메뉴 건너뛰기




Volumn 280, Issue 24, 2013, Pages 6395-6411

Using site-saturation mutagenesis to explore mechanism and substrate specificity in thiamin diphosphate-dependent enzymes

Author keywords

2 oxoglutarate decarboxylase; benzoylformate; carboligation; decarboxylase; directed evolution; enantiospecificity; MenD; pyruvate; ThDP; transketolase

Indexed keywords

2 OXOGLUTARATE DECARBOXYLASE; 2 OXOGLUTARIC ACID; 2 OXOVALERATE; 2 SUCCINYL 5 ENOLPYRUVYL 6 HYDROXY 3 CYCLOHEXENE 1 CARBOXYLATE SYNTHASE; 2 SUCCINYL 6 HYDROXY 2,4 CYCLOHEXADIENE 1 CARBOXYLATE; 3 METHOXYBENZALDEHYDE; ALANINE; ASPARTIC ACID; BENZALDEHYDE DERIVATIVE; BENZOYLFORMATE DECARBOXYLASE; BETA HYDROXYPYRUVATE; CARBON; CARBON DIOXIDE; CARBOXYLIC ACID DERIVATIVE; CARBOXYLYASE; COCARBOXYLASE; HISTIDINE; ISOLEUCINE; LEUCINE; OXOGLUTARATE DEHYDROGENASE; PYRUVATE DECARBOXYLASE; PYRUVIC ACID DERIVATIVE; RIBOSE 5 PHOSPHATE; SERINE; SUCCINYL COENZYME A; SYNTHETASE; THREONINE; TRANSKETOLASE; UNCLASSIFIED DRUG; VALERIC ACID DERIVATIVE;

EID: 84889631836     PISSN: 1742464X     EISSN: 17424658     Source Type: Journal    
DOI: 10.1111/febs.12459     Document Type: Review
Times cited : (16)

References (111)
  • 1
    • 0033280672 scopus 로고    scopus 로고
    • Exploring nonnatural evolutionary pathways by saturation mutagenesis: Rapid improvement of protein function
    • Miyazaki K, &, Arnold FH, (1999) Exploring nonnatural evolutionary pathways by saturation mutagenesis: rapid improvement of protein function. J Mol Evol 49, 716-720.
    • (1999) J Mol Evol , vol.49 , pp. 716-720
    • Miyazaki, K.1    Arnold, F.H.2
  • 2
    • 67651171257 scopus 로고    scopus 로고
    • Distributions of enzyme residues yielding mutants with improved substrate specificities from two different directed evolution strategies
    • Paramesvaran J, Hibbert EG, Russell AJ, &, Dalby PA, (2009) Distributions of enzyme residues yielding mutants with improved substrate specificities from two different directed evolution strategies. Prot Eng Des Sel 22, 401-411.
    • (2009) Prot Eng des Sel , vol.22 , pp. 401-411
    • Paramesvaran, J.1    Hibbert, E.G.2    Russell, A.J.3    Dalby, P.A.4
  • 3
    • 0002694056 scopus 로고
    • A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction
    • Leung D, Chen E, &, Goeddel DV, (1989) A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. Technique 1, 11-15.
    • (1989) Technique , vol.1 , pp. 11-15
    • Leung, D.1    Chen, E.2    Goeddel, D.V.3
  • 4
    • 0028050350 scopus 로고
    • Rapid evolution of a protein in vitro by DNA shuffling
    • Stemmer WP, (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389-391.
    • (1994) Nature , vol.370 , pp. 389-391
    • Stemmer, W.P.1
  • 5
    • 0042430535 scopus 로고    scopus 로고
    • Optimising enzyme function by directed evolution
    • Dalby PA, (2003) Optimising enzyme function by directed evolution. Curr Opin Struct Biol 13, 500-505.
    • (2003) Curr Opin Struct Biol , vol.13 , pp. 500-505
    • Dalby, P.A.1
  • 6
    • 18144403554 scopus 로고    scopus 로고
    • Improving enzyme properties: When are closer mutations better?
    • Morley KL, &, Kazlauskas RJ, (2005) Improving enzyme properties: when are closer mutations better? Trends Biotechnol 23, 231-237.
    • (2005) Trends Biotechnol , vol.23 , pp. 231-237
    • Morley, K.L.1    Kazlauskas, R.J.2
  • 7
    • 34248567845 scopus 로고    scopus 로고
    • Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes
    • Reetz MT, &, Carballeira JD, (2007) Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat Protoc 2, 891-903.
    • (2007) Nat Protoc , vol.2 , pp. 891-903
    • Reetz, M.T.1    Carballeira, J.D.2
  • 9
    • 33744475011 scopus 로고    scopus 로고
    • Directed evolution of enantioselective enzymes: Iterative cycles of CASTing for probing protein-sequence space
    • Reetz MT, Wang LW, &, Bocola M, (2006) Directed evolution of enantioselective enzymes: iterative cycles of CASTing for probing protein-sequence space. Angew Chem Int Ed Engl 45, 1236-1241.
    • (2006) Angew Chem Int Ed Engl , vol.45 , pp. 1236-1241
    • Reetz, M.T.1    Wang, L.W.2    Bocola, M.3
  • 10
    • 54349090614 scopus 로고    scopus 로고
    • Addressing the numbers problem in directed evolution
    • Reetz MT, Kahakeaw D, &, Lohmer R, (2008) Addressing the numbers problem in directed evolution. ChemBioChem 9, 1797-1804.
    • (2008) ChemBioChem , vol.9 , pp. 1797-1804
    • Reetz, M.T.1    Kahakeaw, D.2    Lohmer, R.3
  • 12
    • 84864425799 scopus 로고    scopus 로고
    • Laboratory evolution of stereoselective enzymes as a means to expand the toolbox of organic chemists
    • Reetz MT, (2012) Laboratory evolution of stereoselective enzymes as a means to expand the toolbox of organic chemists. Tetrahedron 68, 7530-7548.
    • (2012) Tetrahedron , vol.68 , pp. 7530-7548
    • Reetz, M.T.1
  • 13
    • 77954274719 scopus 로고    scopus 로고
    • Iterative saturation mutagenesis accelerates laboratory evolution of enzyme stereoselectivity: Rigorous comparison with traditional methods
    • Reetz MT, Prasad S, Carballeira JD, Gumulya Y, &, Bocola M, (2010) Iterative saturation mutagenesis accelerates laboratory evolution of enzyme stereoselectivity: rigorous comparison with traditional methods. J Am Chem Soc 132, 9144-9152.
    • (2010) J Am Chem Soc , vol.132 , pp. 9144-9152
    • Reetz, M.T.1    Prasad, S.2    Carballeira, J.D.3    Gumulya, Y.4    Bocola, M.5
  • 14
    • 84861228538 scopus 로고    scopus 로고
    • Site saturation mutagenesis: Methods and application in protein engineering
    • Siloto RMP, &, Weselake RJ, (2012) Site saturation mutagenesis: methods and application in protein engineering. Biocatal Agric Biotech 1, 181-189.
    • (2012) Biocatal Agric Biotech , vol.1 , pp. 181-189
    • Siloto, R.M.P.1    Weselake, R.J.2
  • 15
    • 23444450226 scopus 로고    scopus 로고
    • Semi-rational approaches to engineering enzyme activity: Combining the benefits of directed evolution and rational design
    • Chica RA, Doucet N, &, Pelletier JN, (2005) Semi-rational approaches to engineering enzyme activity: combining the benefits of directed evolution and rational design. Curr Opin Biotechnol 16, 378-384.
    • (2005) Curr Opin Biotechnol , vol.16 , pp. 378-384
    • Chica, R.A.1    Doucet, N.2    Pelletier, J.N.3
  • 16
    • 72149112288 scopus 로고    scopus 로고
    • Site-saturation mutagenesis of tryptophan 116 of Saccharomyces pastorianus old yellow enzyme uncovers stereocomplementary variants
    • Padhi SK, Bougioukou DJ, &, Stewart JD, (2009) Site-saturation mutagenesis of tryptophan 116 of Saccharomyces pastorianus old yellow enzyme uncovers stereocomplementary variants. J Am Chem Soc 131, 3271-3280.
    • (2009) J Am Chem Soc , vol.131 , pp. 3271-3280
    • Padhi, S.K.1    Bougioukou, D.J.2    Stewart, J.D.3
  • 17
    • 84868089020 scopus 로고    scopus 로고
    • Site saturation mutagenesis demonstrates a central role for cysteine 298 as proton donor to the catalytic site in CaHydA [FeFe]-hydrogenase
    • Morra S, Giraudo A, Di Nardo G, King PW, Gilardi G, &, Valetti F, (2012) Site saturation mutagenesis demonstrates a central role for cysteine 298 as proton donor to the catalytic site in CaHydA [FeFe]-hydrogenase. PLoS ONE 7, e48400.
    • (2012) PLoS ONE , vol.7
    • Morra, S.1    Giraudo, A.2    Di Nardo, G.3    King, P.W.4    Gilardi, G.5    Valetti, F.6
  • 19
    • 47349102781 scopus 로고    scopus 로고
    • Thiamin diphosphate catalysis: Enzymic and nonenzymic covalent intermediates
    • Kluger R, &, Tittmann K, (2008) Thiamin diphosphate catalysis: enzymic and nonenzymic covalent intermediates. Chem Rev 108, 1797-1833.
    • (2008) Chem Rev , vol.108 , pp. 1797-1833
    • Kluger, R.1    Tittmann, K.2
  • 20
    • 3142640259 scopus 로고
    • On the mechanism of thiamine action. IV. Evidence from studies on model systems
    • Breslow RJ, (1958) On the mechanism of thiamine action. IV. Evidence from studies on model systems. J Am Chem Soc 80, 3719-3726.
    • (1958) J Am Chem Soc , vol.80 , pp. 3719-3726
    • Breslow, R.J.1
  • 21
    • 33845283300 scopus 로고
    • Thiamin diphosphate: A mechanistic update on enzymic and nonenzymic catalysis of decarboxylation
    • Kluger R, (1987) Thiamin diphosphate: a mechanistic update on enzymic and nonenzymic catalysis of decarboxylation. Chem Rev 87, 863-876.
    • (1987) Chem Rev , vol.87 , pp. 863-876
    • Kluger, R.1
  • 23
    • 34247143709 scopus 로고    scopus 로고
    • Structure, mechanism and catalytic duality of thiamine-dependent enzymes
    • Frank R, Leeper F, &, Luisi B, (2007) Structure, mechanism and catalytic duality of thiamine-dependent enzymes. Cell Mol Life Sci 64, 892-905.
    • (2007) Cell Mol Life Sci , vol.64 , pp. 892-905
    • Frank, R.1    Leeper, F.2    Luisi, B.3
  • 24
    • 0016404410 scopus 로고
    • Semiempirical calculations on the electronic structure and preferred conformations of thiamine (vitamin B1) and thiamine pyrophosphate (cocarboxylase)
    • Jordan F, (1974) Semiempirical calculations on the electronic structure and preferred conformations of thiamine (vitamin B1) and thiamine pyrophosphate (cocarboxylase). J Am Chem Soc 96, 3623-3630.
    • (1974) J Am Chem Soc , vol.96 , pp. 3623-3630
    • Jordan, F.1
  • 25
    • 0026762799 scopus 로고
    • Three-dimensional structure of transketolase, a thiamine diphosphate enzyme at 2.5 Å resolution
    • Lindqvist L, Schneider G, Ermler U, &, Sundstrom M, (1992) Three-dimensional structure of transketolase, a thiamine diphosphate enzyme at 2.5 Å resolution. EMBO J 11, 2373-2379.
    • (1992) EMBO J , vol.11 , pp. 2373-2379
    • Lindqvist, L.1    Schneider, G.2    Ermler, U.3    Sundstrom, M.4
  • 26
    • 0029967678 scopus 로고    scopus 로고
    • Crystal structure of the thiamin diphosphate-dependent enzyme pyruvate decarboxylase from the yeast Saccharomyces cerevisiae at 2.3 Å resolution
    • Arjunan P, Umland T, Dyda F, Swaminathan S, Furey W, Sax M, Farrenkopf B, Gao Y, Zhang D, &, Jordan F, (1996) Crystal structure of the thiamin diphosphate-dependent enzyme pyruvate decarboxylase from the yeast Saccharomyces cerevisiae at 2.3 Å resolution. J Mol Biol 256, 590-600.
    • (1996) J Mol Biol , vol.256 , pp. 590-600
    • Arjunan, P.1    Umland, T.2    Dyda, F.3    Swaminathan, S.4    Furey, W.5    Sax, M.6    Farrenkopf, B.7    Gao, Y.8    Zhang, D.9    Jordan, F.10
  • 27
    • 0032516465 scopus 로고    scopus 로고
    • The crystal structure of benzoylformate decarboxylase at 1.6 Å resolution: Diversity of catalytic residues in thiamin diphosphate-dependent enzymes
    • Hasson MS, Muscate A, McLeish MJ, Polovnikova LS, Gerlt JA, Kenyon GL, Petsko GA, &, Ringe D, (1998) The crystal structure of benzoylformate decarboxylase at 1.6 Å resolution: diversity of catalytic residues in thiamin diphosphate-dependent enzymes. Biochemistry 37, 9918-9930.
    • (1998) Biochemistry , vol.37 , pp. 9918-9930
    • Hasson, M.S.1    Muscate, A.2    McLeish, M.J.3    Polovnikova, L.S.4    Gerlt, J.A.5    Kenyon, G.L.6    Petsko, G.A.7    Ringe, D.8
  • 28
    • 28244449299 scopus 로고    scopus 로고
    • Structure and mechanism of the ThDP-dependent benzaldehyde lyase from Pseudomonas fluorescens
    • Mosbacher TG, Müller M, &, Schulz GE, (2005) Structure and mechanism of the ThDP-dependent benzaldehyde lyase from Pseudomonas fluorescens. FEBS J 272, 6067-6076.
    • (2005) FEBS J , vol.272 , pp. 6067-6076
    • Mosbacher, T.G.1    Müller, M.2    Schulz, G.E.3
  • 29
    • 0032558425 scopus 로고    scopus 로고
    • Is a hydrophobic amino acid required to maintain the reactive v conformation of thiamin at the active center of thiamin diphosphate-requiring enzymes? Experimental and computational studies of isoleucine 415 of yeast pyruvate decarboxylase
    • Guo F, Zhang D, Kahyaoglu A, Farid RS, &, Jordan F, (1998) Is a hydrophobic amino acid required to maintain the reactive V conformation of thiamin at the active center of thiamin diphosphate-requiring enzymes? Experimental and computational studies of isoleucine 415 of yeast pyruvate decarboxylase. Biochemistry 37, 13379-13391.
    • (1998) Biochemistry , vol.37 , pp. 13379-13391
    • Guo, F.1    Zhang, D.2    Kahyaoglu, A.3    Farid, R.S.4    Jordan, F.5
  • 30
    • 33846041174 scopus 로고    scopus 로고
    • The 1′,4′-iminopyrimidine tautomer of thiamin diphosphate is poised for catalysis in asymmetric active centers on enzymes
    • Nemeria N, Chakraborty S, Baykal A, Korotchkina LG, Patel MS, &, Jordan F, (2007) The 1′,4′-iminopyrimidine tautomer of thiamin diphosphate is poised for catalysis in asymmetric active centers on enzymes. Proc Natl Acad Sci USA 104, 78-82.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 78-82
    • Nemeria, N.1    Chakraborty, S.2    Baykal, A.3    Korotchkina, L.G.4    Patel, M.S.5    Jordan, F.6
  • 31
    • 64149099325 scopus 로고    scopus 로고
    • Reaction mechanisms of thiamin diphosphate enzymes: Defining states of ionization and tautomerization of the cofactor at individual steps
    • Nemeria NS, Chakraborty S, Balakrishnan A, &, Jordan F, (2009) Reaction mechanisms of thiamin diphosphate enzymes: defining states of ionization and tautomerization of the cofactor at individual steps. FEBS J 276, 2432-2446.
    • (2009) FEBS J , vol.276 , pp. 2432-2446
    • Nemeria, N.S.1    Chakraborty, S.2    Balakrishnan, A.3    Jordan, F.4
  • 33
    • 84867456040 scopus 로고    scopus 로고
    • Glyoxylate carboligase: A unique thiamin diphosphate-dependent enzyme that can cycle between the 4′-aminopyrimidinium and 1′,4′- iminopyrimidine tautomeric forms in the absence of the conserved glutamate
    • Nemeria N, Binshtein E, Patel H, Balakrishnan A, Vered I, Shaanan B, Barak Z, Chipman D, &, Jordan F, (2012) Glyoxylate carboligase: a unique thiamin diphosphate-dependent enzyme that can cycle between the 4′-aminopyrimidinium and 1′,4′-iminopyrimidine tautomeric forms in the absence of the conserved glutamate. Biochemistry 51, 7940-7952.
    • (2012) Biochemistry , vol.51 , pp. 7940-7952
    • Nemeria, N.1    Binshtein, E.2    Patel, H.3    Balakrishnan, A.4    Vered, I.5    Shaanan, B.6    Barak, Z.7    Chipman, D.8    Jordan, F.9
  • 34
    • 33748345821 scopus 로고    scopus 로고
    • Domain relationships in thiamine diphosphate-dependent enzymes
    • Duggleby RG, (2006) Domain relationships in thiamine diphosphate- dependent enzymes. Acc Chem Res 39, 550-557.
    • (2006) Acc Chem Res , vol.39 , pp. 550-557
    • Duggleby, R.G.1
  • 35
    • 84971097881 scopus 로고
    • Structure and mechanism of action of the active center of yeast pyruvate decarboxylase
    • Schellenberger A, (1967) Structure and mechanism of action of the active center of yeast pyruvate decarboxylase. Angew Chem Int Ed Engl 6, 1024-1035.
    • (1967) Angew Chem Int Ed Engl , vol.6 , pp. 1024-1035
    • Schellenberger, A.1
  • 36
    • 0002197775 scopus 로고
    • Mechanisms of enzymic carbon-carbon bond formation and cleavage
    • In (Sigman D.S. ed.), Academic Press, San Diego
    • Kluger R, (1992) Mechanisms of enzymic carbon-carbon bond formation and cleavage. In The Enzymes (, Sigman DS, ed.), pp. 271-315, Academic Press, San Diego.
    • (1992) The Enzymes , pp. 271-315
    • Kluger, R.1
  • 37
    • 33845395939 scopus 로고    scopus 로고
    • Factors mediating activity, selectivity, and substrate specificity for the thiamin diphosphate-dependent enzymes benzaldehyde lyase and benzoylformate decarboxylase
    • Knoll M, Müller M, Pleiss J, &, Pohl M, (2006) Factors mediating activity, selectivity, and substrate specificity for the thiamin diphosphate-dependent enzymes benzaldehyde lyase and benzoylformate decarboxylase. ChemBioChem 7, 1928-1934.
    • (2006) ChemBioChem , vol.7 , pp. 1928-1934
    • Knoll, M.1    Müller, M.2    Pleiss, J.3    Pohl, M.4
  • 38
    • 0020358237 scopus 로고
    • Synthesis of the C14 chromanyl moiety of natural α-tocopherol (vitamin E)
    • Fuganti C., &, Grasselli P, (1982) Synthesis of the C14 chromanyl moiety of natural α-tocopherol (vitamin E). J Chem Soc Chem Comm 4, 205-206.
    • (1982) J Chem Soc Chem Comm , vol.4 , pp. 205-206
    • Fuganti, C.1    Grasselli, P.2
  • 39
    • 0030029079 scopus 로고    scopus 로고
    • Preparations of antifungal Sch 42427/MS 9164: Preparative chromatographic resolution, and total asymmetric synthesis via enzymic preparation of chiral α-hydroxy arylketones
    • Gala D, DiBenedetto DJ, Clark JE, Murphy BL, Schumacher DP, &, Steinman M, (1996) Preparations of antifungal Sch 42427/MS 9164: preparative chromatographic resolution, and total asymmetric synthesis via enzymic preparation of chiral α-hydroxy arylketones. Tetrahedron Lett 37, 611-614.
    • (1996) Tetrahedron Lett , vol.37 , pp. 611-614
    • Gala, D.1    Dibenedetto, D.J.2    Clark, J.E.3    Murphy, B.L.4    Schumacher, D.P.5    Steinman, M.6
  • 40
    • 84864403459 scopus 로고    scopus 로고
    • Substrate specificity in thiamin diphosphate-dependent decarboxylases
    • Andrews FH, &, McLeish MJ, (2012) Substrate specificity in thiamin diphosphate-dependent decarboxylases. Bioorg Chem 43, 26-36.
    • (2012) Bioorg Chem , vol.43 , pp. 26-36
    • Andrews, F.H.1    McLeish, M.J.2
  • 41
    • 0033560742 scopus 로고    scopus 로고
    • Aspartate-27 and glutamate-473 are involved in catalysis by Zymomonas mobilis pyruvate decarboxylase
    • Chang AK, Nixon PF, &, Duggleby RG, (1999) Aspartate-27 and glutamate-473 are involved in catalysis by Zymomonas mobilis pyruvate decarboxylase. Biochem J 339, 255-260.
    • (1999) Biochem J , vol.339 , pp. 255-260
    • Chang, A.K.1    Nixon, P.F.2    Duggleby, R.G.3
  • 42
    • 0030874266 scopus 로고    scopus 로고
    • The role of His113 and His114 in pyruvate decarboxylase from Zymomonas mobilis
    • Schenk G, Leeper FJ, England R, Nixon PF, &, Duggleby RG, (1997) The role of His113 and His114 in pyruvate decarboxylase from Zymomonas mobilis. Eur J Biochem 248, 63-71.
    • (1997) Eur J Biochem , vol.248 , pp. 63-71
    • Schenk, G.1    Leeper, F.J.2    England, R.3    Nixon, P.F.4    Duggleby, R.G.5
  • 43
    • 0033756087 scopus 로고    scopus 로고
    • Mutagenesis at Asp27 of pyruvate decarboxylase from Zymomonas mobilis
    • Wu Y-G, Chang AK, Nixon PF, Li W, &, Duggleby RG, (2000) Mutagenesis at Asp27 of pyruvate decarboxylase from Zymomonas mobilis. Eur J Biochem 267, 6493-6500.
    • (2000) Eur J Biochem , vol.267 , pp. 6493-6500
    • Wu, Y.-G.1    Chang, A.K.2    Nixon, P.F.3    Li, W.4    Duggleby, R.G.5
  • 44
    • 0034826621 scopus 로고    scopus 로고
    • Site-directed mutagenesis of the ionizable groups in the active site of Zymomonas mobilis pyruvate decarboxylase
    • Huang C-Y, Chang AK, Nixon PF, &, Duggleby RG, (2001) Site-directed mutagenesis of the ionizable groups in the active site of Zymomonas mobilis pyruvate decarboxylase. Eur J Biochem 268, 3558-3565.
    • (2001) Eur J Biochem , vol.268 , pp. 3558-3565
    • Huang, C.-Y.1    Chang, A.K.2    Nixon, P.F.3    Duggleby, R.G.4
  • 45
    • 0035954377 scopus 로고    scopus 로고
    • Catalytic acid-base groups in yeast pyruvate decarboxylase. 1. Site-directed mutagenesis and steady-state kinetic studies on the enzyme with the D28A, H114F, H115F, and E477Q substitutions
    • Liu M, Sergienko EA, Guo F, Wang J, Tittmann K, Hübner G, Furey W, &, Jordan F, (2001) Catalytic acid-base groups in yeast pyruvate decarboxylase. 1. Site-directed mutagenesis and steady-state kinetic studies on the enzyme with the D28A, H114F, H115F, and E477Q substitutions. Biochemistry 40, 7355-7368.
    • (2001) Biochemistry , vol.40 , pp. 7355-7368
    • Liu, M.1    Sergienko, E.A.2    Guo, F.3    Wang, J.4    Tittmann, K.5    Hübner, G.6    Furey, W.7    Jordan, F.8
  • 46
    • 0035954393 scopus 로고    scopus 로고
    • Catalytic acid-base groups in yeast pyruvate decarboxylase. 2. Insights into the specific roles of D28 and E477 from the rates and stereospecificity of formation of carboligase side products
    • Sergienko EA, &, Jordan F, (2001) Catalytic acid-base groups in yeast pyruvate decarboxylase. 2. Insights into the specific roles of D28 and E477 from the rates and stereospecificity of formation of carboligase side products. Biochemistry 40, 7369-7381.
    • (2001) Biochemistry , vol.40 , pp. 7369-7381
    • Sergienko, E.A.1    Jordan, F.2
  • 47
    • 0035954379 scopus 로고    scopus 로고
    • Catalytic acid-base groups in yeast pyruvate decarboxylase. 3. A steady-state kinetic model consistent with the behavior of both wild-type and variant enzymes at all relevant pH values
    • Sergienko EA, &, Jordan F, (2001) Catalytic acid-base groups in yeast pyruvate decarboxylase. 3. A steady-state kinetic model consistent with the behavior of both wild-type and variant enzymes at all relevant pH values. Biochemistry 40, 7382-7403.
    • (2001) Biochemistry , vol.40 , pp. 7382-7403
    • Sergienko, E.A.1    Jordan, F.2
  • 48
    • 25844473249 scopus 로고    scopus 로고
    • Exchanging the substrate specificities of pyruvate decarboxylase from Zymomonas mobilis and benzoylformate decarboxylase from Pseudomonas putida
    • Siegert P, McLeish MJ, Baumann M, Iding H, Kneen MM, Kenyon GL, &, Pohl M, (2005) Exchanging the substrate specificities of pyruvate decarboxylase from Zymomonas mobilis and benzoylformate decarboxylase from Pseudomonas putida. Prot Eng Des Sel 18, 345-357.
    • (2005) Prot Eng des Sel , vol.18 , pp. 345-357
    • Siegert, P.1    McLeish, M.J.2    Baumann, M.3    Iding, H.4    Kneen, M.M.5    Kenyon, G.L.6    Pohl, M.7
  • 49
    • 33750721676 scopus 로고    scopus 로고
    • Determinants of substrate specificity in KdcA, a thiamin diphosphate-dependent decarboxylase
    • Yep A, Kenyon GL, &, McLeish MJ, (2006) Determinants of substrate specificity in KdcA, a thiamin diphosphate-dependent decarboxylase. Bioorg Chem 34, 325-336.
    • (2006) Bioorg Chem , vol.34 , pp. 325-336
    • Yep, A.1    Kenyon, G.L.2    McLeish, M.J.3
  • 50
    • 79956226145 scopus 로고    scopus 로고
    • Characterization of a thiamin diphosphate-dependent phenylpyruvate decarboxylase from Saccharomyces cerevisiae
    • Kneen MM, Stan R, Yep A, Tyler RP, Saehuan C, &, McLeish MJ, (2011) Characterization of a thiamin diphosphate-dependent phenylpyruvate decarboxylase from Saccharomyces cerevisiae. FEBS J 278, 1842-1853.
    • (2011) FEBS J , vol.278 , pp. 1842-1853
    • Kneen, M.M.1    Stan, R.2    Yep, A.3    Tyler, R.P.4    Saehuan, C.5    McLeish, M.J.6
  • 51
    • 0001470998 scopus 로고
    • Benzoylformate decarboxylase (Pseudomonas putida)
    • Hegeman GD, (1970) Benzoylformate decarboxylase (Pseudomonas putida). Methods Enzymol 17, 674-678.
    • (1970) Methods Enzymol , vol.17 , pp. 674-678
    • Hegeman, G.D.1
  • 52
    • 0017692520 scopus 로고
    • Metabolism of mandelic acid by Neurospora crassa
    • Rao DNR, &, Vaidyanathan CS, (1977) Metabolism of mandelic acid by Neurospora crassa. Can J Microbiol 23, 1496-1499.
    • (1977) Can J Microbiol , vol.23 , pp. 1496-1499
    • Rao, D.N.R.1    Vaidyanathan, C.S.2
  • 53
    • 0023890672 scopus 로고
    • Microbial metabolism of mandelate: A microcosm of diversity
    • Fewson CA, (1988) Microbial metabolism of mandelate: a microcosm of diversity. FEMS Microbiol Rev 4, 85-110.
    • (1988) FEMS Microbiol Rev , vol.4 , pp. 85-110
    • Fewson, C.A.1
  • 54
    • 34848863353 scopus 로고    scopus 로고
    • Isolation and characterization of a benzoylformate decarboxylase and a NAD+/NADP+-dependent benzaldehyde dehydrogenase involved in D-phenylglycine metabolism in Pseudomonas stutzeri ST-201
    • Saehuan C, Rojanarata T, Wiyakrutta S, McLeish MJ, &, Meevootisom V, (2007) Isolation and characterization of a benzoylformate decarboxylase and a NAD+/NADP+-dependent benzaldehyde dehydrogenase involved in D-phenylglycine metabolism in Pseudomonas stutzeri ST-201. Biochim Biophys Acta 1770, 1585-1592.
    • (2007) Biochim Biophys Acta , vol.1770 , pp. 1585-1592
    • Saehuan, C.1    Rojanarata, T.2    Wiyakrutta, S.3    McLeish, M.J.4    Meevootisom, V.5
  • 56
    • 0034649456 scopus 로고    scopus 로고
    • Spectroscopic detection of transient thiamin diphosphate-bound intermediates on benzoylformate decarboxylase
    • Sergienko EA, Wang J, Polovnikova L, Hasson MS, McLeish MJ, Kenyon GL, &, Jordan F, (2000) Spectroscopic detection of transient thiamin diphosphate-bound intermediates on benzoylformate decarboxylase. Biochemistry 39, 13862-13869.
    • (2000) Biochemistry , vol.39 , pp. 13862-13869
    • Sergienko, E.A.1    Wang, J.2    Polovnikova, L.3    Hasson, M.S.4    McLeish, M.J.5    Kenyon, G.L.6    Jordan, F.7
  • 57
    • 44449095046 scopus 로고    scopus 로고
    • Saturation mutagenesis of putative catalytic residues of benzoylformate decarboxylase provides a challenge to the accepted mechanism
    • Yep A, Kenyon GL, &, McLeish MJ, (2008) Saturation mutagenesis of putative catalytic residues of benzoylformate decarboxylase provides a challenge to the accepted mechanism. Proc Natl Acad Sci USA 105, 5733-5738.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 5733-5738
    • Yep, A.1    Kenyon, G.L.2    McLeish, M.J.3
  • 60
    • 84877337890 scopus 로고    scopus 로고
    • A bulky hydrophobic residue is not required to maintain the V-conformation of enzyme-bound thiamin diphosphate
    • Andrews FH, Tom AR, Gunderman PR, Novak WRP, &, McLeish MJ, (2013) A bulky hydrophobic residue is not required to maintain the V-conformation of enzyme-bound thiamin diphosphate. Biochemistry 52, 3028-3030.
    • (2013) Biochemistry , vol.52 , pp. 3028-3030
    • Andrews, F.H.1    Tom, A.R.2    Gunderman, P.R.3    Novak, W.R.P.4    McLeish, M.J.5
  • 61
    • 69749101294 scopus 로고    scopus 로고
    • Engineering the substrate binding site of benzoylformate decarboxylase
    • Yep A, &, McLeish MJ, (2009) Engineering the substrate binding site of benzoylformate decarboxylase. Biochemistry 48, 8387-8395.
    • (2009) Biochemistry , vol.48 , pp. 8387-8395
    • Yep, A.1    McLeish, M.J.2
  • 63
    • 0042628455 scopus 로고    scopus 로고
    • Thiamin-diphosphate-dependent enzymes: New aspects of asymmetric C-C bond formation
    • Pohl M, Lingen B, &, Müller M, (2002) Thiamin-diphosphate- dependent enzymes: new aspects of asymmetric C-C bond formation. Chem Eur J 8, 5288-5295.
    • (2002) Chem Eur J , vol.8 , pp. 5288-5295
    • Pohl, M.1    Lingen, B.2    Müller, M.3
  • 64
    • 65549162613 scopus 로고    scopus 로고
    • Thiamin diphosphate in biological chemistry: Exploitation of diverse thiamin diphosphate-dependent enzymes for asymmetric chemoenzymatic synthesis
    • Müller M, Gocke D, &, Pohl M, (2009) Thiamin diphosphate in biological chemistry: exploitation of diverse thiamin diphosphate-dependent enzymes for asymmetric chemoenzymatic synthesis. FEBS J 276, 2894-2904.
    • (2009) FEBS J , vol.276 , pp. 2894-2904
    • Müller, M.1    Gocke, D.2    Pohl, M.3
  • 65
    • 84876705064 scopus 로고    scopus 로고
    • C-C bond formation using ThDP-dependent lyases
    • Müller M, Sprenger GA, &, Pohl M, (2013) C-C bond formation using ThDP-dependent lyases. Curr Opin Chem Biol 17, 261-270.
    • (2013) Curr Opin Chem Biol , vol.17 , pp. 261-270
    • Müller, M.1    Sprenger, G.A.2    Pohl, M.3
  • 66
    • 0025082684 scopus 로고
    • Additivity of mutational effects in proteins
    • Wells JA, (1990) Additivity of mutational effects in proteins. Biochemistry 29, 8509-8517.
    • (1990) Biochemistry , vol.29 , pp. 8509-8517
    • Wells, J.A.1
  • 67
    • 0026681635 scopus 로고
    • Quantitative interpretations of double mutations of enzymes
    • Mildvan AS, Weber DJ, &, Kuliopulos A, (1992) Quantitative interpretations of double mutations of enzymes. Arch Biochem Biophys 294, 327-340.
    • (1992) Arch Biochem Biophys , vol.294 , pp. 327-340
    • Mildvan, A.S.1    Weber, D.J.2    Kuliopulos, A.3
  • 70
    • 0034123380 scopus 로고    scopus 로고
    • Enantioselective synthesis of (S)-2-hydroxypropanone derivatives by benzoylformate decarboxylase catalyzed C-C bond formation
    • Dünnwald T, Demir AS, Siegert P, Pohl M, &, Müller M, (2000) Enantioselective synthesis of (S)-2-hydroxypropanone derivatives by benzoylformate decarboxylase catalyzed C-C bond formation. Eur J Org Chem 2000, 2161-2170.
    • (2000) Eur J Org Chem , vol.2000 , pp. 2161-2170
    • Dünnwald, T.1    Demir, A.S.2    Siegert, P.3    Pohl, M.4    Müller, M.5
  • 72
    • 0036656222 scopus 로고    scopus 로고
    • Improving the carboligase activity of benzoylformate decarboxylase from Pseudomonas putida by a combination of directed evolution and site-directed mutagenesis
    • Lingen B, Grötzinger J, Kolter D, Kula M-R, &, Pohl M, (2002) Improving the carboligase activity of benzoylformate decarboxylase from Pseudomonas putida by a combination of directed evolution and site-directed mutagenesis. Prot Eng 15, 585-593.
    • (2002) Prot Eng , vol.15 , pp. 585-593
    • Lingen, B.1    Grötzinger, J.2    Kolter, D.3    Kula, M.-R.4    Pohl, M.5
  • 73
    • 0041977179 scopus 로고    scopus 로고
    • Alteration of the substrate specificity of benzoylformate decarboxylase from Pseudomonas putida by directed evolution
    • Lingen B, Kolter-Jung D, Duenkelmann P, Feldmann R, Groetzinger J, Pohl M, &, Mueller M, (2003) Alteration of the substrate specificity of benzoylformate decarboxylase from Pseudomonas putida by directed evolution. ChemBioChem 4, 721-726.
    • (2003) ChemBioChem , vol.4 , pp. 721-726
    • Lingen, B.1    Kolter-Jung, D.2    Duenkelmann, P.3    Feldmann, R.4    Groetzinger, J.5    Pohl, M.6    Mueller, M.7
  • 74
    • 28144464277 scopus 로고
    • Xylulose-5-phosphate, a new intermediate in the pentose phosphate cycle
    • Srere PA, Cooper JR, Klybas V, &, Racker E, (1955) Xylulose-5-phosphate, a new intermediate in the pentose phosphate cycle. Arch Biochem Biophys 59, 535-538.
    • (1955) Arch Biochem Biophys , vol.59 , pp. 535-538
    • Srere, P.A.1    Cooper, J.R.2    Klybas, V.3    Racker, E.4
  • 75
    • 0030294746 scopus 로고    scopus 로고
    • Molecular characterization of transketolase (EC 2.2.1.1) active in the Calvin cycle of spinach chloroplasts
    • Flechner A, Dressen U, Westhoff P, Henze K, Schnarrenberger C, &, Martin W, (1996) Molecular characterization of transketolase (EC 2.2.1.1) active in the Calvin cycle of spinach chloroplasts. Plant Mol Biol 32, 475-484.
    • (1996) Plant Mol Biol , vol.32 , pp. 475-484
    • Flechner, A.1    Dressen, U.2    Westhoff, P.3    Henze, K.4    Schnarrenberger, C.5    Martin, W.6
  • 76
    • 0032537478 scopus 로고    scopus 로고
    • Crystallography and mutagenesis of transketolase: Mechanistic implications for enzymatic thiamin catalysis
    • Schneider G, &, Lindqvist Y, (1998) Crystallography and mutagenesis of transketolase: mechanistic implications for enzymatic thiamin catalysis. Biochim Biophys Acta Prot Struct Mol Enzymol 1385, 387-398.
    • (1998) Biochim Biophys Acta Prot Struct Mol Enzymol , vol.1385 , pp. 387-398
    • Schneider, G.1    Lindqvist, Y.2
  • 77
    • 23444437665 scopus 로고    scopus 로고
    • Binding of the coenzyme and formation of the transketolase active center
    • Kochetov GA, &, Sevostyanova IA, (2005) Binding of the coenzyme and formation of the transketolase active center. IUBMB Life 57, 491-497.
    • (2005) IUBMB Life , vol.57 , pp. 491-497
    • Kochetov, G.A.1    Sevostyanova, I.A.2
  • 78
    • 70349525161 scopus 로고    scopus 로고
    • X-ray crystallographic snapshots of reaction intermediates in pyruvate oxidase and transketolase illustrate common themes in thiamin catalysis
    • Tittmann K, &, Wille G, (2009) X-ray crystallographic snapshots of reaction intermediates in pyruvate oxidase and transketolase illustrate common themes in thiamin catalysis. J Mol Catal B: Enzymatic 61, 93-99.
    • (2009) J Mol Catal B: Enzymatic , vol.61 , pp. 93-99
    • Tittmann, K.1    Wille, G.2
  • 79
    • 70349629097 scopus 로고
    • Mechanism of action of transketolase. I. Properties of the crystalline yeast enzyme
    • Datta AG, &, Racker E, (1961) Mechanism of action of transketolase. I. Properties of the crystalline yeast enzyme. J Biol Chem 236, 617-623.
    • (1961) J Biol Chem , vol.236 , pp. 617-623
    • Datta, A.G.1    Racker, E.2
  • 80
    • 0033545539 scopus 로고    scopus 로고
    • Synthetic potential of thiamin diphosphate-dependent enzymes
    • Sprenger GA, &, Pohl M, (1999) Synthetic potential of thiamin diphosphate-dependent enzymes. J Mol Catal B: Enzym 6, 145-159.
    • (1999) J Mol Catal B: Enzym , vol.6 , pp. 145-159
    • Sprenger, G.A.1    Pohl, M.2
  • 81
    • 0032537476 scopus 로고    scopus 로고
    • Thiamin-dependent enzymes as catalysts in chemoenzymatic syntheses
    • Schörken U, &, Sprenger GA, (1998) Thiamin-dependent enzymes as catalysts in chemoenzymatic syntheses. Biochim Biophys Acta 1385, 229-243.
    • (1998) Biochim Biophys Acta , vol.1385 , pp. 229-243
    • Schörken, U.1    Sprenger, G.A.2
  • 82
    • 0033638491 scopus 로고    scopus 로고
    • Applications of transketolases in organic synthesis
    • Turner NJ, (2000) Applications of transketolases in organic synthesis. Curr Opin Biotechnol 11, 527-531.
    • (2000) Curr Opin Biotechnol , vol.11 , pp. 527-531
    • Turner, N.J.1
  • 84
    • 0028050130 scopus 로고
    • Chemoenzymatic synthesis of 6-deoxy-D-fructose and 6-deoxy-L-sorbose using transketolase
    • Hecquet L, Bolte J, &, Demuynck C, (1994) Chemoenzymatic synthesis of 6-deoxy-D-fructose and 6-deoxy-L-sorbose using transketolase. Tetrahdron 50, 8677-8684.
    • (1994) Tetrahdron , vol.50 , pp. 8677-8684
    • Hecquet, L.1    Bolte, J.2    Demuynck, C.3
  • 88
    • 0031029945 scopus 로고    scopus 로고
    • Examination of substrate binding in thiamin diphosphate-dependent transketolase by protein crystallography and site-directed mutagenesis
    • Nilsson U, Meshalkina L, Lindqvist Y, &, Schneider G, (1997) Examination of substrate binding in thiamin diphosphate-dependent transketolase by protein crystallography and site-directed mutagenesis. J Biol Chem 272, 1864-1869.
    • (1997) J Biol Chem , vol.272 , pp. 1864-1869
    • Nilsson, U.1    Meshalkina, L.2    Lindqvist, Y.3    Schneider, G.4
  • 89
    • 35648979411 scopus 로고    scopus 로고
    • Strain and near attack conformers in enzymic thiamin catalysis: X-ray crystallographic snapshots of bacterial transketolase in covalent complex with donor ketoses xylulose 5-phosphate and fructose 6-phosphate, and in noncovalent complex with acceptor aldose ribose 5-phosphate
    • Asztalos P, Parthier C, Golbik R, Kleinschmidt M, Hübner G, Weiss MS, Friedemann R, Wille G, &, Tittmann K, (2007) Strain and near attack conformers in enzymic thiamin catalysis: X-ray crystallographic snapshots of bacterial transketolase in covalent complex with donor ketoses xylulose 5-phosphate and fructose 6-phosphate, and in noncovalent complex with acceptor aldose ribose 5-phosphate. Biochemistry 46, 12037-12052.
    • (2007) Biochemistry , vol.46 , pp. 12037-12052
    • Asztalos, P.1    Parthier, C.2    Golbik, R.3    Kleinschmidt, M.4    Hübner, G.5    Weiss, M.S.6    Friedemann, R.7    Wille, G.8    Tittmann, K.9
  • 90
    • 34848827927 scopus 로고    scopus 로고
    • Optimisation and evaluation of a generic microplate-based HPLC screen for transketolase activity
    • Miller OJ, Hibbert EG, Ingram CU, Lye GJ, &, Dalby PA, (2007) Optimisation and evaluation of a generic microplate-based HPLC screen for transketolase activity. Biotechnol Lett 29, 1759-1770.
    • (2007) Biotechnol Lett , vol.29 , pp. 1759-1770
    • Miller, O.J.1    Hibbert, E.G.2    Ingram, C.U.3    Lye, G.J.4    Dalby, P.A.5
  • 91
    • 0028305456 scopus 로고
    • Refined structure of transketolase from Saccharomyces cerevisiae at 2.0 Å resolution
    • Nikkola M, Lindqvist Y, &, Schneider G, (1994) Refined structure of transketolase from Saccharomyces cerevisiae at 2.0 Å resolution. J Mol Biol 238, 387-404.
    • (1994) J Mol Biol , vol.238 , pp. 387-404
    • Nikkola, M.1    Lindqvist, Y.2    Schneider, G.3
  • 94
    • 56649091372 scopus 로고    scopus 로고
    • Enhancing and reversing the stereoselectivity of Escherichia coli transketolase via single-point mutations
    • Smith MEB, Hibbert EG, Jones AB, Dalby PA, &, Hailes HC, (2008) Enhancing and reversing the stereoselectivity of Escherichia coli transketolase via single-point mutations. Advan Synth Catal 350, 2631-2638.
    • (2008) Advan Synth Catal , vol.350 , pp. 2631-2638
    • Smith, M.E.B.1    Hibbert, E.G.2    Jones, A.B.3    Dalby, P.A.4    Hailes, H.C.5
  • 95
    • 77957654246 scopus 로고    scopus 로고
    • [α, α'-Dihydroxyketone formation using aromatic and heteroaromatic aldehydes with evolved transketolase enzymes
    • Galman JL, Steadman D, Bacon S, Morris P, Smith MEB, Ward JM, Dalby PA, &, Hailes HC, (2010) [α, α'-Dihydroxyketone formation using aromatic and heteroaromatic aldehydes with evolved transketolase enzymes. Chem Comm 46, 7608-7610.
    • (2010) Chem Comm , vol.46 , pp. 7608-7610
    • Galman, J.L.1    Steadman, D.2    Bacon, S.3    Morris, P.4    Smith, M.E.B.5    Ward, J.M.6    Dalby, P.A.7    Hailes, H.C.8
  • 96
    • 0037120881 scopus 로고    scopus 로고
    • Development of a donor-acceptor concept for enzymatic cross-coupling reactions of aldehydes: The first asymmetric cross-benzoin condensation
    • Dünkelmann P, Kolter-Jung D, Nitsche A, Demir AS, Siegert P, Lingen B, Baumann M, Pohl M, &, Müller M, (2002) Development of a donor-acceptor concept for enzymatic cross-coupling reactions of aldehydes: the first asymmetric cross-benzoin condensation. J Am Chem Soc 124, 12084-12085.
    • (2002) J Am Chem Soc , vol.124 , pp. 12084-12085
    • Dünkelmann, P.1    Kolter-Jung, D.2    Nitsche, A.3    Demir, A.S.4    Siegert, P.5    Lingen, B.6    Baumann, M.7    Pohl, M.8    Müller, M.9
  • 97
    • 0028292158 scopus 로고
    • Specificity of coenzyme binding in thiamin diphosphate-dependent enzymes. Crystal structures of yeast transketolase in complex with analogs of thiamin diphosphate
    • König S, Schellenberger A, Neef H, &, Schneider G, (1994) Specificity of coenzyme binding in thiamin diphosphate-dependent enzymes. Crystal structures of yeast transketolase in complex with analogs of thiamin diphosphate. J Biol Chem 269, 10879-10882.
    • (1994) J Biol Chem , vol.269 , pp. 10879-10882
    • König, S.1    Schellenberger, A.2    Neef, H.3    Schneider, G.4
  • 98
    • 23244432174 scopus 로고    scopus 로고
    • Phosphonate analogues of α-ketoglutarate inhibit the activity of the α-ketoglutarate dehydrogenase complex isolated from brain and in cultured cells
    • Bunik VI, Denton TT, Xu H, Thompson CM, Cooper AJL, &, Gibson GE, (2005) Phosphonate analogues of α-ketoglutarate inhibit the activity of the α-ketoglutarate dehydrogenase complex isolated from brain and in cultured cells. Biochemistry 44, 10552-10561.
    • (2005) Biochemistry , vol.44 , pp. 10552-10561
    • Bunik, V.I.1    Denton, T.T.2    Xu, H.3    Thompson, C.M.4    Cooper, A.J.L.5    Gibson, G.E.6
  • 99
    • 34047185249 scopus 로고    scopus 로고
    • Crystal structure of the E1 component of the Escherichia coli 2-oxoglutarate dehydrogenase multienzyme complex
    • Frank RAW, Price AJ, Northrop FD, Perham RN, &, Luisi BF, (2007) Crystal structure of the E1 component of the Escherichia coli 2-oxoglutarate dehydrogenase multienzyme complex. J Mol Biol 368, 639-651.
    • (2007) J Mol Biol , vol.368 , pp. 639-651
    • Frank, R.A.W.1    Price, A.J.2    Northrop, F.D.3    Perham, R.N.4    Luisi, B.F.5
  • 100
    • 0034681508 scopus 로고    scopus 로고
    • Increased catalytic performance of the 2-oxoacid dehydrogenase complexes in the presence of thioredoxin, a thiol-disulfide oxidoreductase
    • Bunik V, (2000) Increased catalytic performance of the 2-oxoacid dehydrogenase complexes in the presence of thioredoxin, a thiol-disulfide oxidoreductase. J Mol Catal B: Enzym 8, 165-174.
    • (2000) J Mol Catal B: Enzym , vol.8 , pp. 165-174
    • Bunik, V.1
  • 101
    • 80052213490 scopus 로고    scopus 로고
    • Assignment of function to histidines 260 and 298 by engineering the E1 component of the Escherichia coli 2-oxoglutarate dehydrogenase complex; Substitutions that lead to acceptance of substrates lacking the 5-carboxyl group
    • Shim DJ, Nemeria NS, Balakrishnan A, Patel H, Song J, Wang J, Jordan F, &, Farinas ET, (2011) Assignment of function to histidines 260 and 298 by engineering the E1 component of the Escherichia coli 2-oxoglutarate dehydrogenase complex; substitutions that lead to acceptance of substrates lacking the 5-carboxyl group. Biochemistry 50, 7705-7709.
    • (2011) Biochemistry , vol.50 , pp. 7705-7709
    • Shim, D.J.1    Nemeria, N.S.2    Balakrishnan, A.3    Patel, H.4    Song, J.5    Wang, J.6    Jordan, F.7    Farinas, E.T.8
  • 102
    • 0345686436 scopus 로고    scopus 로고
    • Steady-state kinetics and molecular evolution of Escherichia coli MenD [(1R,6R)-2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase], an anomalous thiamin diphosphate-dependent decarboxylase-carboligase
    • Bhasin M, Billinsky JL, &, Palmer DRJ, (2003) Steady-state kinetics and molecular evolution of Escherichia coli MenD [(1R,6R)-2-succinyl-6-hydroxy- 2,4-cyclohexadiene-1-carboxylate synthase], an anomalous thiamin diphosphate-dependent decarboxylase-carboligase. Biochemistry 42, 13496-13504.
    • (2003) Biochemistry , vol.42 , pp. 13496-13504
    • Bhasin, M.1    Billinsky, J.L.2    Palmer, D.R.J.3
  • 103
    • 34648813427 scopus 로고    scopus 로고
    • Menaquinone biosynthesis in Escherichia coli: Identification of 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate as a novel intermediate and re-evaluation of MenD activity
    • Jiang M, Cao Y, Guo Z-F, Chen M, Chen X, &, Guo Z, (2007) Menaquinone biosynthesis in Escherichia coli: identification of 2-succinyl-5-enolpyruvyl-6- hydroxy-3-cyclohexene-1-carboxylate as a novel intermediate and re-evaluation of MenD activity. Biochemistry 46, 10979-10989.
    • (2007) Biochemistry , vol.46 , pp. 10979-10989
    • Jiang, M.1    Cao, Y.2    Guo, Z.-F.3    Chen, M.4    Chen, X.5    Guo, Z.6
  • 105
    • 56949084464 scopus 로고    scopus 로고
    • Specificity and reactivity in menaquinone biosynthesis: The structure of Escherichia coli MenD (2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexadiene-1- carboxylate synthase)
    • Dawson A, Fyfe PK, &, Hunter WN, (2008) Specificity and reactivity in menaquinone biosynthesis: the structure of Escherichia coli MenD (2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexadiene-1-carboxylate synthase). J Mol Biol 384, 1353-1368.
    • (2008) J Mol Biol , vol.384 , pp. 1353-1368
    • Dawson, A.1    Fyfe, P.K.2    Hunter, W.N.3
  • 108
    • 80053606510 scopus 로고    scopus 로고
    • Using substrate analogues to probe the kinetic mechanism and active site of Escherichia coli MenD
    • Fang M, Macova A, Hanson KL, Kos J, &, Palmer DRJ, (2011) Using substrate analogues to probe the kinetic mechanism and active site of Escherichia coli MenD. Biochemistry 50, 8712-8721.
    • (2011) Biochemistry , vol.50 , pp. 8712-8721
    • Fang, M.1    MacOva, A.2    Hanson, K.L.3    Kos, J.4    Palmer, D.R.J.5
  • 109
    • 77949796314 scopus 로고    scopus 로고
    • Succinylphosphonate esters are competitive inhibitors of MenD that show active-site discrimination between homologous α-ketoglutarate- decarboxylating enzymes
    • Fang M, Toogood RD, Macova A, Ho K, Franzblau SG, McNeil MR, Sanders DA, &, Palmer DR, (2010) Succinylphosphonate esters are competitive inhibitors of MenD that show active-site discrimination between homologous α-ketoglutarate-decarboxylating enzymes. Biochemistry 49, 2672-2679.
    • (2010) Biochemistry , vol.49 , pp. 2672-2679
    • Fang, M.1    Toogood, R.D.2    MacOva, A.3    Ho, K.4    Franzblau, S.G.5    McNeil, M.R.6    Sanders, D.A.7    Palmer, D.R.8
  • 110
    • 0035425380 scopus 로고    scopus 로고
    • Enzyme catalysis: Removing chemically 'essential' residues by site-directed mutagenesis
    • Peracchi A, (2001) Enzyme catalysis: removing chemically 'essential' residues by site-directed mutagenesis. Trends Biochem Sci 26, 497-503.
    • (2001) Trends Biochem Sci , vol.26 , pp. 497-503
    • Peracchi, A.1
  • 111
    • 84889688511 scopus 로고    scopus 로고
    • The PyMOL Molecular Graphics System, Version 1.3, Schrödinger, LLC
    • The PyMOL Molecular Graphics System, Version 1.3, Schrödinger, LLC. http://www.pymol.org.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.