메뉴 건너뛰기




Volumn 9, Issue 2, 2014, Pages 183-199

New assays and approaches for discovery and design of Sirtuin modulators

Author keywords

Activator; Activity assay; Deacetylases; Deacylases; Drug development; Inhibitor; Mechanism; Modulators; Sirtuin; Substrate specific modulation

Indexed keywords

2,3 NAPHTHALENEDICARBOXALDEHYDE; 3 (3,5 DIBROMO 4 HYDROXYBENZYLIDENE) 1,3 DIHYDRO 5 IODO 2 INDOLONE; 7 AMINO 4 METHYLCOUMARIN; ADENOSINE DIPHOSPHATE RIBOSE; COUMARIN DERIVATIVE; DITHIOTHREITOL; EX 527; FATTY ACID; FLUORESCENT DYE; GLUTAMIC ACID; HISTONE; HISTONE DEACETYLASE INHIBITOR; HYDROLASE INHIBITOR; ISONICOTINAMIDE; NICOTINAMIDASE; NICOTINAMIDE; NICOTINAMIDE ADENINE DINUCLEOTIDE; NICOTINIC ACID; NUCLEOPHILE; POLYPHENOL DERIVATIVE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE; RESVERATROL; SALEMIDE; SIRTINOL; SIRTUIN; SIRTUIN 5; SIRTUIN MODULATING AGENT; SRT 1720; SURAMIN; UNCLASSIFIED DRUG;

EID: 84893149368     PISSN: 17460441     EISSN: 1746045X     Source Type: Journal    
DOI: 10.1517/17460441.2014.875526     Document Type: Review
Times cited : (49)

References (118)
  • 2
    • 84884163378 scopus 로고    scopus 로고
    • An acetylome peptide microarray reveals specificities and deacetylation substrates for all human sirtuin isoforms
    • Rauh D, Fischer F, Gertz M, et al. An acetylome peptide microarray reveals specificities and deacetylation substrates for all human sirtuin isoforms. Nat Commun 2013;4:2327
    • (2013) Nat Commun , vol.4 , pp. 2327
    • Rauh, D.1    Fischer, F.2    Gertz, M.3
  • 3
    • 34547864236 scopus 로고    scopus 로고
    • Histone deacetylase inhibitors: Molecular mechanisms of action
    • Xu WS, Parmigiani RB, Marks PA. Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 2007;26:5541-52
    • (2007) Oncogene , vol.26 , pp. 5541-5552
    • Xu, W.S.1    Parmigiani, R.B.2    Marks, P.A.3
  • 4
    • 77953292895 scopus 로고    scopus 로고
    • Sirtuins inhibitors: The approach to affinity and selectivity
    • Cen Y. Sirtuins inhibitors: the approach to affinity and selectivity. Biochim Biophys Acta 2010;1804:1635-44
    • (2010) Biochim Biophys Acta , vol.1804 , pp. 1635-1644
    • Cen, Y.1
  • 5
    • 79958041601 scopus 로고    scopus 로고
    • The SirT3 divining rod points to oxidative stress
    • Bell EL, Guarente L. The SirT3 divining rod points to oxidative stress. Mol Cell 2011;42:561-8
    • (2011) Mol Cell , vol.42 , pp. 561-568
    • Bell, E.L.1    Guarente, L.2
  • 6
    • 13944253348 scopus 로고    scopus 로고
    • Calorie restrictionthe SIR2 connection
    • Guarente L, Picard F. Calorie restrictionthe SIR2 connection. Cell 2005;120:473-82
    • (2005) Cell , vol.120 , pp. 473-482
    • Guarente, L.1    Picard, F.2
  • 7
    • 77949887506 scopus 로고    scopus 로고
    • Mammalian sirtuins: Biological insights and disease relevance
    • Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 2010;5:253-95
    • (2010) Annu Rev Pathol , vol.5 , pp. 253-295
    • Haigis, M.C.1    Sinclair, D.A.2
  • 9
    • 34249083199 scopus 로고    scopus 로고
    • Sirtuins in mammals: Insights into their biological function
    • Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function. Biochem J 2007;404:1-13
    • (2007) Biochem J , vol.404 , pp. 1-13
    • Michan, S.1    Sinclair, D.2
  • 10
    • 77953285831 scopus 로고    scopus 로고
    • Function and regulation of the mitochondrial Sirtuin isoform Sirt5 in Mammalia
    • Gertz M, Steegborn C. Function and regulation of the mitochondrial Sirtuin isoform Sirt5 in Mammalia. Biochim Biophys Acta 2010;1804:1658-65
    • (2010) Biochim Biophys Acta , vol.1804 , pp. 1658-1665
    • Gertz, M.1    Steegborn, C.2
  • 11
    • 84878891625 scopus 로고    scopus 로고
    • SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase
    • Laurent G, German NJ, Saha AK, et al. SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. Mol Cell 2013;50:686-98
    • (2013) Mol Cell , vol.50 , pp. 686-698
    • Laurent, G.1    German, N.J.2    Saha, A.K.3
  • 12
    • 0037291214 scopus 로고    scopus 로고
    • The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase
    • North BJ, Marshall BL, Borra MT, et al. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell 2003;11:437-44
    • (2003) Mol Cell , vol.11 , pp. 437-444
    • North, B.J.1    Marshall, B.L.2    Borra, M.T.3
  • 13
    • 84874709843 scopus 로고    scopus 로고
    • SIRT1 and SIRT2: Emerging targets in neurodegeneration
    • Donmez G, Outeiro TF. SIRT1 and SIRT2: emerging targets in neurodegeneration. EMBO Mol Med 2013;5:344-52
    • (2013) EMBO Mol Med , vol.5 , pp. 344-352
    • Donmez, G.1    Outeiro, T.F.2
  • 14
    • 78751663378 scopus 로고    scopus 로고
    • SIRT1 modulation as a novel approach to the treatment of diseases of aging
    • Blum CA, Ellis JL, Loh C, et al. SIRT1 modulation as a novel approach to the treatment of diseases of aging. J Med Chem 2011;54:417-32
    • (2011) J Med Chem , vol.54 , pp. 417-432
    • Blum, C.A.1    Ellis, J.L.2    Loh, C.3
  • 15
    • 79957968813 scopus 로고    scopus 로고
    • Medicinal chemistry of sirtuin inhibitors
    • Chen L. Medicinal chemistry of sirtuin inhibitors. Curr Med Chem 2011;18:1936-46
    • (2011) Curr Med Chem , vol.18 , pp. 1936-1946
    • Chen, L.1
  • 16
    • 77953289094 scopus 로고    scopus 로고
    • Structural basis for sirtuin function: What we know and what we don't
    • Sanders BD, Jackson B, Marmorstein R. Structural basis for sirtuin function: what we know and what we don't. Biochim Biophys Acta 2010;1804:1604-16
    • (2010) Biochim Biophys Acta , vol.1804 , pp. 1604-1616
    • Sanders, B.D.1    Jackson, B.2    Marmorstein, R.3
  • 17
    • 69949151709 scopus 로고    scopus 로고
    • Crystal structures of human SIRT3 displaying substrate-induced conformational changes
    • Jin L, Wei W, Jiang Y, et al. Crystal structures of human SIRT3 displaying substrate-induced conformational changes. J Biol Chem 2009;284:24394-405
    • (2009) J Biol Chem , vol.284 , pp. 24394-24405
    • Jin, L.1    Wei, W.2    Jiang, Y.3
  • 18
    • 84865980711 scopus 로고    scopus 로고
    • Structures, substrates, and regulators of Mammalian sirtuins - Opportunities and challenges for drug development
    • Moniot S, Weyand M, Steegborn C. Structures, substrates, and regulators of Mammalian sirtuins - opportunities and challenges for drug development. Front Pharmacol 2012;3:16
    • (2012) Front Pharmacol , vol.3 , pp. 16
    • Moniot, S.1    Weyand, M.2    Steegborn, C.3
  • 19
    • 79957944140 scopus 로고    scopus 로고
    • Advances in characterization of human sirtuin isoforms: Chemistries, targets and therapeutic applications
    • Cen Y, Youn DY, Sauve AA. Advances in characterization of human sirtuin isoforms: chemistries, targets and therapeutic applications. Curr Med Chem 2011;18:1919-35
    • (2011) Curr Med Chem , vol.18 , pp. 1919-1935
    • Cen, Y.1    Youn, D.Y.2    Sauve, A.A.3
  • 20
    • 84862573534 scopus 로고    scopus 로고
    • Protein lysine acylation and cysteine succination by intermediates of energy metabolism
    • Lin H, Su X, He B. Protein lysine acylation and cysteine succination by intermediates of energy metabolism. ACS Chem Biol 2012;7:947-60
    • (2012) ACS Chem Biol , vol.7 , pp. 947-960
    • Lin, H.1    Su, X.2    He, B.3
  • 21
    • 81055122671 scopus 로고    scopus 로고
    • Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase
    • Du J, Zhou Y, Su X, et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 2011;334:806-9
    • (2011) Science , vol.334 , pp. 806-809
    • Du, J.1    Zhou, Y.2    Su, X.3
  • 22
    • 84875881601 scopus 로고    scopus 로고
    • SIRT6 regulates TNF-alpha secretion through hydrolysis of long-chain fatty acyl lysine
    • Jiang H, Khan S, Wang Y, et al. SIRT6 regulates TNF-alpha secretion through hydrolysis of long-chain fatty acyl lysine. Nature 2013;496:110-13
    • (2013) Nature , vol.496 , pp. 110-113
    • Jiang, H.1    Khan, S.2    Wang, Y.3
  • 23
    • 20444409132 scopus 로고    scopus 로고
    • Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase
    • Liszt G, Ford E, Kurtev M, Guarente L. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J Biol Chem 2005;280:21313-20
    • (2005) J Biol Chem , vol.280 , pp. 21313-21320
    • Liszt, G.1    Ford, E.2    Kurtev, M.3    Guarente, L.4
  • 24
    • 65249091951 scopus 로고    scopus 로고
    • Investigating the ADP-ribosyltransferase activity of sirtuins with NAD analogues and 32P-NAD
    • Du J, Jiang H, Lin H. Investigating the ADP-ribosyltransferase activity of sirtuins with NAD analogues and 32P-NAD. Biochemistry 2009;48:2878-90
    • (2009) Biochemistry , vol.48 , pp. 2878-2890
    • Du, J.1    Jiang, H.2    Lin, H.3
  • 25
    • 0035914304 scopus 로고    scopus 로고
    • Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening
    • Grozinger CM, Chao ED, Blackwell HE, et al. Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening. J Biol Chem 2001;276:38837-43
    • (2001) J Biol Chem , vol.276 , pp. 38837-38843
    • Grozinger, C.M.1    Chao, E.D.2    Blackwell, H.E.3
  • 26
    • 60149091562 scopus 로고    scopus 로고
    • Salermide, a Sirtuin inhibitor with a strong cancer-specific proapoptotic effect
    • Lara E, Mai A, Calvanese V, et al. Salermide, a Sirtuin inhibitor with a strong cancer-specific proapoptotic effect. Oncogene 2009;28:781-91
    • (2009) Oncogene , vol.28 , pp. 781-791
    • Lara, E.1    Mai, A.2    Calvanese, V.3
  • 27
    • 34547599329 scopus 로고    scopus 로고
    • Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson's disease
    • Outeiro TF, Kontopoulos E, Altmann SM, et al. Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson's disease. Science 2007;317:516-19
    • (2007) Science , vol.317 , pp. 516-519
    • Outeiro, T.F.1    Kontopoulos, E.2    Altmann, S.M.3
  • 28
    • 84871017552 scopus 로고    scopus 로고
    • Inhibition of the human deacylase Sirtuin 5 by the indole GW5074
    • Suenkel B, Fischer F, Steegborn C. Inhibition of the human deacylase Sirtuin 5 by the indole GW5074. Bioorg Med Chem Lett 2013;23:143-6
    • (2013) Bioorg Med Chem Lett , vol.23 , pp. 143-146
    • Suenkel, B.1    Fischer, F.2    Steegborn, C.3
  • 29
    • 33847635635 scopus 로고    scopus 로고
    • Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin
    • Schuetz A, Min J, Antoshenko T, et al. Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin. Structure 2007;15:377-89
    • (2007) Structure , vol.15 , pp. 377-389
    • Schuetz, A.1    Min, J.2    Antoshenko, T.3
  • 30
    • 35548936745 scopus 로고    scopus 로고
    • Structure-activity studies on suramin analogues as inhibitors of NAD+- dependent histone deacetylases (sirtuins)
    • Trapp J, Meier R, Hongwiset D, et al. Structure-activity studies on suramin analogues as inhibitors of NAD+- dependent histone deacetylases (sirtuins). ChemMedChem 2007;2:1419-31
    • (2007) ChemMedChem , vol.2 , pp. 1419-1431
    • Trapp, J.1    Meier, R.2    Hongwiset, D.3
  • 31
    • 29144501185 scopus 로고    scopus 로고
    • Discovery of indoles as potent and selective inhibitors of the deacetylase SIRT1
    • Napper AD, Hixon J, McDonagh T, et al. Discovery of indoles as potent and selective inhibitors of the deacetylase SIRT1. J Med Chem 2005;48:8045-54
    • (2005) J Med Chem , vol.48 , pp. 8045-8054
    • Napper, A.D.1    Hixon, J.2    McDonagh, T.3
  • 32
    • 84880681461 scopus 로고    scopus 로고
    • Ex-527 inhibits Sirtuins by exploiting their unique NAD+-dependent deacetylation mechanism
    • Gertz M, Fischer F, Nguyen GT, et al. Ex-527 inhibits Sirtuins by exploiting their unique NAD+-dependent deacetylation mechanism. Proc Natl Acad Sci USA 2013;110:E2772-81
    • (2013) Proc Natl Acad Sci USA , vol.110
    • Gertz, M.1    Fischer, F.2    Nguyen, G.T.3
  • 33
    • 0141719702 scopus 로고    scopus 로고
    • Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan
    • Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 2003;425:191-6
    • (2003) Nature , vol.425 , pp. 191-196
    • Howitz, K.T.1    Bitterman, K.J.2    Cohen, H.Y.3
  • 34
    • 84874721105 scopus 로고    scopus 로고
    • Evidence for a common mechanism of SIRT1 regulation by allosteric activators
    • Hubbard BP, Gomes AP, Dai H, et al. Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science 2013;339:1216-19
    • (2013) Science , vol.339 , pp. 1216-1219
    • Hubbard, B.P.1    Gomes, A.P.2    Dai, H.3
  • 35
    • 78751704777 scopus 로고    scopus 로고
    • Emerging mitochondrial signaling mechanisms in physiology, aging processes, and as drug targets
    • Lakshminarasimhan M, Steegborn C. Emerging mitochondrial signaling mechanisms in physiology, aging processes, and as drug targets. Exp Gerontol 2011;46:174-7
    • (2011) Exp Gerontol , vol.46 , pp. 174-177
    • Lakshminarasimhan, M.1    Steegborn, C.2
  • 36
    • 84869816787 scopus 로고    scopus 로고
    • A molecular mechanism for direct sirtuin activation by resveratrol
    • Gertz M, Nguyen GT, Fischer F, et al. A molecular mechanism for direct sirtuin activation by resveratrol. PLoS One 2012;7:e49761
    • (2012) PLoS One , vol.7
    • Gertz, M.1    Nguyen, G.T.2    Fischer, F.3
  • 37
    • 13944258164 scopus 로고    scopus 로고
    • Chemical activation of Sir2- dependent silencing by relief of nicotinamide inhibition
    • Sauve AA, Moir RD, Schramm VL, Willis IM. Chemical activation of Sir2- dependent silencing by relief of nicotinamide inhibition. Mol Cell 2005;17:595-601
    • (2005) Mol Cell , vol.17 , pp. 595-601
    • Sauve, A.A.1    Moir, R.D.2    Schramm, V.L.3    Willis, I.M.4
  • 38
    • 36749087548 scopus 로고    scopus 로고
    • Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes
    • Milne JC, Lambert PD, Schenk S, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 2007;450:712-16
    • (2007) Nature , vol.450 , pp. 712-716
    • Milne, J.C.1    Lambert, P.D.2    Schenk, S.3
  • 40
    • 40849135481 scopus 로고    scopus 로고
    • The Sirtuin family: Therapeutic targets to treat diseases of aging
    • Milne JC, Denu JM. The Sirtuin family: therapeutic targets to treat diseases of aging. Curr Opin Chem Biol 2008;12:11-17
    • (2008) Curr Opin Chem Biol , vol.12 , pp. 11-17
    • Milne, J.C.1    Denu, J.M.2
  • 43
    • 33746992118 scopus 로고    scopus 로고
    • Substrate and functional diversity of lysine acetylation revealed by a proteomics survey
    • Kim SC, Sprung R, Chen Y, et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 2006;23:607-18
    • (2006) Mol Cell , vol.23 , pp. 607-618
    • Kim, S.C.1    Sprung, R.2    Chen, Y.3
  • 44
    • 68949212379 scopus 로고    scopus 로고
    • Lysine acetylation targets protein complexes and co-regulates major cellular functions
    • Choudhary C, Kumar C, Gnad F, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009;325:834-40
    • (2009) Science , vol.325 , pp. 834-840
    • Choudhary, C.1    Kumar, C.2    Gnad, F.3
  • 45
    • 61649089277 scopus 로고    scopus 로고
    • Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli
    • Zhang J, Sprung R, Pei J, et al. Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol Cell Proteomics 2009;8:215-25
    • (2009) Mol Cell Proteomics , vol.8 , pp. 215-225
    • Zhang, J.1    Sprung, R.2    Pei, J.3
  • 46
    • 84869215170 scopus 로고    scopus 로고
    • Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in saccharomyces cerevisiae
    • Henriksen P, Wagner SA, Weinert BT, et al. Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in saccharomyces cerevisiae. Mol Cell Proteomics 2012;11:1510-22
    • (2012) Mol Cell Proteomics , vol.11 , pp. 1510-1522
    • Henriksen, P.1    Wagner, S.A.2    Weinert, B.T.3
  • 47
    • 84872276165 scopus 로고    scopus 로고
    • Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome
    • Hebert A, Dittenhafer-Reed K, Yu W, et al. Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol Cell 2013;49:186-99
    • (2013) Mol Cell , vol.49 , pp. 186-199
    • Hebert, A.1    Dittenhafer-Reed, K.2    Yu, W.3
  • 48
    • 84876217035 scopus 로고    scopus 로고
    • Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways
    • Rardin MJ, Newman JC, Held JM, et al. Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Proc Natl Acad Sci USA 2013;110:6601-6
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. 6601-6606
    • Rardin, M.J.1    Newman, J.C.2    Held, J.M.3
  • 49
    • 84867186480 scopus 로고    scopus 로고
    • Quantitative acetylome analysis reveals the roles of SIRT1 in regulating diverse substrates and cellular pathways
    • Chen Y, Zhao W, Yang JS, et al. Quantitative acetylome analysis reveals the roles of SIRT1 in regulating diverse substrates and cellular pathways. Mol Cell Proteomics 2012;11:1048-62
    • (2012) Mol Cell Proteomics , vol.11 , pp. 1048-1062
    • Chen, Y.1    Zhao, W.2    Yang, J.S.3
  • 50
    • 84857883360 scopus 로고    scopus 로고
    • Mitochondrial acetylome analysis in a mouse model of alcohol-induced liver injury utilizing SIRT3 knockout mice
    • Fritz KS, Galligan JJ, Hirschey MD, et al. Mitochondrial acetylome analysis in a mouse model of alcohol-induced liver injury utilizing SIRT3 knockout mice. J Proteome Res 2012;11:1633-43
    • (2012) J Proteome Res , vol.11 , pp. 1633-1643
    • Fritz, K.S.1    Galligan, J.J.2    Hirschey, M.D.3
  • 51
    • 79951889242 scopus 로고    scopus 로고
    • Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome
    • Morselli E, Marino G, Bennetzen MV, et al. Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J Cell Biol 2011;192:615-29
    • (2011) J Cell Biol , vol.192 , pp. 615-629
    • Morselli, E.1    Marino, G.2    Bennetzen, M.V.3
  • 52
    • 1042265486 scopus 로고    scopus 로고
    • Quantitative assays for characterization of the Sir2 family of NAD(+)-dependent deacetylases
    • Borra MT, Denu JM. Quantitative assays for characterization of the Sir2 family of NAD(+)-dependent deacetylases. Methods Enzymol 2004;376:171-87
    • (2004) Methods Enzymol , vol.376 , pp. 171-187
    • Borra, M.T.1    Denu, J.M.2
  • 53
    • 78649993987 scopus 로고    scopus 로고
    • Electrophoretically mediated microanalysis assay for sirtuin enzymes
    • Fan Y, Scriba GK. Electrophoretically mediated microanalysis assay for sirtuin enzymes. Electrophoresis 2010;31:3874-80
    • (2010) Electrophoresis , vol.31 , pp. 3874-3880
    • Fan, Y.1    Scriba, G.K.2
  • 54
  • 55
    • 43049119236 scopus 로고    scopus 로고
    • The use of diversity profiling to characterize chemical modulators of the histone deacetylases
    • Blackwell L, Norris J, Suto CM, Janzen WP. The use of diversity profiling to characterize chemical modulators of the histone deacetylases. Life Sci 2008;82:1050-8
    • (2008) Life Sci , vol.82 , pp. 1050-1058
    • Blackwell, L.1    Norris, J.2    Suto, C.M.3    Janzen, W.P.4
  • 56
    • 43849103348 scopus 로고    scopus 로고
    • High-throughput assays for sirtuin enzymes: A microfluidic mobility shift assay and a bioluminescence assay
    • Liu Y, Gerber R, Wu J, et al. High-throughput assays for sirtuin enzymes: a microfluidic mobility shift assay and a bioluminescence assay. Anal Biochem 2008;378:53-9
    • (2008) Anal Biochem , vol.378 , pp. 53-59
    • Liu, Y.1    Gerber, R.2    Wu, J.3
  • 57
    • 27744569240 scopus 로고    scopus 로고
    • Unstructured conformations are a substrate requirement for the Sir2 family of NADdependent protein deacetylases
    • Khan AN, Lewis PN. Unstructured conformations are a substrate requirement for the Sir2 family of NADdependent protein deacetylases. J Biol Chem 2005;280:36073-8
    • (2005) J Biol Chem , vol.280 , pp. 36073-36078
    • Khan, A.N.1    Lewis, P.N.2
  • 58
    • 4143100391 scopus 로고    scopus 로고
    • Fluorescence assay of SIRT protein deacetylases using an acetylated peptide substrate and a secondary trypsin reaction
    • Marcotte PA, Richardson PL, Guo J, et al. Fluorescence assay of SIRT protein deacetylases using an acetylated peptide substrate and a secondary trypsin reaction. Anal Biochem 2004;332:90-9
    • (2004) Anal Biochem , vol.332 , pp. 90-99
    • Marcotte, P.A.1    Richardson, P.L.2    Guo, J.3
  • 59
    • 0034687694 scopus 로고    scopus 로고
    • Silent information regulator 2 family of NAD- dependent histone/ protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose
    • Tanner KG, Landry J, Sternglanz R, Denu JM. Silent information regulator 2 family of NAD- dependent histone/ protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc Natl Acad Sci USA 2000;97:14178-82
    • (2000) Proc Natl Acad Sci USA , vol.97 , pp. 14178-14182
    • Tanner, K.G.1    Landry, J.2    Sternglanz, R.3    Denu, J.M.4
  • 60
    • 0037166269 scopus 로고    scopus 로고
    • Structural identification of 2'- and 3'-O-acetyl- ADP-ribose as novel metabolites derived from the Sir2 family of beta-NAD+- dependent histone/protein deacetylases
    • Jackson MD, Denu JM. Structural identification of 2'- and 3'-O-acetyl- ADP-ribose as novel metabolites derived from the Sir2 family of beta-NAD+- dependent histone/protein deacetylases. J Biol Chem 2002;277:18535-44
    • (2002) J Biol Chem , vol.277 , pp. 18535-18544
    • Jackson, M.D.1    Denu, J.M.2
  • 61
    • 33744956371 scopus 로고    scopus 로고
    • Use of substrate analogs and mutagenesis to study substrate binding and catalysis in the Sir2 family of NAD-dependent protein deacetylases
    • Khan AN, Lewis PN. Use of substrate analogs and mutagenesis to study substrate binding and catalysis in the Sir2 family of NAD-dependent protein deacetylases. J Biol Chem 2006;281:11702-11
    • (2006) J Biol Chem , vol.281 , pp. 11702-11711
    • Khan, A.N.1    Lewis, P.N.2
  • 62
    • 23944472164 scopus 로고    scopus 로고
    • Microplate filtration assay for nicotinamide release from NAD using a boronic acid resin
    • McDonagh T, Hixon J, DiStefano PS, et al. Microplate filtration assay for nicotinamide release from NAD using a boronic acid resin. Methods 2005;36:346-50
    • (2005) Methods , vol.36 , pp. 346-350
    • McDonagh, T.1    Hixon, J.2    Distefano, P.S.3
  • 63
    • 0034872408 scopus 로고    scopus 로고
    • Improvement and validation of the fluorescence-based histone deacetylase assay using an internal standard
    • Hoffmann K, Heltweg B, Jung M. Improvement and validation of the fluorescence-based histone deacetylase assay using an internal standard. Arch Pharm (Weinheim) 2001;334:248-52
    • (2001) Arch Pharm (Weinheim) , vol.334 , pp. 248-252
    • Hoffmann, K.1    Heltweg, B.2    Jung, M.3
  • 64
    • 0035910031 scopus 로고    scopus 로고
    • Identification of a small molecule inhibitor of Sir2p
    • Bedalov A, Gatbonton T, Irvine WP, et al. Identification of a small molecule inhibitor of Sir2p. Proc Natl Acad Sci USA 2001;98:15113-18
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 15113-15118
    • Bedalov, A.1    Gatbonton, T.2    Irvine, W.P.3
  • 65
    • 0035913911 scopus 로고    scopus 로고
    • Negative control of p53 by Sir2alpha promotes cell survival under stress
    • Luo J, Nikolaev AY, Imai S, et al. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 2001;107:137-48
    • (2001) Cell , vol.107 , pp. 137-148
    • Luo, J.1    Nikolaev, A.Y.2    Imai, S.3
  • 66
    • 84886686038 scopus 로고    scopus 로고
    • Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins
    • Feldman JL, Baeza J, Denu JM. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. J Biol Chem 2013;288(43):31350-6
    • (2013) J Biol Chem , vol.288 , Issue.43 , pp. 31350-31356
    • Feldman, J.L.1    Baeza, J.2    Denu, J.M.3
  • 67
    • 3343024449 scopus 로고    scopus 로고
    • Substrate specificity and kinetic mechanism of the Sir2 family of NAD+-dependent histone/protein deacetylases
    • Borra MT, Langer MR, Slama JT, Denu JM. Substrate specificity and kinetic mechanism of the Sir2 family of NAD+-dependent histone/protein deacetylases. Biochemistry 2004;43:9877-87
    • (2004) Biochemistry , vol.43 , pp. 9877-9887
    • Borra, M.T.1    Langer, M.R.2    Slama, J.T.3    Denu, J.M.4
  • 68
    • 0033135582 scopus 로고    scopus 로고
    • A non-isotopic assay for histone deacetylase activity
    • Hoffmann K, Brosch G, Loidl P, Jung M. A non-isotopic assay for histone deacetylase activity. Nucleic Acids Res 1999;27:2057-8
    • (1999) Nucleic Acids Res , vol.27 , pp. 2057-2058
    • Hoffmann, K.1    Brosch, G.2    Loidl, P.3    Jung, M.4
  • 69
    • 0037950719 scopus 로고    scopus 로고
    • A homogeneous nonisotopic histone deacetylase activity assay
    • Heltweg B, Jung M. A homogeneous nonisotopic histone deacetylase activity assay. J Biomol Screen 2003;8:89-95
    • (2003) J Biomol Screen , vol.8 , pp. 89-95
    • Heltweg, B.1    Jung, M.2
  • 70
    • 70349782222 scopus 로고    scopus 로고
    • A fluorometric assay of SIRT1 deacetylation activity through quantification of nicotinamide adenine dinucleotide
    • Feng Y, Wu J, Chen L, et al. A fluorometric assay of SIRT1 deacetylation activity through quantification of nicotinamide adenine dinucleotide. Anal Biochem 2009;395:205-10
    • (2009) Anal Biochem , vol.395 , pp. 205-210
    • Feng, Y.1    Wu, J.2    Chen, L.3
  • 71
    • 0019449253 scopus 로고
    • Fluorogenic reaction and specific microdetermination of ammonia
    • Sugawara K, Oyama F. Fluorogenic reaction and specific microdetermination of ammonia. J Biochem 1981;89:771-4
    • (1981) J Biochem , vol.89 , pp. 771-774
    • Sugawara, K.1    Oyama, F.2
  • 72
    • 30144435945 scopus 로고    scopus 로고
    • SIRT1 top 40 hits: Use of one-bead, one-compound acetyl-peptide libraries and quantum dots to probe deacetylase specificity
    • Garske AL, Denu JM. SIRT1 top 40 hits: use of one-bead, one-compound acetyl-peptide libraries and quantum dots to probe deacetylase specificity. Biochemistry 2006;45:94-101
    • (2006) Biochemistry , vol.45 , pp. 94-101
    • Garske, A.L.1    Denu, J.M.2
  • 73
    • 84860014259 scopus 로고    scopus 로고
    • Biotinylation of lysine method identifies acetylated histone H3 lysine 79 in Saccharomyces cerevisiae as a substrate for Sir2
    • Bheda P, Swatkoski S, Fiedler KL, et al. Biotinylation of lysine method identifies acetylated histone H3 lysine 79 in Saccharomyces cerevisiae as a substrate for Sir2. Proc Natl Acad Sci USA 2012;109:E916-25
    • (2012) Proc Natl Acad Sci USA , vol.109
    • Bheda, P.1    Swatkoski, S.2    Fiedler, K.L.3
  • 74
    • 84880791239 scopus 로고    scopus 로고
    • SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways
    • Park J, Chen Y, Tishkoff DX, et al. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell 2013;50:919-30
    • (2013) Mol Cell , vol.50 , pp. 919-930
    • Park, J.1    Chen, Y.2    Tishkoff, D.X.3
  • 75
    • 65249087389 scopus 로고    scopus 로고
    • SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle
    • Nakagawa T, Lomb DJ, Haigis MC, Guarente L. SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 2009;137:560-70
    • (2009) Cell , vol.137 , pp. 560-570
    • Nakagawa, T.1    Lomb, D.J.2    Haigis, M.C.3    Guarente, L.4
  • 76
    • 50149103440 scopus 로고    scopus 로고
    • Substrates and regulation mechanisms for the human mitochondrial Sirtuins Sirt3 and Sirt5
    • Schlicker C, Gertz M, Papatheodorou P, et al. Substrates and regulation mechanisms for the human mitochondrial Sirtuins Sirt3 and Sirt5. J Mol Biol 2008;382:790-801
    • (2008) J Mol Biol , vol.382 , pp. 790-801
    • Schlicker, C.1    Gertz, M.2    Papatheodorou, P.3
  • 77
    • 67650258222 scopus 로고    scopus 로고
    • Peptide microarrays for profiling of modification state-specific antibodies
    • Zerweck J, Masch A, Schutkowski M. Peptide microarrays for profiling of modification state-specific antibodies. Methods Mol Biol 2009;524:169-80
    • (2009) Methods Mol Biol , vol.524 , pp. 169-180
    • Zerweck, J.1    Masch, A.2    Schutkowski, M.3
  • 78
    • 77950246109 scopus 로고    scopus 로고
    • SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1
    • Pacholec M, Bleasdale JE, Chrunyk B, et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem 2010;285:8340-51
    • (2010) J Biol Chem , vol.285 , pp. 8340-8351
    • Pacholec, M.1    Bleasdale, J.E.2    Chrunyk, B.3
  • 80
    • 78650081320 scopus 로고    scopus 로고
    • Measurement of the cellular deacetylase activity of SIRT1 on p53 via LanthaScreen(R) technology
    • Robers MB, Loh C, Carlson CB, et al. Measurement of the cellular deacetylase activity of SIRT1 on p53 via LanthaScreen(R) technology. Mol Biosyst 2011;7:59-66
    • (2011) Mol Biosyst , vol.7 , pp. 59-66
    • Robers, M.B.1    Loh, C.2    Carlson, C.B.3
  • 81
    • 77953638708 scopus 로고    scopus 로고
    • TR-FRET biochemical assays for detecting posttranslational modifications of p53
    • Dudek JM, Horton RA. TR-FRET biochemical assays for detecting posttranslational modifications of p53. J Biomol Screen 2010;15:569-75
    • (2010) J Biomol Screen , vol.15 , pp. 569-575
    • Dudek, J.M.1    Horton, R.A.2
  • 82
    • 83455218654 scopus 로고    scopus 로고
    • TR-FRET cellular assays for interrogating posttranslational modifications of histone H3
    • Machleidt T, Robers MB, Hermanson SB, et al. TR-FRET cellular assays for interrogating posttranslational modifications of histone H3. J Biomol Screen 2011;16:1236-46
    • (2011) J Biomol Screen , vol.16 , pp. 1236-1246
    • Machleidt, T.1    Robers, M.B.2    Hermanson, S.B.3
  • 83
    • 84866552404 scopus 로고    scopus 로고
    • Sirt5 deacylation activities show differential sensitivities to nicotinamide inhibition
    • Fischer F, Gertz M, Suenkel B, et al. Sirt5 deacylation activities show differential sensitivities to nicotinamide inhibition. PLoS One 2012;7:e45098
    • (2012) PLoS One , vol.7
    • Fischer, F.1    Gertz, M.2    Suenkel, B.3
  • 84
    • 83455237376 scopus 로고    scopus 로고
    • Advances in label-free screening approaches for studying sirtuinmediated deacetylation
    • Rye PT, Frick LE, Ozbal CC, Lamarr WA. Advances in label-free screening approaches for studying sirtuinmediated deacetylation. J Biomol Screen 2011;16:1217-26
    • (2011) J Biomol Screen , vol.16 , pp. 1217-1226
    • Rye, P.T.1    Frick, L.E.2    Ozbal, C.C.3    Lamarr, W.A.4
  • 85
    • 84888329025 scopus 로고    scopus 로고
    • SIRT3 regulates long-chain acyl- CoA dehydrogenase by deacetylating conserved lysines near the active site
    • Bharathi SS, Zhang Y, Mohsen AW, et al. SIRT3 regulates long-chain acyl- CoA dehydrogenase by deacetylating conserved lysines near the active site. J Biol Chem 2013;288(47):33837-47
    • (2013) J Biol Chem , vol.288 , Issue.47 , pp. 33837-33847
    • Bharathi, S.S.1    Zhang, Y.2    Mohsen, A.W.3
  • 86
    • 69249206539 scopus 로고    scopus 로고
    • A continuous microplate assay for sirtuins and nicotinamide-producing enzymes
    • Smith BC, Hallows WC, Denu JM. A continuous microplate assay for sirtuins and nicotinamide-producing enzymes. Anal Biochem 2009;394:101-9
    • (2009) Anal Biochem , vol.394 , pp. 101-109
    • Smith, B.C.1    Hallows, W.C.2    Denu, J.M.3
  • 87
    • 20444431507 scopus 로고    scopus 로고
    • Substrate-specific activation of sirtuins by resveratrol
    • Kaeberlein M, McDonagh T, Heltweg B, et al. Substrate-specific activation of sirtuins by resveratrol. J Biol Chem 2005;280:17038-45
    • (2005) J Biol Chem , vol.280 , pp. 17038-17045
    • Kaeberlein, M.1    McDonagh, T.2    Heltweg, B.3
  • 88
    • 84862271824 scopus 로고    scopus 로고
    • Substrates for efficient fluorometric screening employing the NAD-dependent sirtuin 5 lysine deacylase (KDAC) enzyme
    • Madsen AS, Olsen CA. Substrates for efficient fluorometric screening employing the NAD-dependent sirtuin 5 lysine deacylase (KDAC) enzyme. J Med Chem 2012;55:5582-90
    • (2012) J Med Chem , vol.55 , pp. 5582-5590
    • Madsen, A.S.1    Olsen, C.A.2
  • 89
    • 84880899962 scopus 로고    scopus 로고
    • A fluorogenic assay for screening Sirt6 modulators
    • Hu J, He B, Bhargava S, Lin H. A fluorogenic assay for screening Sirt6 modulators. Org Biomol Chem 2013;11:5213-16
    • (2013) Org Biomol Chem , vol.11 , pp. 5213-5216
    • Hu, J.1    He, B.2    Bhargava, S.3    Lin, H.4
  • 90
    • 4644295841 scopus 로고    scopus 로고
    • Kinetics and comparative reactivity of human class i and class IIb histone deacetylases
    • Schultz BE, Misialek S, Wu J, et al. Kinetics and comparative reactivity of human class I and class IIb histone deacetylases. Biochemistry 2004;43:11083-91
    • (2004) Biochemistry , vol.43 , pp. 11083-11091
    • Schultz, B.E.1    Misialek, S.2    Wu, J.3
  • 91
    • 83455218642 scopus 로고    scopus 로고
    • A bioluminogenic HDAC activity assay: Validation and screening
    • Halley F, Reinshagen J, Ellinger B, et al. A bioluminogenic HDAC activity assay: validation and screening. J Biomol Screen 2011;16:1227-35
    • (2011) J Biomol Screen , vol.16 , pp. 1227-1235
    • Halley, F.1    Reinshagen, J.2    Ellinger, B.3
  • 93
    • 84865790010 scopus 로고    scopus 로고
    • Development of a fluorogenic probe with a transesterification switch for detection of histone deacetylase activity
    • Baba R, Hori Y, Mizukami S, Kikuchi K. Development of a fluorogenic probe with a transesterification switch for detection of histone deacetylase activity. J Am Chem Soc 2012;134:14310-13
    • (2012) J Am Chem Soc , vol.134 , pp. 14310-14313
    • Baba, R.1    Hori, Y.2    Mizukami, S.3    Kikuchi, K.4
  • 94
    • 55749084732 scopus 로고    scopus 로고
    • Monitoring histone deacetylase inhibition in vivo: Noninvasive magnetic resonance spectroscopy method
    • Sankaranarayanapillai M, Tong WP, Yuan Q, et al. Monitoring histone deacetylase inhibition in vivo: noninvasive magnetic resonance spectroscopy method. Mol Imaging 2008;7:92-100
    • (2008) Mol Imaging , vol.7 , pp. 92-100
    • Sankaranarayanapillai, M.1    Tong, W.P.2    Yuan, Q.3
  • 95
    • 79957516031 scopus 로고    scopus 로고
    • NMR profiling of histone deacetylase and acetyl-transferase activities in real time
    • Dose A, Liokatis S, Theillet FX, et al. NMR profiling of histone deacetylase and acetyl-transferase activities in real time. ACS Chem Biol 2011;6:419-24
    • (2011) ACS Chem Biol , vol.6 , pp. 419-424
    • Dose, A.1    Liokatis, S.2    Theillet, F.X.3
  • 96
    • 35648935529 scopus 로고    scopus 로고
    • N-lysine propionylation controls the activity of propionyl-CoA synthetase
    • Garrity J, Gardner JG, Hawse W, et al. N-lysine propionylation controls the activity of propionyl-CoA synthetase. J Biol Chem 2007;282:30239-45
    • (2007) J Biol Chem , vol.282 , pp. 30239-30245
    • Garrity, J.1    Gardner, J.G.2    Hawse, W.3
  • 97
    • 34248640428 scopus 로고    scopus 로고
    • Lysine propionylation and butyrylation are novel post-translational modifications in histones
    • Chen Y, Sprung R, Tang Y, et al. Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol Cell Proteomics 2007;6:812-19
    • (2007) Mol Cell Proteomics , vol.6 , pp. 812-819
    • Chen, Y.1    Sprung, R.2    Tang, Y.3
  • 98
    • 0027219723 scopus 로고
    • The 31-kDa precursor of interleukin 1 alpha is myristoylated on specific lysines within the 16-kDa Nterminal propiece
    • Stevenson FT, Bursten SL, Fanton C, et al. The 31-kDa precursor of interleukin 1 alpha is myristoylated on specific lysines within the 16-kDa Nterminal propiece. Proc Natl Acad Sci USA 1993;90:7245-9
    • (1993) Proc Natl Acad Sci USA , vol.90 , pp. 7245-7249
    • Stevenson, F.T.1    Bursten, S.L.2    Fanton, C.3
  • 99
    • 69249229772 scopus 로고    scopus 로고
    • The sirtuin SIRT6 deacetylates H3 K56Ac in vivo to promote genomic stability
    • Yang B, Zwaans BM, Eckersdorff M, Lombard DB. The sirtuin SIRT6 deacetylates H3 K56Ac in vivo to promote genomic stability. Cell Cycle 2009;8:2662-3
    • (2009) Cell Cycle , vol.8 , pp. 2662-2663
    • Yang, B.1    Zwaans, B.M.2    Eckersdorff, M.3    Lombard, D.B.4
  • 100
    • 84880426255 scopus 로고    scopus 로고
    • Acetyl-phosphate is a critical determinant of lysine acetylation in e
    • Weinert BT, Iesmantavicius V, Wagner SA, et al. Acetyl-phosphate is a critical determinant of lysine acetylation in E. coli. Mol Cell 2013;51:265-72
    • (2013) Coli. Mol Cell , vol.51 , pp. 265-272
    • Weinert, B.T.1    Iesmantavicius, V.2    Wagner, S.A.3
  • 101
    • 77951298744 scopus 로고    scopus 로고
    • Acetylation regulates cyclophilin A catalysis, immunosuppression and HIV isomerization
    • Lammers M, Neumann H, Chin JW, James LC. Acetylation regulates cyclophilin A catalysis, immunosuppression and HIV isomerization. Nat Chem Biol 2010;6:331-7
    • (2010) Nat Chem Biol , vol.6 , pp. 331-337
    • Lammers, M.1    Neumann, H.2    Chin, J.W.3    James, L.C.4
  • 102
    • 33745962138 scopus 로고    scopus 로고
    • Therapeutic potential of resveratrol: The in vivo evidence
    • Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 2006;5:493-506
    • (2006) Nat Rev Drug Discov , vol.5 , pp. 493-506
    • Baur, J.A.1    Sinclair, D.A.2
  • 103
    • 84877714749 scopus 로고    scopus 로고
    • Discovery of thieno[3,2-d]pyrimidine-6- carboxamides as potent inhibitors of SIRT1, SIRT2, and SIRT3
    • Disch JS, Evindar G, Chiu CH, et al. Discovery of thieno[3,2-d] pyrimidine-6- carboxamides as potent inhibitors of SIRT1, SIRT2, and SIRT3. J Med Chem 2013;56:3666-79
    • (2013) J Med Chem , vol.56 , pp. 3666-3679
    • Disch, J.S.1    Evindar, G.2    Chiu, C.H.3
  • 104
    • 78650132019 scopus 로고    scopus 로고
    • Sirtuin mechanism and inhibition: Explored with N(epsilon)-acetyl-lysine analogs
    • Hirsch BM, Zheng W. Sirtuin mechanism and inhibition: explored with N(epsilon)-acetyl-lysine analogs. Mol Biosyst 2011;7:16-28
    • (2011) Mol Biosyst , vol.7 , pp. 16-28
    • Hirsch, B.M.1    Zheng, W.2
  • 105
    • 77955810448 scopus 로고    scopus 로고
    • Site-specific introduction of an acetyl-lysine mimic into peptides and proteins by cysteine alkylation
    • Huang R, Holbert MA, Tarrant MK, et al. Site-specific introduction of an acetyl-lysine mimic into peptides and proteins by cysteine alkylation. J Am Chem Soc 2010;132:9986-7
    • (2010) J Am Chem Soc , vol.132 , pp. 9986-9987
    • Huang, R.1    Holbert, M.A.2    Tarrant, M.K.3
  • 106
    • 33847710700 scopus 로고    scopus 로고
    • N(epsilon)-methanesulfonyllysine as a non-hydrolyzable functional surrogate for N(epsilon)-acetyl-lysine
    • Jamonnak N, Fatkins DG, Wei L, Zheng W. N(epsilon)-methanesulfonyllysine as a non-hydrolyzable functional surrogate for N(epsilon)-acetyl-lysine. Org Biomol Chem 2007;5:892-6
    • (2007) Org Biomol Chem , vol.5 , pp. 892-896
    • Jamonnak, N.1    Fatkins, D.G.2    Wei, L.3    Zheng, W.4
  • 107
    • 70149123204 scopus 로고    scopus 로고
    • Inhibition of human sirtuins by in situ generation of an acetylated lysine-ADP-ribose conjugate
    • Asaba T, Suzuki T, Ueda R, et al. Inhibition of human sirtuins by in situ generation of an acetylated lysine-ADP-ribose conjugate. J Am Chem Soc 2009;131:6989-96
    • (2009) J Am Chem Soc , vol.131 , pp. 6989-6996
    • Asaba, T.1    Suzuki, T.2    Ueda, R.3
  • 108
    • 37349110743 scopus 로고    scopus 로고
    • Mechanism-based inhibition of Sir2 deacetylases by thioacetyl-lysine peptide
    • Smith BC, Denu JM. Mechanism-based inhibition of Sir2 deacetylases by thioacetyl-lysine peptide. Biochemistry 2007;46:14478-86
    • (2007) Biochemistry , vol.46 , pp. 14478-14486
    • Smith, B.C.1    Denu, J.M.2
  • 109
    • 33746484522 scopus 로고    scopus 로고
    • Nepsilon-thioacetyl-lysine: A multi-facet functional probe for enzymatic protein lysine Nepsilon-deacetylation
    • Fatkins DG, Monnot AD, Zheng W. Nepsilon-thioacetyl-lysine: a multi-facet functional probe for enzymatic protein lysine Nepsilon-deacetylation. Bioorg Med Chem Lett 2006;16:3651-6
    • (2006) Bioorg Med Chem Lett , vol.16 , pp. 3651-3656
    • Fatkins, D.G.1    Monnot, A.D.2    Zheng, W.3
  • 110
    • 80053899130 scopus 로고    scopus 로고
    • Structure-based design of pseudopeptidic inhibitors for SIRT1 and SIRT2
    • Huhtiniemi T, Salo HS, Suuronen T, et al. Structure-based design of pseudopeptidic inhibitors for SIRT1 and SIRT2. J Med Chem 2011;54:6456-68
    • (2011) J Med Chem , vol.54 , pp. 6456-6468
    • Huhtiniemi, T.1    Salo, H.S.2    Suuronen, T.3
  • 111
    • 61449209922 scopus 로고    scopus 로고
    • Biochemical characterization, localization, and tissue distribution of the longer form of mouse SIRT3
    • Jin L, Galonek H, Israelian K, et al. Biochemical characterization, localization, and tissue distribution of the longer form of mouse SIRT3. Protein Sci 2009;18:514-25
    • (2009) Protein Sci , vol.18 , pp. 514-525
    • Jin, L.1    Galonek, H.2    Israelian, K.3
  • 112
    • 84881281834 scopus 로고    scopus 로고
    • Structures of human Sirtuin 3 complexes with ADP-ribose and with carba-NAD+ and SRT1720: Binding details and inhibition mechanism
    • Nguyen GT, Schaefer S, Gertz M, et al. Structures of human Sirtuin 3 complexes with ADP-ribose and with carba-NAD+ and SRT1720: binding details and inhibition mechanism. Acta Crystallogr D Biol Crystallogr 2013;69:1423-32
    • (2013) Acta Crystallogr D Biol Crystallogr , vol.69 , pp. 1423-1432
    • Nguyen, G.T.1    Schaefer, S.2    Gertz, M.3
  • 113
    • 84876715762 scopus 로고    scopus 로고
    • Crystal structure analysis of human Sirt2 and its ADP-ribose complex
    • Moniot S, Schutkowski M, Steegborn C. Crystal structure analysis of human Sirt2 and its ADP-ribose complex. J Struct Biol 2013;182:136-43
    • (2013) J Struct Biol , vol.182 , pp. 136-143
    • Moniot, S.1    Schutkowski, M.2    Steegborn, C.3
  • 114
    • 20444444649 scopus 로고    scopus 로고
    • Mechanism of human SIRT1 activation by resveratrol
    • Borra MT, Smith BC, Denu JM. Mechanism of human SIRT1 activation by resveratrol. J Biol Chem 2005;280:17187-95
    • (2005) J Biol Chem , vol.280 , pp. 17187-17195
    • Borra, M.T.1    Smith, B.C.2    Denu, J.M.3
  • 115
    • 84879613312 scopus 로고    scopus 로고
    • Molecular architecture of the human protein deacetylase Sirt1 and its regulation by AROS and resveratrol
    • Lakshminarasimhan M, Curth U, Moniot S, et al. Molecular architecture of the human protein deacetylase Sirt1 and its regulation by AROS and resveratrol. Biosci Rep 2013;33:e00037
    • (2013) Biosci Rep , vol.33
    • Lakshminarasimhan, M.1    Curth, U.2    Moniot, S.3
  • 116
    • 84888306269 scopus 로고    scopus 로고
    • Crystal structures of Sirt3 complexes with 4'-bromo-resveratrol reveal binding sites and inhibition mechanism
    • Nguyen GT, Gertz M, Steegborn C. Crystal structures of Sirt3 complexes with 4'-bromo-resveratrol reveal binding sites and inhibition mechanism. Chem Biol 2013;20:1375-85
    • (2013) Chem Biol , vol.20 , pp. 1375-1385
    • Nguyen, G.T.1    Gertz, M.2    Steegborn, C.3
  • 117
    • 77956107107 scopus 로고    scopus 로고
    • Dietary restriction: Standing up for Sirtuins
    • author reply 13-4
    • Baur JA, Chen D, Chini EN, et al. Dietary restriction: standing up for Sirtuins. Science 2010;329:1012-13; author reply 13-4
    • (2010) Science , vol.329 , pp. 1012-1013
    • Baur, J.A.1    Chen, D.2    Chini, E.N.3
  • 118
    • 84866079729 scopus 로고    scopus 로고
    • Synthesis of carba- NAD and the structures of its ternary complexes with SIRT3 and SIRT5
    • Szczepankiewicz BG, Dai H, Koppetsch KJ, et al. Synthesis of carba- NAD and the structures of its ternary complexes with SIRT3 and SIRT5. J Org Chem 2012;77:7319-29
    • (2012) J Org Chem , vol.77 , pp. 7319-7329
    • Szczepankiewicz, B.G.1    Dai, H.2    Koppetsch, K.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.