Nature
, vol.462
, pp. 935-939
-
-
Galanty, Y.1
Belotserkovskaya, R.2
Coates, J.3
Polo, S.4
Miller, K.M.5
-
17
-
-
84862783021
-
Extensive DNA damage-induced sumoylation contributes to replication and repair and acts in addition to the Mec1 checkpoint
-
Cremona CA, Sarangi P, Yang Y, Hang LE, Rahman S, et al. (2012) Extensive DNA damage-induced sumoylation contributes to replication and repair and acts in addition to the Mec1 checkpoint. Mol Cell 45: 422–432.
-
(2012)
Mol Cell
, vol.45
, pp. 422-432
-
-
Cremona, C.A.1
Sarangi, P.2
Yang, Y.3
Hang, L.E.4
Rahman, S.5
-
18
-
-
84869091913
-
Protein group modification and synergy in the SUMO pathway as exemplified in DNA repair
-
Psakhye I, Jentsch S, (2012) Protein group modification and synergy in the SUMO pathway as exemplified in DNA repair. Cell 151: 807–820.
-
(2012)
Cell
, vol.151
, pp. 807-820
-
-
Psakhye, I.1
Jentsch, S.2
-
19
-
-
78649451417
-
Making the best of the loose ends: Mre11/Rad50 complexes and Sae2 promote DNA double-strand break resection
-
Paull TT, (2010) Making the best of the loose ends: Mre11/Rad50 complexes and Sae2 promote DNA double-strand break resection. DNA Repair (Amst) 9: 1283–1291.
-
(2010)
DNA Repair (Amst)
, vol.9
, pp. 1283-1291
-
-
Paull, T.T.1
-
21
-
-
36248942617
-
Sae2 is an endonuclease that processes hairpin DNA cooperatively with the Mre11/Rad50/Xrs2 complex
-
Lengsfeld BM, Rattray AJ, Bhaskara V, Ghirlando R, Paull TT, (2007) Sae2 is an endonuclease that processes hairpin DNA cooperatively with the Mre11/Rad50/Xrs2 complex. Mol Cell 28: 638–651.
-
(2007)
Mol Cell
, vol.28
, pp. 638-651
-
-
Lengsfeld, B.M.1
Rattray, A.J.2
Bhaskara, V.3
Ghirlando, R.4
Paull, T.T.5
-
22
-
-
53649104599
-
Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing
-
Mimitou EP, Symington LS, (2008) Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455: 770–774.
-
(2008)
Nature
, vol.455
, pp. 770-774
-
-
Mimitou, E.P.1
Symington, L.S.2
-
23
-
-
33644691699
-
The Saccharomyces cerevisiae Sae2 protein promotes resection and bridging of double strand break ends
-
Clerici M, Mantiero D, Lucchini G, Longhese MP, (2005) The Saccharomyces cerevisiae Sae2 protein promotes resection and bridging of double strand break ends. J Biol Chem 280: 38631–38638.
-
(2005)
J Biol Chem
, vol.280
, pp. 38631-38638
-
-
Clerici, M.1
Mantiero, D.2
Lucchini, G.3
Longhese, M.P.4
-
24
-
-
51549095956
-
Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends
-
Zhu Z, Chung WH, Shim EY, Lee SE, Ira G, (2008) Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell 134: 981–994.
-
(2008)
Cell
, vol.134
, pp. 981-994
-
-
Zhu, Z.1
Chung, W.H.2
Shim, E.Y.3
Lee, S.E.4
Ira, G.5
-
25
-
-
78649805560
-
Mre11-Rad50-Xrs2 and Sae2 promote 5′ strand resection of DNA double-strand breaks
-
Nicolette ML, Lee K, Guo Z, Rani M, Chow JM, et al. (2010) Mre11-Rad50-Xrs2 and Sae2 promote 5′ strand resection of DNA double-strand breaks. Nat Struct Mol Biol 17: 1478–1485.
-
(2010)
Nat Struct Mol Biol
, vol.17
, pp. 1478-1485
-
-
Nicolette, M.L.1
Lee, K.2
Guo, Z.3
Rani, M.4
Chow, J.M.5
-
26
-
-
84908045717
-
Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks
-
Cannavo E, Cejka P, (2014) Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks. Nature 514: 122–125.
-
(2014)
Nature
, vol.514
, pp. 122-125
-
-
Cannavo, E.1
Cejka, P.2
-
27
-
-
0037169325
-
The Mre11 complex is required for repair of hairpin-capped double-strand breaks and prevention of chromosome rearrangements
-
Lobachev KS, Gordenin DA, Resnick MA, (2002) The Mre11 complex is required for repair of hairpin-capped double-strand breaks and prevention of chromosome rearrangements. Cell 108: 183–193.
-
(2002)
Cell
, vol.108
, pp. 183-193
-
-
Lobachev, K.S.1
Gordenin, D.A.2
Resnick, M.A.3
-
28
-
-
23944459784
-
Endonucleolytic processing of covalent protein-linked DNA double-strand breaks
-
Neale MJ, Pan J, Keeney S, (2005) Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436: 1053–1057.
-
(2005)
Nature
, vol.436
, pp. 1053-1057
-
-
Neale, M.J.1
Pan, J.2
Keeney, S.3
-
29
-
-
22144434446
-
Multiple endonucleases function to repair covalent topoisomerase I complexes in Saccharomyces cerevisiae
-
Deng C, Brown JA, You D, Brown JM, (2005) Multiple endonucleases function to repair covalent topoisomerase I complexes in Saccharomyces cerevisiae. Genetics 170: 591–600.
-
(2005)
Genetics
, vol.170
, pp. 591-600
-
-
Deng, C.1
Brown, J.A.2
You, D.3
Brown, J.M.4
-
30
-
-
46949098616
-
Break dosage, cell cycle stage and DNA replication influence DNA double strand break response
-
Zierhut C, Diffley JF, (2008) Break dosage, cell cycle stage and DNA replication influence DNA double strand break response. EMBO J 27: 1875–1885.
-
(2008)
EMBO J
, vol.27
, pp. 1875-1885
-
-
Zierhut, C.1
Diffley, J.F.2
-
31
-
-
7244220162
-
DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1
-
Ira G, Pellicioli A, Balijja A, Wang X, Fiorani S, et al. (2004) DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature 431: 1011–1017.
-
(2004)
Nature
, vol.431
, pp. 1011-1017
-
-
Ira, G.1
Pellicioli, A.2
Balijja, A.3
Wang, X.4
Fiorani, S.5
-
32
-
-
11244269445
-
The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle
-
Aylon Y, Liefshitz B, Kupiec M, (2004) The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle. EMBO J 23: 4868–4875.
-
(2004)
EMBO J
, vol.23
, pp. 4868-4875
-
-
Aylon, Y.1
Liefshitz, B.2
Kupiec, M.3
-
33
-
-
2942594756
-
The functions of budding yeast Sae2 in the DNA damage response require Mec1- and Tel1-dependent phosphorylation
-
Baroni E, Viscardi V, Cartagena-Lirola H, Lucchini G, Longhese MP, (2004) The functions of budding yeast Sae2 in the DNA damage response require Mec1- and Tel1-dependent phosphorylation. Mol Cell Biol 24: 4151–4165.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 4151-4165
-
-
Baroni, E.1
Viscardi, V.2
Cartagena-Lirola, H.3
Lucchini, G.4
Longhese, M.P.5
-
34
-
-
84861843272
-
CDK targeting of NBS1 promotes DNA-end resection, replication restart and homologous recombination
-
Falck J, Forment JV, Coates J, Mistrik M, Lukas J, et al. (2012) CDK targeting of NBS1 promotes DNA-end resection, replication restart and homologous recombination. EMBO Rep 13: 561–568.
-
(2012)
EMBO Rep
, vol.13
, pp. 561-568
-
-
Falck, J.1
Forment, J.V.2
Coates, J.3
Mistrik, M.4
Lukas, J.5
-
35
-
-
70149088145
-
Regulation of repair choice: Cdk1 suppresses recruitment of end joining factors at DNA breaks
-
Zhang Y, Shim EY, Davis M, Lee SE, (2009) Regulation of repair choice: Cdk1 suppresses recruitment of end joining factors at DNA breaks. DNA Repair (Amst) 8: 1235–1241.
-
(2009)
DNA Repair (Amst)
, vol.8
, pp. 1235-1241
-
-
Zhang, Y.1
Shim, E.Y.2
Davis, M.3
Lee, S.E.4
-
36
-
-
53349162987
-
CDK targets Sae2 to control DNA-end resection and homologous recombination
-
Huertas P, Cortes-Ledesma F, Sartori AA, Aguilera A, Jackson SP, (2008) CDK targets Sae2 to control DNA-end resection and homologous recombination. Nature 455: 689–692.
-
(2008)
Nature
, vol.455
, pp. 689-692
-
-
Huertas, P.1
Cortes-Ledesma, F.2
Sartori, A.A.3
Aguilera, A.4
Jackson, S.P.5
-
37
-
-
84893827413
-
Phosphorylation-regulated transitions in an oligomeric state control the activity of the Sae2 DNA repair enzyme
-
Fu Q, Chow J, Bernstein KA, Makharashvili N, Arora S, et al. (2014) Phosphorylation-regulated transitions in an oligomeric state control the activity of the Sae2 DNA repair enzyme. Mol Cell Biol 34: 778–793.
-
(2014)
Mol Cell Biol
, vol.34
, pp. 778-793
-
-
Fu, Q.1
Chow, J.2
Bernstein, K.A.3
Makharashvili, N.4
Arora, S.5
-
38
-
-
0035918226
-
SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting
-
Rodriguez MS, Dargemont C, Hay RT, (2001) SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J Biol Chem 276: 12654–12659.
-
(2001)
J Biol Chem
, vol.276
, pp. 12654-12659
-
-
Rodriguez, M.S.1
Dargemont, C.2
Hay, R.T.3
-
39
-
-
0035877693
-
The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification
-
Sampson DA, Wang M, Matunis MJ, (2001) The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification. J Biol Chem 276: 21664–21669.
-
(2001)
J Biol Chem
, vol.276
, pp. 21664-21669
-
-
Sampson, D.A.1
Wang, M.2
Matunis, M.J.3
-
40
-
-
3042593642
-
Dimerization of CtIP, a BRCA1- and CtBP-interacting protein, is mediated by an N-terminal coiled-coil motif
-
Dubin MJ, Stokes PH, Sum EY, Williams RS, Valova VA, et al. (2004) Dimerization of CtIP, a BRCA1- and CtBP-interacting protein, is mediated by an N-terminal coiled-coil motif. J Biol Chem 279: 26932–26938.
-
(2004)
J Biol Chem
, vol.279
, pp. 26932-26938
-
-
Dubin, M.J.1
Stokes, P.H.2
Sum, E.Y.3
Williams, R.S.4
Valova, V.A.5
-
41
-
-
40849094757
-
Functional interactions between Sae2 and the Mre11 complex
-
Kim HS, Vijayakumar S, Reger M, Harrison JC, Haber JE, et al. (2008) Functional interactions between Sae2 and the Mre11 complex. Genetics 178: 711–723.
-
(2008)
Genetics
, vol.178
, pp. 711-723
-
-
Kim, H.S.1
Vijayakumar, S.2
Reger, M.3
Harrison, J.C.4
Haber, J.E.5
-
42
-
-
72149103012
-
CtIP links DNA double-strand break sensing to resection
-
You Z, Shi LZ, Zhu Q, Wu P, Zhang YW, et al. (2009) CtIP links DNA double-strand break sensing to resection. Mol Cell 36: 954–969.
-
(2009)
Mol Cell
, vol.36
, pp. 954-969
-
-
You, Z.1
Shi, L.Z.2
Zhu, Q.3
Wu, P.4
Zhang, Y.W.5
-
43
-
-
0034679610
-
Inverted Alu repeats unstable in yeast are excluded from the human genome
-
Lobachev KS, Stenger JE, Kozyreva OG, Jurka J, Gordenin DA, et al. (2000) Inverted Alu repeats unstable in yeast are excluded from the human genome. EMBO J 19: 3822–3830.
-
(2000)
EMBO J
, vol.19
, pp. 3822-3830
-
-
Lobachev, K.S.1
Stenger, J.E.2
Kozyreva, O.G.3
Jurka, J.4
Gordenin, D.A.5
-
44
-
-
83255187901
-
Functional interplay of the Mre11 nuclease and Ku in the response to replication-associated DNA damage
-
Foster SS, Balestrini A, Petrini JH, (2011) Functional interplay of the Mre11 nuclease and Ku in the response to replication-associated DNA damage. Mol Cell Biol 31: 4379–4389.
-
(2011)
Mol Cell Biol
, vol.31
, pp. 4379-4389
-
-
Foster, S.S.1
Balestrini, A.2
Petrini, J.H.3
-
45
-
-
0030811331
-
Isolation of COM1, a new gene required to complete meiotic double-strand break-induced recombination in Saccharomyces cerevisiae
-
Prinz S, Amon A, Klein F, (1997) Isolation of COM1, a new gene required to complete meiotic double-strand break-induced recombination in Saccharomyces cerevisiae. Genetics 146: 781–795.
-
(1997)
Genetics
, vol.146
, pp. 781-795
-
-
Prinz, S.1
Amon, A.2
Klein, F.3
-
46
-
-
0028789631
-
Covalent protein-DNA complexes at the 5′ strand termini of meiosis-specific double-strand breaks in yeast
-
Keeney S, Kleckner N, (1995) Covalent protein-DNA complexes at the 5′ strand termini of meiosis-specific double-strand breaks in yeast. Proc Natl Acad Sci USA 92: 11274–11278.
-
(1995)
Proc Natl Acad Sci USA
, vol.92
, pp. 11274-11278
-
-
Keeney, S.1
Kleckner, N.2
-
47
-
-
0030759699
-
A general method for identifying recessive diploid-specific mutations in Saccharomyces cerevisiae, its application to the isolation of mutants blocked at intermediate stages of meiotic prophase and characterization of a new gene SAE2
-
McKee AH, Kleckner N, (1997) A general method for identifying recessive diploid-specific mutations in Saccharomyces cerevisiae, its application to the isolation of mutants blocked at intermediate stages of meiotic prophase and characterization of a new gene SAE2. Genetics 146: 797–816.
-
(1997)
Genetics
, vol.146
, pp. 797-816
-
-
McKee, A.H.1
Kleckner, N.2
-
48
-
-
84878183628
-
RPA coordinates DNA end resection and prevents formation of DNA hairpins
-
Chen H, Lisby M, Symington LS, (2013) RPA coordinates DNA end resection and prevents formation of DNA hairpins. Mol Cell 50: 589–600.
-
(2013)
Mol Cell
, vol.50
, pp. 589-600
-
-
Chen, H.1
Lisby, M.2
Symington, L.S.3
-
49
-
-
34548401682
-
Saccharomyces cerevisiae Sae2- and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining
-
Lee K, Lee SE, (2007) Saccharomyces cerevisiae Sae2- and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining. Genetics 176: 2003–2014.
-
(2007)
Genetics
, vol.176
, pp. 2003-2014
-
-
Lee, K.1
Lee, S.E.2
-
50
-
-
84897968795
-
RPA antagonizes microhomology-mediated repair of DNA double-strand breaks
-
Deng SK, Gibb B, de Almeida MJ, Greene EC, Symington LS, (2014) RPA antagonizes microhomology-mediated repair of DNA double-strand breaks. Nat Struct Mol Biol 21: 405–412.
-
(2014)
Nat Struct Mol Biol
, vol.21
, pp. 405-412
-
-
Deng, S.K.1
Gibb, B.2
de Almeida, M.J.3
Greene, E.C.4
Symington, L.S.5
-
51
-
-
0029791694
-
Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways
-
Boulton SJ, Jackson SP, (1996) Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J 15: 5093–5103.
-
(1996)
EMBO J
, vol.15
, pp. 5093-5103
-
-
Boulton, S.J.1
Jackson, S.P.2
-
52
-
-
84866158917
-
A SUMO-dependent step during establishment of sister chromatid cohesion
-
Almedawar S, Colomina N, Bermudez-Lopez M, Pocino-Merino I, Torres-Rosell J, (2012) A SUMO-dependent step during establishment of sister chromatid cohesion. Curr Biol 22: 1576–1581.
-
(2012)
Curr Biol
, vol.22
, pp. 1576-1581
-
-
Almedawar, S.1
Colomina, N.2
Bermudez-Lopez, M.3
Pocino-Merino, I.4
Torres-Rosell, J.5
-
53
-
-
45149104841
-
Recruitment and dissociation of nonhomologous end joining proteins at a DNA double-strand break in Saccharomyces cerevisiae
-
Wu D, Topper LM, Wilson TE, (2008) Recruitment and dissociation of nonhomologous end joining proteins at a DNA double-strand break in Saccharomyces cerevisiae. Genetics 178: 1237–1249.
-
(2008)
Genetics
, vol.178
, pp. 1237-1249
-
-
Wu, D.1
Topper, L.M.2
Wilson, T.E.3
-
54
-
-
28544447826
-
Mutations of the Yku80 C terminus and Xrs2 FHA domain specifically block yeast nonhomologous end joining
-
Palmbos PL, Daley JM, Wilson TE, (2005) Mutations of the Yku80 C terminus and Xrs2 FHA domain specifically block yeast nonhomologous end joining. Mol Cell Biol 25: 10782–10790.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 10782-10790
-
-
Palmbos, P.L.1
Daley, J.M.2
Wilson, T.E.3
-
55
-
-
4544281398
-
Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins
-
Lisby M, Barlow JH, Burgess RC, Rothstein R, (2004) Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118: 699–713.
-
(2004)
Cell
, vol.118
, pp. 699-713
-
-
Lisby, M.1
Barlow, J.H.2
Burgess, R.C.3
Rothstein, R.4
-
56
-
-
77957805302
-
Ku prevents Exo1 and Sgs1-dependent resection of DNA ends in the absence of a functional MRX complex or Sae2
-
Mimitou EP, Symington LS, (2010) Ku prevents Exo1 and Sgs1-dependent resection of DNA ends in the absence of a functional MRX complex or Sae2. EMBO J 29: 3358–3369.
-
(2010)
EMBO J
, vol.29
, pp. 3358-3369
-
-
Mimitou, E.P.1
Symington, L.S.2
-
57
-
-
84898619525
-
Regulation of Ku-DNA association by Yku70 C-terminal tail and SUMO modification
-
Hang LE, Lopez CR, Liu X, Williams JM, Chung I, et al. (2014) Regulation of Ku-DNA association by Yku70 C-terminal tail and SUMO modification. J Biol Chem
-
(2014)
J Biol Chem
-
-
Hang, L.E.1
Lopez, C.R.2
Liu, X.3
Williams, J.M.4
Chung, I.5
-
58
-
-
43049111100
-
Microarray-based genetic screen defines SAW1, a gene required for Rad1/Rad10-dependent processing of recombination intermediates
-
Li F, Dong J, Pan X, Oum JH, Boeke JD, et al. (2008) Microarray-based genetic screen defines SAW1, a gene required for Rad1/Rad10-dependent processing of recombination intermediates. Mol Cell 30: 325–335.
-
(2008)
Mol Cell
, vol.30
, pp. 325-335
-
-
Li, F.1
Dong, J.2
Pan, X.3
Oum, J.H.4
Boeke, J.D.5
-
59
-
-
31344443061
-
Complex formation with damage recognition protein Rad14 is essential for Saccharomyces cerevisiae Rad1-Rad10 nuclease to perform its function in nucleotide excision repair in vivo
-
Guzder SN, Sommers CH, Prakash L, Prakash S, (2006) Complex formation with damage recognition protein Rad14 is essential for Saccharomyces cerevisiae Rad1-Rad10 nuclease to perform its function in nucleotide excision repair in vivo. Mol Cell Biol 26: 1135–1141.
-
(2006)
Mol Cell Biol
, vol.26
, pp. 1135-1141
-
-
Guzder, S.N.1
Sommers, C.H.2
Prakash, L.3
Prakash, S.4
-
60
-
-
77952581455
-
Mec1/Tel1-dependent phosphorylation of Slx4 stimulates Rad1-Rad10-dependent cleavage of non-homologous DNA tails
-
Toh GW, Sugawara N, Dong J, Toth R, Lee SE, et al. (2010) Mec1/Tel1-dependent phosphorylation of Slx4 stimulates Rad1-Rad10-dependent cleavage of non-homologous DNA tails. DNA Repair 9: 718–726.
-
(2010)
DNA Repair
, vol.9
, pp. 718-726
-
-
Toh, G.W.1
Sugawara, N.2
Dong, J.3
Toth, R.4
Lee, S.E.5
-
61
-
-
77957786786
-
Saccharomyces cerevisiae Mre11/Rad50/Xrs2 and Ku proteins regulate association of Exo1 and Dna2 with DNA breaks
-
Shim EY, Chung WH, Nicolette ML, Zhang Y, Davis M, et al. (2010) Saccharomyces cerevisiae Mre11/Rad50/Xrs2 and Ku proteins regulate association of Exo1 and Dna2 with DNA breaks. Embo J 29: 3370–3380.
-
(2010)
Embo J
, vol.29
, pp. 3370-3380
-
-
Shim, E.Y.1
Chung, W.H.2
Nicolette, M.L.3
Zhang, Y.4
Davis, M.5
-
62
-
-
79952270884
-
HDACs link the DNA damage response, processing of double-strand breaks and autophagy
-
Robert T, Vanoli F, Chiolo I, Shubassi G, Bernstein KA, et al. (2011) HDACs link the DNA damage response, processing of double-strand breaks and autophagy. Nature 471: 74–79.
-
(2011)
Nature
, vol.471
, pp. 74-79
-
-
Robert, T.1
Vanoli, F.2
Chiolo, I.3
Shubassi, G.4
Bernstein, K.A.5
-
63
-
-
84919359385
-
APC/CCdh1 controls CtIP stability during the cell cycle and in response to DNA damage
-
Lafranchi L, de Boer HR, de Vries EG, Ong SE, Sartori AA, et al. (2014) APC/CCdh1 controls CtIP stability during the cell cycle and in response to DNA damage. EMBO J
-
(2014)
EMBO J
-
-
Lafranchi, L.1
de Boer, H.R.2
de Vries, E.G.3
Ong, S.E.4
Sartori, A.A.5
-
64
-
-
11144353613
-
SUMO modification of Huntingtin and Huntington's disease pathology
-
Steffan JS, Agrawal N, Pallos J, Rockabrand E, Trotman LC, et al. (2004) SUMO modification of Huntingtin and Huntington's disease pathology. Science 304: 100–104.
-
(2004)
Science
, vol.304
, pp. 100-104
-
-
Steffan, J.S.1
Agrawal, N.2
Pallos, J.3
Rockabrand, E.4
Trotman, L.C.5
-
65
-
-
77649186048
-
SUMOylation attenuates the aggregation propensity and cellular toxicity of the polyglutamine expanded ataxin-7
-
Janer A, Werner A, Takahashi-Fujigasaki J, Daret A, Fujigasaki H, et al. (2010) SUMOylation attenuates the aggregation propensity and cellular toxicity of the polyglutamine expanded ataxin-7. Hum Mol Genet 19: 181–195.
-
(2010)
Hum Mol Genet
, vol.19
, pp. 181-195
-
-
Janer, A.1
Werner, A.2
Takahashi-Fujigasaki, J.3
Daret, A.4
Fujigasaki, H.5
-
66
-
-
79960261026
-
Sumoylation inhibits alpha-synuclein aggregation and toxicity
-
Krumova P, Meulmeester E, Garrido M, Tirard M, Hsiao HH, et al. (2011) Sumoylation inhibits alpha-synuclein aggregation and toxicity. J Cell Biol 194: 49–60.
-
(2011)
J Cell Biol
, vol.194
, pp. 49-60
-
-
Krumova, P.1
Meulmeester, E.2
Garrido, M.3
Tirard, M.4
Hsiao, H.H.5
-
67
-
-
5044235541
-
Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins
-
Fernandez-Escamilla AM, Rousseau F, Schymkowitz J, Serrano L, (2004) Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol 22: 1302–1306.
-
(2004)
Nat Biotechnol
, vol.22
, pp. 1302-1306
-
-
Fernandez-Escamilla, A.M.1
Rousseau, F.2
Schymkowitz, J.3
Serrano, L.4
-
68
-
-
20444403757
-
Prediction of “aggregation-prone” and “aggregation-susceptible” regions in proteins associated with neurodegenerative diseases
-
Pawar AP, Dubay KF, Zurdo J, Chiti F, Vendruscolo M, et al. (2005) Prediction of “aggregation-prone” and “aggregation-susceptible” regions in proteins associated with neurodegenerative diseases. J Mol Biol 350: 379–392.
-
(2005)
J Mol Biol
, vol.350
, pp. 379-392
-
-
Pawar, A.P.1
Dubay, K.F.2
Zurdo, J.3
Chiti, F.4
Vendruscolo, M.5
-
69
-
-
20444419709
-
Enhanced expression and purification of membrane proteins by SUMO fusion in Escherichia coli
-
Zuo X, Li S, Hall J, Mattern MR, Tran H, et al. (2005) Enhanced expression and purification of membrane proteins by SUMO fusion in Escherichia coli. J Struct Funct Genomics 6: 103–111.
-
(2005)
J Struct Funct Genomics
, vol.6
, pp. 103-111
-
-
Zuo, X.1
Li, S.2
Hall, J.3
Mattern, M.R.4
Tran, H.5
-
70
-
-
3543073550
-
SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins
-
Malakhov MP, Mattern MR, Malakhova OA, Drinker M, Weeks SD, et al. (2004) SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. J Struct Funct Genomics 5: 75–86.
-
(2004)
J Struct Funct Genomics
, vol.5
, pp. 75-86
-
-
Malakhov, M.P.1
Mattern, M.R.2
Malakhova, O.A.3
Drinker, M.4
Weeks, S.D.5
-
71
-
-
33750491062
-
Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors
-
Lin DY, Huang YS, Jeng JC, Kuo HY, Chang CC, et al. (2006) Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol Cell 24: 341–354.
-
(2006)
Mol Cell
, vol.24
, pp. 341-354
-
-
Lin, D.Y.1
Huang, Y.S.2
Jeng, J.C.3
Kuo, H.Y.4
Chang, C.C.5
-
72
-
-
33750447586
-
The mechanisms of PML-nuclear body formation
-
Shen TH, Lin HK, Scaglioni PP, Yung TM, Pandolfi PP, (2006) The mechanisms of PML-nuclear body formation. Mol Cell 24: 331–339.
-
(2006)
Mol Cell
, vol.24
, pp. 331-339
-
-
Shen, T.H.1
Lin, H.K.2
Scaglioni, P.P.3
Yung, T.M.4
Pandolfi, P.P.5
-
73
-
-
33947517558
-
AGGRESCAN: a server for the prediction and evaluation of “hot spots” of aggregation in polypeptides
-
Conchillo-Sole O, de Groot NS, Aviles FX, Vendrell J, Daura X, et al. (2007) AGGRESCAN: a server for the prediction and evaluation of “hot spots” of aggregation in polypeptides. BMC Bioinformatics 8: 65.
-
(2007)
BMC Bioinformatics
, vol.8
, pp. 65
-
-
Conchillo-Sole, O.1
de Groot, N.S.2
Aviles, F.X.3
Vendrell, J.4
Daura, X.5
-
74
-
-
82555179149
-
A role for SUMO in nucleotide excision repair
-
Silver HR, Nissley JA, Reed SH, Hou YM, Johnson ES, (2011) A role for SUMO in nucleotide excision repair. DNA Repair 10: 1243–1251.
-
(2011)
DNA Repair
, vol.10
, pp. 1243-1251
-
-
Silver, H.R.1
Nissley, J.A.2
Reed, S.H.3
Hou, Y.M.4
Johnson, E.S.5
-
75
-
-
84903128501
-
Sumoylation of the Rad1 nuclease promotes DNA repair and regulates its DNA association
-
Sarangi P, Bartosova Z, Altmannova V, Holland C, Chavdarova M, et al. (2014) Sumoylation of the Rad1 nuclease promotes DNA repair and regulates its DNA association. Nucleic Acids Res 42: 6393–6404.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 6393-6404
-
-
Sarangi, P.1
Bartosova, Z.2
Altmannova, V.3
Holland, C.4
Chavdarova, M.5
-
76
-
-
84907965952
-
A Versatile Scaffold Contributes to Damage Survival via Sumoylation and Nuclease Interactions
-
Sarangi P, Altmannova V, Holland C, Bartosova Z, Hao F, et al. (2014) A Versatile Scaffold Contributes to Damage Survival via Sumoylation and Nuclease Interactions. Cell Rep 9: 143–152.
-
(2014)
Cell Rep
, vol.9
, pp. 143-152
-
-
Sarangi, P.1
Altmannova, V.2
Holland, C.3
Bartosova, Z.4
Hao, F.5
-
77
-
-
33750499289
-
Control of Rad52 recombination activity by double-strand break-induced SUMO modification
-
Sacher M, Pfander B, Hoege C, Jentsch S, (2006) Control of Rad52 recombination activity by double-strand break-induced SUMO modification. Nat Cell Biol 8: 1284–1290.
-
(2006)
Nat Cell Biol
, vol.8
, pp. 1284-1290
-
-
Sacher, M.1
Pfander, B.2
Hoege, C.3
Jentsch, S.4
-
78
-
-
84930948486
-
Phosphorylation of Exo1 by CDKs 1 and 2 regulates DNA end resection and repair pathway choice
-
Tomimatsu N, Mukherjee B, Catherine Hardebeck M, Ilcheva M, Vanessa Camacho C, et al. (2014) Phosphorylation of Exo1 by CDKs 1 and 2 regulates DNA end resection and repair pathway choice. Nat Commun 5: 3561.
-
(2014)
Nat Commun
, vol.5
, pp. 3561
-
-
Tomimatsu, N.1
Mukherjee, B.2
Catherine Hardebeck, M.3
Ilcheva, M.4
Vanessa Camacho, C.5
-
79
-
-
84866912764
-
Cell cycle-dependent regulation of the nuclease activity of Mus81-Eme1/Mms4
-
Gallo-Fernandez M, Saugar I, Ortiz-Bazan MA, Vazquez MV, Tercero JA, (2012) Cell cycle-dependent regulation of the nuclease activity of Mus81-Eme1/Mms4. Nucleic Acids Res 40: 8325–8335.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 8325-8335
-
-
Gallo-Fernandez, M.1
Saugar, I.2
Ortiz-Bazan, M.A.3
Vazquez, M.V.4
Tercero, J.A.5
-
80
-
-
51949118680
-
Checkpoint-dependent phosphorylation of Exo1 modulates the DNA damage response
-
Morin I, Ngo HP, Greenall A, Zubko MK, Morrice N, et al. (2008) Checkpoint-dependent phosphorylation of Exo1 modulates the DNA damage response. EMBO J 27: 2400–2410.
-
(2008)
EMBO J
, vol.27
, pp. 2400-2410
-
-
Morin, I.1
Ngo, H.P.2
Greenall, A.3
Zubko, M.K.4
Morrice, N.5
-
81
-
-
34548213631
-
The Slx5-Slx8 complex affects sumoylation of DNA repair proteins and negatively regulates recombination
-
Burgess RC, Rahman S, Lisby M, Rothstein R, Zhao X, (2007) The Slx5-Slx8 complex affects sumoylation of DNA repair proteins and negatively regulates recombination. Mol Cell Biol 27: 6153–6162.
-
(2007)
Mol Cell Biol
, vol.27
, pp. 6153-6162
-
-
Burgess, R.C.1
Rahman, S.2
Lisby, M.3
Rothstein, R.4
Zhao, X.5
-
82
-
-
0032581214
-
Curing Saccharomyces cerevisiae of the 2 micron plasmid by targeted DNA damage
-
Tsalik EL, Gartenberg MR, (1998) Curing Saccharomyces cerevisiae of the 2 micron plasmid by targeted DNA damage. Yeast 14: 847–852.
-
(1998)
Yeast
, vol.14
, pp. 847-852
-
-
Tsalik, E.L.1
Gartenberg, M.R.2
-
83
-
-
16344370926
-
A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization
-
Zhao X, Blobel G, (2005) A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc Natl Acad Sci USA 102: 4777–4782.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 4777-4782
-
-
Zhao, X.1
Blobel, G.2
-
84
-
-
3042712867
-
Overproduction of eukaryotic SUMO-1- and SUMO-2-conjugated proteins in Escherichia coli
-
Uchimura Y, Nakamura M, Sugasawa K, Nakao M, Saitoh H, (2004) Overproduction of eukaryotic SUMO-1- and SUMO-2-conjugated proteins in Escherichia coli. Anal Biochem 331: 204–206.
-
(2004)
Anal Biochem
, vol.331
, pp. 204-206
-
-
Uchimura, Y.1
Nakamura, M.2
Sugasawa, K.3
Nakao, M.4
Saitoh, H.5
-
85
-
-
36549060102
-
Human CtIP promotes DNA end resection
-
Sartori AA, Lukas C, Coates J, Mistrik M, Fu S, et al. (2007) Human CtIP promotes DNA end resection. Nature 450: 509–514.
-
(2007)
Nature
, vol.450
, pp. 509-514
-
-
Sartori, A.A.1
Lukas, C.2
Coates, J.3
Mistrik, M.4
Fu, S.5
-
86
-
-
0033638223
-
Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast
-
Mossessova E, Lima CD, (2000) Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol Cell 5: 865–876.
-
(2000)
Mol Cell
, vol.5
, pp. 865-876
-
-
Mossessova, E.1
Lima, C.D.2
-
87
-
-
0029976325
-
Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae
-
Moore JK, Haber JE, (1996) Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol Cell Biol 16: 2164–2173.
-
(1996)
Mol Cell Biol
, vol.16
, pp. 2164-2173
-
-
Moore, J.K.1
Haber, J.E.2
-
88
-
-
0032161269
-
A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools
-
Zhao X, Muller EG, Rothstein R, (1998) A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol Cell 2: 329–340.
-
(1998)
Mol Cell
, vol.2
, pp. 329-340
-
-
Zhao, X.1
Muller, E.G.2
Rothstein, R.3
|