-
1
-
-
13444256520
-
Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI)
-
A. Naeemi, R. Sarvari, J.D. Meindl, Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI). IEEE Electr. Dev. Lett. 26(2), 84–86 (2005)
-
(2005)
IEEE Electr. Dev. Lett
, vol.26
, Issue.2
, pp. 84-86
-
-
Naeemi, A.1
Sarvari, R.2
Meindl, J.D.3
-
2
-
-
0037104274
-
Size-dependent resistivity of metallic wires in the mesoscopic range
-
W. Steinhögl, G. Schindler, G. Steinlesberger, M. Engelhardt, Size-dependent resistivity of metallic wires in the mesoscopic range. Phys. Rev. B 66, 075414 (2002)
-
(2002)
Phys. Rev. B
, vol.66
, pp. 075414
-
-
Steinhögl, W.1
Schindler, G.2
Steinlesberger, G.3
Engelhardt, M.4
-
3
-
-
84911811183
-
-
ITRS: International Technology Roadmap for Semiconductors (2011 ed)
-
ITRS: International Technology Roadmap for Semiconductors (2011 ed). http://www.itrs.net
-
-
-
-
4
-
-
0029233544
-
Mechanical and thermal properties of carbon nanotubes
-
R.S. Ruoff, D.C. Lorents, Mechanical and thermal properties of carbon nanotubes. Carbon 33, 925–930 (1995)
-
(1995)
Carbon
, vol.33
, pp. 925-930
-
-
Ruoff, R.S.1
Lorents, D.C.2
-
5
-
-
47749150628
-
Measurement of elastic properties and intrinsic strength of monolayer graphene
-
C. Lee, X. Wei, J. Kysar, J. Hone, Measurement of elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)
-
(2008)
Science
, vol.321
, pp. 385-388
-
-
Lee, C.1
Wei, X.2
Kysar, J.3
Hone, J.4
-
7
-
-
0003790413
-
-
Springer, Berlin:
-
M.S. Dresselhaus, G. Dresselhaus, P. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (Springer, Berlin, 2001)
-
(2001)
Carbon Nanotubes: Synthesis, Structure, Properties, and Applications
-
-
Dresselhaus, M.S.1
Dresselhaus, G.2
Avouris, P.3
-
8
-
-
33646248381
-
Compact physical models for multiwall carbon–nanotube interconnects
-
A. Naeemi, J.D. Meindl, Compact physical models for multiwall carbon–nanotube interconnects. IEEE Electr. Dev. Lett. 27, 338–340 (2006)
-
(2006)
IEEE Electr. Dev. Lett
, vol.27
, pp. 338-340
-
-
Naeemi, A.1
Meindl, J.D.2
-
9
-
-
78649988835
-
Length scaling of carbon nanotube transistors
-
A.D. Franklin, Z. Chen, Length scaling of carbon nanotube transistors. Nat. Nanotechnol. 5, 858–862 (2010)
-
(2010)
Nat. Nanotechnol
, vol.5
, pp. 858-862
-
-
Franklin, A.D.1
Chen, Z.2
-
10
-
-
12844254368
-
Sub-20 nm short channel carbon nanotube transistors
-
R.V. Seidel, A.P. Graha, J. Kretz, B. Rajasekharan, G.S. Duesberg, M. Liebau, E. Unger, F. Kreupl, W. Hoenlein, Sub-20 nm short channel carbon nanotube transistors. Nano Lett. 5(1), 147–150 (2005)
-
(2005)
Nano Lett
, vol.5
, Issue.1
, pp. 147-150
-
-
Seidel, R.V.1
Graha, A.P.2
Kretz, J.3
Rajasekharan, B.4
Duesberg, G.S.5
Liebau, M.6
Unger, E.7
Kreupl, F.8
Hoenlein, W.9
-
11
-
-
0032511085
-
Carbon nanotube quantum resistors
-
S. Frank, P. Poncharal, Z.L. Wang, W.A. de Herr, Carbon nanotube quantum resistors. Science 280(5370), 1744–1746 (1998)
-
(1998)
Science
, vol.280
, Issue.5370
, pp. 1744-1746
-
-
Frank, S.1
Poncharal, P.2
Wang, Z.L.3
de Herr, W.A.4
-
12
-
-
27144461665
-
Multichannel ballistic transport in multiwall carbon nanotubes
-
H.J. Li, W.G. Lu, J.J. Li, X.D. Bai, C.Z. Gu, Multichannel ballistic transport in multiwall carbon nanotubes. Phys. Rev. Lett. 95(8), 086601 (2005)
-
(2005)
Phys. Rev. Lett
, vol.95
, Issue.8
, pp. 086601
-
-
Li, H.J.1
Lu, W.G.2
Li, J.J.3
Bai, X.D.4
Gu, C.Z.5
-
14
-
-
0032614777
-
Contact resistance of carbon nanotubes
-
J. Tersoff, Contact resistance of carbon nanotubes. Appl. Phys. Lett. 74(15), 2122–2124 (1999)
-
(1999)
Appl. Phys. Lett
, vol.74
, Issue.15
, pp. 2122-2124
-
-
Tersoff, J.1
-
15
-
-
0037965958
-
First-principles phase-coherent transport in metallic nanotubes with realistic contacts
-
J.J. Palacios, A.J. Perez-Jimenez, E. SanFabian, J.A. Verges, First-principles phase-coherent transport in metallic nanotubes with realistic contacts. Phys. Rev. Lett. 90(10), 106801 (2002)
-
(2002)
Phys. Rev. Lett
, vol.90
, Issue.10
, pp. 106801
-
-
Palacios, J.J.1
Perez-Jimenez, A.J.2
SanFabian, E.3
Verges, J.A.4
-
16
-
-
78650255789
-
Superstrong low-resistant carbon nanotube-carbide-metal nanocontacts
-
M.S. Wang, D. Golberg, Y. Bando, Superstrong low-resistant carbon nanotube-carbide-metal nanocontacts. Adv. Mater. 22(47), 5350–5355 (2010)
-
(2010)
Adv. Mater
, vol.22
, Issue.47
, pp. 5350-5355
-
-
Wang, M.S.1
Golberg, D.2
Bando, Y.3
-
17
-
-
79960905061
-
Effects of nanoscale contacts to graphene
-
A.D. Franklin, S.-J. Han, A.A. Bol, W. Haensch, Effects of nanoscale contacts to graphene. IEEE Electron. Dev. Lett. 32(8), 1035–1037 (2011)
-
(2011)
IEEE Electron. Dev. Lett
, vol.32
, Issue.8
, pp. 1035-1037
-
-
Franklin, A.D.1
Han, S.-J.2
Bol, A.A.3
Haensch, W.4
-
18
-
-
84655161227
-
Double contacts for improved performance of graphene transistors
-
A.D. Franklin, S.-J. Han, A.A. Bol, V. Pereveinos, Double contacts for improved performance of graphene transistors. IEEE Electron Device Lett. 33(1), 17–19 (2012)
-
(2012)
IEEE Electron Device Lett
, vol.33
, Issue.1
, pp. 17-19
-
-
Franklin, A.D.1
Han, S.-J.2
Bol, A.A.3
Pereveinos, V.4
-
19
-
-
34547699445
-
Contact resistance properties between nanotubes and various metals from quantum mechanics
-
Y. Matsuda, W.Q. Deng, W.A. Goddard, Contact resistance properties between nanotubes and various metals from quantum mechanics. J. Phys. Chem. C 111, 11113–11116 (2007)
-
(2007)
J. Phys. Chem. C
, vol.111
, pp. 11113-11116
-
-
Matsuda, Y.1
Deng, W.Q.2
Goddard, W.A.3
-
20
-
-
77958004238
-
Contact resistance for “end-contacted” metal-graphene and metal-nanotube interfaces from quantum mechanics
-
Y. Matsuda, W.Q. Deng, W.A. Goddard, Contact resistance for “end-contacted” metal-graphene and metal-nanotube interfaces from quantum mechanics. J. Phys. Chem. C 114, 17845–17850 (2010)
-
(2010)
J. Phys. Chem. C
, vol.114
, pp. 17845-17850
-
-
Matsuda, Y.1
Deng, W.Q.2
Goddard, W.A.3
-
21
-
-
84876563699
-
Reducing contact resistance in graphene devices through contact area patterning
-
J. Smith, A.D. Franklin, D.B. Farmer, C.D. Dimitrakopoulos, Reducing contact resistance in graphene devices through contact area patterning. ACS Nano 7(4), 3661–3667 (2013)
-
(2013)
ACS Nano
, vol.7
, Issue.4
, pp. 3661-3667
-
-
Smith, J.1
Franklin, A.D.2
Farmer, D.B.3
Dimitrakopoulos, C.D.4
-
22
-
-
33750206624
-
Focused, nanoscale electron-beam-induced deposition and etching
-
S.J. Randolph, J.D. Fowlkes, P.D. Rack, Focused, nanoscale electron-beam-induced deposition and etching. Crit. Rev. Sol. State Mater. Sci. 31(3), 55–89 (2006)
-
(2006)
Crit. Rev. Sol. State Mater. Sci
, vol.31
, Issue.3
, pp. 55-89
-
-
Randolph, S.J.1
Fowlkes, J.D.2
Rack, P.D.3
-
23
-
-
27744484845
-
Spatial resolution limits in electron-beam-induced-deposition
-
N. Silvis-Cividjian, C.W. Hagen, P. Kruit, Spatial resolution limits in electron-beam-induced-deposition. J. Appl. Phys. 98, 084905–084912 (2005)
-
(2005)
J. Appl. Phys
, vol.98
, pp. 084905-084912
-
-
Silvis-Cividjian, N.1
Hagen, C.W.2
Kruit, P.3
-
24
-
-
43249104389
-
Growth behavior near the ultimate resolution of nanometer scale focused electron beam-induced deposition
-
W.F. van Dorp, C.W. Hagen, P.A. Crozier, P. Kruit, Growth behavior near the ultimate resolution of nanometer scale focused electron beam-induced deposition. Nanotechnology 19(22), 225305 (2008)
-
(2008)
Nanotechnology
, vol.19
, Issue.22
, pp. 225305
-
-
van Dorp, W.F.1
Hagen, C.W.2
Crozier, P.A.3
Kruit, P.4
-
25
-
-
41349109320
-
Hydrocarbon lithography on graphene membranes
-
J.C. Meyer, C.O. Girit, M.F. Crommie, A. Zettl, Hydrocarbon lithography on graphene membranes. Appl. Phys. Lett. 92, 123110 (2008)
-
(2008)
Appl. Phys. Lett
, vol.92
, pp. 123110
-
-
Meyer, J.C.1
Girit, C.O.2
Crommie, M.F.3
Zettl, A.4
-
26
-
-
74949114828
-
The effect of the geometry and material properties of a carbon joint produced by electron beam induced deposition on electrical resistance of a multiwalled carbon nanotube-to-metal contact interface
-
K. Rykaczewski, M.R. Henry, S.K. Kim, A.G. Fedorov, D. Kulkarni, S. Singamaneni, V.V. Tsukruk, The effect of the geometry and material properties of a carbon joint produced by electron beam induced deposition on electrical resistance of a multiwalled carbon nanotube-to-metal contact interface. Nanotechnology 21(3), 0352021–03520212 (2010)
-
(2010)
Nanotechnology
, vol.21
, Issue.3
, pp. 0352021-03520212
-
-
Rykaczewski, K.1
Henry, M.R.2
Kim, S.K.3
Fedorov, A.G.4
Kulkarni, D.5
Singamaneni, S.6
Tsukruk, V.V.7
-
27
-
-
84865735117
-
Methyl radical reactivity on the basal plane of graphite
-
L. Mandeltort, P. Choudhury, J.K. Johnson, J.T. Yates, Methyl radical reactivity on the basal plane of graphite. J. Phys. Chem. C 116, 18347–18357 (2012)
-
(2012)
J. Phys. Chem. C
, vol.116
, pp. 18347-18357
-
-
Mandeltort, L.1
Choudhury, P.2
Johnson, J.K.3
Yates, J.T.4
-
28
-
-
1642359816
-
Adsorption and migration of carbon adatoms on carbon nanotubes: Density-functional ab initio and tight-binding studies
-
A.V. Krasheninnikov, K. Nordlund, P.O. Lehtinen, A.S. Foster, A. Ayuela, R.M. Nieminen, Adsorption and migration of carbon adatoms on carbon nanotubes: Density-functional ab initio and tight-binding studies. Phys. Rev. B. 69, 073402 (2004)
-
(2004)
Phys. Rev. B
, vol.69
, pp. 073402
-
-
Krasheninnikov, A.V.1
Nordlund, K.2
Lehtinen, P.O.3
Foster, A.S.4
Ayuela, A.5
Nieminen, R.M.6
-
29
-
-
33947305605
-
Analysis of electron beam induced deposition (EBID) of residual hydrocarbons in electron microscopy
-
K. Rykaczewski, W.B. White, A.G. Fedorov, Analysis of electron beam induced deposition (EBID) of residual hydrocarbons in electron microscopy. J. Appl. Phys. 101(5), 054307–054319 (2007)
-
(2007)
J. Appl. Phys
, vol.101
, Issue.5
, pp. 054307-054319
-
-
Rykaczewski, K.1
White, W.B.2
Fedorov, A.G.3
-
30
-
-
48149105989
-
Dynamic growth of carbon nanopillars and microrings in electron beam induced dissociation of residual hydrocarbons
-
K. Rykaczewski, A. Marshall, W.B. White, A.G. Fedorov, Dynamic growth of carbon nanopillars and microrings in electron beam induced dissociation of residual hydrocarbons. Ultramicroscopy 108(9), 989–992 (2008)
-
(2008)
Ultramicroscopy
, vol.108
, Issue.9
, pp. 989-992
-
-
Rykaczewski, K.1
Marshall, A.2
White, W.B.3
Fedorov, A.G.4
-
31
-
-
0035450058
-
Multiple electron-beam lithography
-
T.H.P. Chang, M. Mankos, K.Y. Lee, L.P. Muray, Multiple electron-beam lithography. Microelectron. Eng. 57–58, 117–135 (2001)
-
(2001)
Microelectron. Eng
, vol.57-58
, pp. 117-135
-
-
Chang, T.H.P.1
Mankos, M.2
Lee, K.Y.3
Muray, L.P.4
-
32
-
-
79960089812
-
Inert gas jets for growth control in electron beam induced deposition
-
M.R. Henry, S.K. Kim, K. Rykaczewski, A.G. Fedorov, Inert gas jets for growth control in electron beam induced deposition. Appl. Phys. Lett. 98(26), 263109 (2011)
-
(2011)
Appl. Phys. Lett
, vol.98
, Issue.26
, pp. 263109
-
-
Henry, M.R.1
Kim, S.K.2
Rykaczewski, K.3
Fedorov, A.G.4
-
33
-
-
49749114396
-
Gas-assisted focused electron beam and ion beam processing and fabrication
-
I. Utke, P. Hoffmann, J. Melngailis, Gas-assisted focused electron beam and ion beam processing and fabrication. J. Vac. Sci. Technol. B 26(4), 1197–1276 (2008)
-
(2008)
J. Vac. Sci. Technol. B
, vol.26
, Issue.4
, pp. 1197-1276
-
-
Utke, I.1
Hoffmann, P.2
Melngailis, J.3
-
34
-
-
84896886042
-
-
R. Winkler, J. Fowlkes, A. Szkudlarek, I. Utke, P.D. Rack, H. Plank, The nanoscale implications of a molecular gas beam during electron beam induced deposition
-
R. Winkler, J. Fowlkes, A. Szkudlarek, I. Utke, P.D. Rack, H. Plank, The nanoscale implications of a molecular gas beam during electron beam induced deposition. ACS Appl. Mat. Interfaces. doi:10.1021/am405591d. (2014)
-
(2014)
ACS Appl. Mat. Interfaces
-
-
-
35
-
-
84870267923
-
Fabrication of an ultra-low-resistance, ohmic contact to MWCNT-metal interconnect using graphitic carbon by electron beam induced deposition (EBID)
-
S.K. Kim, D.D. Kulkarni, K. Rykaczewski, M. Henry, V.V. Tsukruk, A.G. Fedorov, Fabrication of an ultra-low-resistance, ohmic contact to MWCNT-metal interconnect using graphitic carbon by electron beam induced deposition (EBID). IEEE Trans. Nanotechnol. 11(6), 1223–1230 (2012)
-
(2012)
IEEE Trans. Nanotechnol
, vol.11
, Issue.6
, pp. 1223-1230
-
-
Kim, S.K.1
Kulkarni, D.D.2
Rykaczewski, K.3
Henry, M.4
Tsukruk, V.V.5
Fedorov, A.G.6
-
36
-
-
84911807897
-
Meeting (San Francisco, CA
-
S.K. Kim, D.D. Kulkarni, S. Jang, M. Henry, V.V. Tsukruk, A.G. Fedorov, Graphitic FEBID carbon interfaces between MWCNT/graphene and metal electrodes. Poster presentation, Materials Research Society Spring 2013 Meeting (San Francisco, CA, April 1–5, 2013)
-
(2013)
April
, vol.2013
, pp. 1-5
-
-
-
37
-
-
79960617196
-
Nitrogen assisted etching of graphene layers in a scanning electron microscope
-
D. Fox, A. O’Neill, D. Zhou, M. Boese, J.N. Coleman, H.Z. Zhang, Nitrogen assisted etching of graphene layers in a scanning electron microscope. Appl. Phys. Lett. 98, 243117 (2011)
-
(2011)
Appl. Phys. Lett
, vol.98
, pp. 243117
-
-
Fox, D.1
O’Neill, A.2
Zhou, D.3
Boese, M.4
Coleman, J.N.5
Zhang, H.Z.6
-
38
-
-
84883598286
-
Electron-beam-induced direct etching of graphene
-
C. Thiele, A. Felten, T.J. Echtermeyer, A.C. Ferrari, C. Casiraghi, H.V. Lohneysen, R. Krupke, Electron-beam-induced direct etching of graphene. Carbon 64, 84–91 (2013)
-
(2013)
Carbon
, vol.64
, pp. 84-91
-
-
Thiele, C.1
Felten, A.2
Echtermeyer, T.J.3
Ferrari, A.C.4
Casiraghi, C.5
Lohneysen, H.V.6
Krupke, R.7
-
39
-
-
79955947210
-
Thermally induced transformation of amorphous carbon nanostructures fabricated by electron beam induced deposition
-
D.D. Kulkarni, K. Rykaczewski, S. Singamaneni, S. Kim, A.G. Fedorov, V.V. Tsukruk, Thermally induced transformation of amorphous carbon nanostructures fabricated by electron beam induced deposition. ACS Appl. Mater. Interfaces 3(3), 710–720 (2011)
-
(2011)
ACS Appl. Mater. Interfaces
, vol.3
, Issue.3
, pp. 710-720
-
-
Kulkarni, D.D.1
Rykaczewski, K.2
Singamaneni, S.3
Kim, S.4
Fedorov, A.G.5
Tsukruk, V.V.6
-
40
-
-
84861124712
-
Fast light-induced phase transformations of carbon on metal nanoparticles
-
D. Kulkarni, S.-K. Kim, A.G. Fedorov, V.V. Tsukruk, Fast light-induced phase transformations of carbon on metal nanoparticles. Adv. Funct. Mat., 22(10), 2129–2139 (2012)
-
(2012)
Adv. Funct. Mat
, vol.22
, Issue.10
, pp. 2129-2139
-
-
Kulkarni, D.1
Kim, S.-K.2
Fedorov, A.G.3
Tsukruk, V.V.4
-
41
-
-
84870875589
-
Enhanced purity and resolution via laser assisted electron beam induced deposition of platinum
-
N.A. Roberts, J.D. Fowlkes, G.A. Magel, P.D. Rack, Enhanced purity and resolution via laser assisted electron beam induced deposition of platinum. Nanoscale 5(1), 408–415 (2013)
-
(2013)
Nanoscale
, vol.5
, Issue.1
, pp. 408-415
-
-
Roberts, N.A.1
Fowlkes, J.D.2
Magel, G.A.3
Rack, P.D.4
-
42
-
-
79952445612
-
The origins and limits of metal-graphene junction resistance
-
F. Xia, V. Perebeinos, Y. Lin, Y. Wu, P. Avouris, The origins and limits of metal-graphene junction resistance. Nat. Nanotechnol. 6, 179–184 (2011)
-
(2011)
Nat. Nanotechnol
, vol.6
, pp. 179-184
-
-
Xia, F.1
Perebeinos, V.2
Lin, Y.3
Wu, Y.4
Avouris, P.5
-
43
-
-
84855463133
-
Low-resistance electrical contact to carbon nanotubes with graphitic interfacial layer
-
Y. Chai, A. Hazeghi, K. Takei, H.Y. Chen, P.C.H. Chan, A. Javey, H.S.P. Wong, Low-resistance electrical contact to carbon nanotubes with graphitic interfacial layer. IEEE Trans. Electron Device 59(1), 12–19 (2012)
-
(2012)
IEEE Trans. Electron Device
, vol.59
, Issue.1
, pp. 12-19
-
-
Chai, Y.1
Hazeghi, A.2
Takei, K.3
Chen, H.Y.4
Chan, P.C.H.5
Javey, A.6
Wong, H.S.P.7
-
44
-
-
73649094787
-
Contact resistance between metal and carbon nanotube interconnects: effect of work function and wettability
-
S.C. Lim, J.H. Jang, D.J. Bae, G.H. Han, S. Lee, I.S. Yeo, Y.H. Lee, Contact resistance between metal and carbon nanotube interconnects: effect of work function and wettability. Appl. Phys. Lett. 95(26), 264103 (2009)
-
(2009)
Appl. Phys. Lett
, vol.95
, Issue.26
, pp. 264103
-
-
Lim, S.C.1
Jang, J.H.2
Bae, D.J.3
Han, G.H.4
Lee, S.5
Yeo, I.S.6
Lee, Y.H.7
-
45
-
-
0034883236
-
Work function of carbon nanotubes
-
M. Shiraishi, M. Ata, Work function of carbon nanotubes. Carbon 39(12), 1913–1917 (2001)
-
(2001)
Carbon
, vol.39
, Issue.12
, pp. 1913-1917
-
-
Shiraishi, M.1
Ata, M.2
-
46
-
-
33645683483
-
In situ fabrication and graphitization of amorphous carbon nanowires and their electrical properties
-
C.H. Jin, J.Y. Wang, Q. Chen, L.M. Peng, In situ fabrication and graphitization of amorphous carbon nanowires and their electrical properties. J. Phys. Chem. B 110, 5423–5428 (2006)
-
(2006)
J. Phys. Chem. B
, vol.110
, pp. 5423-5428
-
-
Jin, C.H.1
Wang, J.Y.2
Chen, Q.3
Peng, L.M.4
-
47
-
-
0010345807
-
Thermal stability and electrical properties of hydrogenated amorphous carbon film
-
A. Callegari, D.A. Buchanan, H. Hovel, E. Simonyi, A. Marwick, Thermal stability and electrical properties of hydrogenated amorphous carbon film. Appl. Phys. Lett. 65(25), 3200–3202 (1994)
-
(1994)
Appl. Phys. Lett
, vol.65
, Issue.25
, pp. 3200-3202
-
-
Callegari, A.1
Buchanan, D.A.2
Hovel, H.3
Simonyi, E.4
Marwick, A.5
-
48
-
-
70349503971
-
Electron beam induced deposition of residual hydrocarbons in the presence of a multiwall carbon nanotube
-
K. Rykaczewski, M. Henry, A.G. Fedorov, Electron beam induced deposition of residual hydrocarbons in the presence of a multiwall carbon nanotube. Appl. Phys. Lett. 95(11), 113112–113115 (2009)
-
(2009)
Appl. Phys. Lett
, vol.95
, Issue.11
, pp. 113112-113115
-
-
Rykaczewski, K.1
Henry, M.2
Fedorov, A.G.3
-
49
-
-
84911805909
-
Electron Beam Induced Deposition of Interface to Carbon Nanotube. U.S
-
A.G. Fedorov, K. Rykaczewski, Electron Beam Induced Deposition of Interface to Carbon Nanotube. U.S. Patent No. 8,207,058 (2012)
-
(2012)
Patent No. 8,207
, pp. 058
-
-
Fedorov, A.G.1
Rykaczewski, K.2
-
50
-
-
0242603790
-
Interpretation of raman spectra of disordered and amorphous carbon
-
A.C. Ferrari, J. Robertson, Interpretation of raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095–14107 (2000)
-
(2000)
Phys. Rev. B
, vol.61
, pp. 14095-14107
-
-
Ferrari, A.C.1
Robertson, J.2
-
51
-
-
68949135389
-
Screening and interlayer coupling in multilayer graphene field-effect transistors
-
Y. Sui, J. Appenzeller, Screening and interlayer coupling in multilayer graphene field-effect transistors. Nano Lett. 9(8), 2973–2977 (2009)
-
(2009)
Nano Lett
, vol.9
, Issue.8
, pp. 2973-2977
-
-
Sui, Y.1
Appenzeller, J.2
-
52
-
-
84864688450
-
Determination of work function of graphene under a metal electrode and its role in contact resistance
-
S.M. Song, J.K. Park, O.J. Sul, B.J. Cho, Determination of work function of graphene under a metal electrode and its role in contact resistance. Nano Lett. 12, 3887–3892 (2012)
-
(2012)
Nano Lett
, vol.12
, pp. 3887-3892
-
-
Song, S.M.1
Park, J.K.2
Sul, O.J.3
Cho, B.J.4
-
53
-
-
77953716485
-
Maskless and resist-free rapid prototyping of three dimensional silicon structures through Electron Beam Induced Deposition (EBID) of carbon in combination with Metal assisted Chemical Etching (MaCE) of Silicon. ACS Appl
-
K. Rykaczewski, O.J. Hildreth, D. Kulkarni, M. Henry, S.-K. Kim, C.P. Wong, V.V. Tsukruk, A.G. Fedorov, Maskless and resist-free rapid prototyping of three dimensional silicon structures through Electron Beam Induced Deposition (EBID) of carbon in combination with Metal assisted Chemical Etching (MaCE) of Silicon. ACS Appl. Mat. Interfaces 2(4), 969–973 (2010)
-
(2010)
Mat. Interfaces
, vol.2
, Issue.4
, pp. 969-973
-
-
Rykaczewski, K.1
Hildreth, O.J.2
Kulkarni, D.3
Henry, M.4
Kim, S.-K.5
Wong, C.P.6
Tsukruk, V.V.7
Fedorov, A.G.8
-
54
-
-
79952582287
-
Directed 2D-to-3D pattern transfer method for controlled fabrication of topologically complex three-dimensional features in silicon
-
K. Rykaczewski, O.J. Hildreth, C.P. Wong, A.G. Fedorov, J.H.J. Scott, Directed 2D-to-3D pattern transfer method for controlled fabrication of topologically complex three-dimensional features in silicon. Adv. Mater. 23(5), 659–663 (2011)
-
(2011)
Adv. Mater
, vol.23
, Issue.5
, pp. 659-663
-
-
Rykaczewski, K.1
Hildreth, O.J.2
Wong, C.P.3
Fedorov, A.G.4
Scott, J.H.J.5
-
55
-
-
79958855232
-
Guided three-dimensional catalyst folding during metal-assisted chemical etching of silicon
-
K. Rykaczewski, O.J. Hildreth, C.P. Wong, A.G. Fedorov, J.H.J. Scott, Guided three-dimensional catalyst folding during metal-assisted chemical etching of silicon. Nano Lett. 11(6), 2369–2374 (2011)
-
(2011)
Nano Lett
, vol.11
, Issue.6
, pp. 2369-2374
-
-
Rykaczewski, K.1
Hildreth, O.J.2
Wong, C.P.3
Fedorov, A.G.4
Scott, J.H.J.5
|