메뉴 건너뛰기




Volumn , Issue , 2009, Pages 1-240

Bayesian Analysis of Gene Expression Data

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84874843509     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1002/9780470742785     Document Type: Book
Times cited : (16)

References (349)
  • 1
    • 0016355478 scopus 로고
    • A new look at statistical model identification
    • Akaike, H. (1974) A new look at statistical model identification, IEEE Transactions on Automatic Control, 19, 716-723.
    • (1974) IEEE Transactions on Automatic Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 4
    • 0034812859 scopus 로고    scopus 로고
    • Towards a novel classification of human malignancies based on gene expression patterns
    • Alizadeh, A.A., Ross, D.T., Perou, C.M., and van de Rijn M. (2001) Towards a novel classification of human malignancies based on gene expression patterns. J. Pathol., 195(1), 41-52.
    • (2001) J. Pathol , vol.195 , Issue.1 , pp. 41-52
    • Alizadeh, A.A.1    Ross, D.T.2    Perou, C.M.3    Van De Rijn, M.4
  • 6
    • 2942572926 scopus 로고    scopus 로고
    • Quantifying the relationship between co-expression, co-regulation and gene function
    • Allocco, D.J., Kohane, I.S., and Butte, A.J. (2004) Quantifying the relationship between co-expression, co-regulation and gene function, BMC Bioinformatics, 5.
    • (2004) BMC Bioinformatics , pp. 5
    • Allocco, D.J.1    Kohane, I.S.2    Butte, A.J.3
  • 7
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon, U., Barkai N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., and Levine, A.J. (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. USA, 96(12), 6745-6750.
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , Issue.12 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.A.3    Gish, K.4    Ybarra, S.5    Mack, D.6    Levine, A.J.7
  • 8
    • 0037076322 scopus 로고    scopus 로고
    • Selection bias in gene extraction on the basis of microarray gene-expression data
    • Ambroise, C., and McLachlan G.J. (2002) Selection bias in gene extraction on the basis of microarray gene-expression data. Proc. Natl. Acad. Sci. USA, 99(10), 6562-6566.
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , Issue.10 , pp. 6562-6566
    • Ambroise, C.1    McLachlan, G.J.2
  • 9
    • 35348872479 scopus 로고    scopus 로고
    • Analysis of time-series gene expression data: methods, challenges and opportunities
    • Androulakis, I., Yang, E., and Almon, R. (2007) Analysis of time-series gene expression data: methods, challenges and opportunities. Annual Review of Biomedical Engineering, 9, 205-228.
    • (2007) Annual Review of Biomedical Engineering , vol.9 , pp. 205-228
    • Androulakis, I.1    Yang, E.2    Almon, R.3
  • 10
    • 0000708831 scopus 로고
    • Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems
    • Antoniak, C.E. (1974). Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Annals of Statistics, 2, 1152-1174.
    • (1974) Annals of Statistics , vol.2 , pp. 1152-1174
    • Antoniak, C.E.1
  • 11
    • 0000038791 scopus 로고
    • Poisson process approximations for the Ewens sampling formula
    • Arratia, R., Barbour, A.D. and Tavaré, S. (1992) Poisson process approximations for the Ewens sampling formula. Annals of Applied Probability, 2, 519-535.
    • (1992) Annals of Applied Probability , vol.2 , pp. 519-535
    • Arratia, R.1    Barbour, A.D.2    Tavaré, S.3
  • 15
    • 12344304266 scopus 로고    scopus 로고
    • Gene selection using a two-level hierarchical Bayesian model
    • Bae, K., and Mallick, B.M. (2004) Gene selection using a two-level hierarchical Bayesian model. Bioinformatics. (18): 3423-3430.
    • (2004) Bioinformatics , Issue.18 , pp. 3423-3430
    • Bae, K.1    Mallick, B.M.2
  • 18
    • 85044322189 scopus 로고    scopus 로고
    • How to infer gene networks from protein profiles
    • Bansal, M. (2007) How to infer gene networks from protein profiles. Molecular System Biology, 3, 1-10.
    • (2007) Molecular System Biology , vol.3 , pp. 1-10
    • Bansal, M.1
  • 19
    • 8844277626 scopus 로고    scopus 로고
    • Analyzing time series gene expression data
    • Bar-Joseph, Z. (2004) Analyzing time series gene expression data. Bioinformatics, 20, 2493-2503.
    • (2004) Bioinformatics , vol.20 , pp. 2493-2503
    • Bar-Joseph, Z.1
  • 21
    • 8844241676 scopus 로고    scopus 로고
    • Deconvolving cell cycle expression data with complementary information
    • Proceedings of ISMB
    • Bar-Joseph, Z., Farkash, S., Gifford, D., Simon, I., and Rosenfeld, R. (2004) Deconvolving cell cycle expression data with complementary information. Bioinformatics (Proceedings of ISMB) 20(Suppl. 1), I23-I30.
    • (2004) Bioinformatics , vol.20 , pp. I23-I30
    • Bar-Joseph, Z.1    Farkash, S.2    Gifford, D.3    Simon, I.4    Rosenfeld, R.5
  • 22
    • 18744389489 scopus 로고    scopus 로고
    • Significance analysis of functional categories in geneexpression studies: a structured permutation approach
    • Barry, W.T., Nobel, A.B., and Wright, F.A (2005) Significance analysis of functional categories in geneexpression studies: a structured permutation approach. Bioinformatics, 21, 1943-1949.
    • (2005) Bioinformatics , vol.21 , pp. 1943-1949
    • Barry, W.T.1    Nobel, A.B.2    Wright, F.A.3
  • 23
    • 13844253637 scopus 로고    scopus 로고
    • A Bayesian approach to reconstructing genetic regulatory networks with hidden factors
    • Beal, M.J., Falciani, F., Gharamani, Z., Rangel, C., and Wild, D.L. (2005). A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics, 21, 349-356.
    • (2005) Bioinformatics , vol.21 , pp. 349-356
    • Beal, M.J.1    Falciani, F.2    Gharamani, Z.3    Rangel, C.4    Wild, D.L.5
  • 24
    • 1842532350 scopus 로고    scopus 로고
    • The Bayesian revolution in genetics
    • Beaumont, M. and Rannala, B. (2004) The Bayesian revolution in genetics. Nat. Rev. Genet., 2004, 251-261.
    • (2004) Nat. Rev. Genet , vol.2004 , pp. 251-261
    • Beaumont, M.1    Rannala, B.2
  • 25
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: a practical and powerful approach to multiple testing
    • Benjamini, Y., and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B, 57(1), 289-300.
    • (1995) Journal of the Royal Statistical Society Series B , vol.57 , Issue.1 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 29
    • 20744456475 scopus 로고    scopus 로고
    • Correlation between gene expression profiles and protein-protein interactions within and across genomes
    • Bhardwaj, N. and Lu, H. (2005) Correlation between gene expression profiles and protein-protein interactions within and across genomes. Bioinformatics, 21, 2730-2738.
    • (2005) Bioinformatics , vol.21 , pp. 2730-2738
    • Bhardwaj, N.1    Lu, H.2
  • 31
    • 14644402541 scopus 로고    scopus 로고
    • Error-rate and decision-theoretic methods of multiple testing: Which genes have high objective probabilities of differential expression?
    • Bickel, D.R. (2004) Error-rate and decision-theoretic methods of multiple testing: Which genes have high objective probabilities of differential expression? Statistical Applications in Genetics and Molecular Biology, 3(1), 8.
    • (2004) Statistical Applications in Genetics and Molecular Biology , vol.3 , Issue.1 , pp. 8
    • Bickel, D.R.1
  • 32
    • 85042555546 scopus 로고
    • Bayesian cluster analysis
    • Binder, D.A. (1978) Bayesian cluster analysis. Biometrika, 65(1), 31-38.
    • (1978) Biometrika , vol.65 , Issue.1 , pp. 31-38
    • Binder, D.A.1
  • 33
    • 0002396668 scopus 로고
    • Approximations to Bayesian clustering rules I
    • Binder, D.A. (1981) Approximations to Bayesian clustering rules I. Biometrika, 68(1), 275-285.
    • (1981) Biometrika , vol.68 , Issue.1 , pp. 275-285
    • Binder, D.A.1
  • 34
    • 0001203039 scopus 로고
    • Discreteness of Ferguson selection
    • Blackwell, D. (1973) Discreteness of Ferguson selection. Annals of Statistics, 1, 356-358.
    • (1973) Annals of Statistics , vol.1 , pp. 356-358
    • Blackwell, D.1
  • 35
    • 0002617436 scopus 로고
    • Ferguson distributions via Polya urn schemes
    • Blackwell, D., and MacQueen, J.B. (1973). Ferguson distributions via Polya urn schemes. Annals of Statistics, 1, 353-355.
    • (1973) Annals of Statistics , vol.1 , pp. 353-355
    • Blackwell, D.1    MacQueen, J.B.2
  • 38
    • 0037316303 scopus 로고    scopus 로고
    • A comparison of normalization methods for high density oligonucleotide array data based on bias and variance
    • Bolstad, B.M., Irizarry, R.A., Astrand, M., and Speed, T.P. (2003) A comparison of normalization methods for high density oligonucleotide array data based on bias and variance. Bioinformatics, 19(2), 185-193.
    • (2003) Bioinformatics , vol.19 , Issue.2 , pp. 185-193
    • Bolstad, B.M.1    Irizarry, R.A.2    Astrand, M.3    Speed, T.P.4
  • 39
    • 51849179096 scopus 로고
    • Sampling inference, Bayes inference, and robustness in the advancement of learning
    • J.M. Bernardo, M.H. DeGroot, D.V. Lindley, and A.F.M. Smith (eds), Oxford: Oxford University Press
    • Box, G.E.P. (1980) Sampling inference, Bayes inference, and robustness in the advancement of learning. In J.M. Bernardo, M.H. DeGroot, D.V. Lindley, and A.F.M. Smith (eds), Bayesian Statistics, pp. 366-381. Oxford: Oxford University Press.
    • (1980) Bayesian Statistics , pp. 366-381
    • Box, G.E.P.1
  • 40
    • 18344396568 scopus 로고    scopus 로고
    • Minimum Information about Micorarray Experiment (MAIME) - towards standards for microarray data
    • Brazma, A., Hingamp, P., Quakenbush, J. et al. (2001) Minimum Information about Micorarray Experiment (MAIME) - towards standards for microarray data. Nature Genetics, 29, 365-371.
    • (2001) Nature Genetics , vol.29 , pp. 365-371
    • Brazma, A.1    Hingamp, P.2    Quakenbush, J.3
  • 42
    • 55149116287 scopus 로고    scopus 로고
    • Quality assessment for short oligonucleotide microarray data
    • Brettschneider, J., Collin, F., Bolstad, B.M., and Speed, T.P. (2008) Quality assessment for short oligonucleotide microarray data. Technometrics 50(3), 241-264.
    • (2008) Technometrics , vol.50 , Issue.3 , pp. 241-264
    • Brettschneider, J.1    Collin, F.2    Bolstad, B.M.3    Speed, T.P.4
  • 43
    • 0036401627 scopus 로고    scopus 로고
    • Bayesian hierarchical model for identifying changes in gene expression from microarray experiments
    • Broet, P., Richardson, S., and Radvanyi, F. (2002) Bayesian hierarchical model for identifying changes in gene expression from microarray experiments. Journal of Computational Biology, 9, 671-683.
    • (2002) Journal of Computational Biology , vol.9 , pp. 671-683
    • Broet, P.1    Richardson, S.2    Radvanyi, F.3
  • 45
    • 0000904732 scopus 로고    scopus 로고
    • A semiparametric Bayesian model for randomised block designs
    • Bush, C. and MacEachern, S. (1996) A semiparametric Bayesian model for randomised block designs. Biometrika, 83, 275-285.
    • (1996) Biometrika , vol.83 , pp. 275-285
    • Bush, C.1    MacEachern, S.2
  • 48
    • 0031246430 scopus 로고    scopus 로고
    • Ratio-based decisions and the quantitative analysis of cDNA microarray images
    • Chen, Y., Dougherty, E.R., and Bittner, M.L. (1997). Ratio-based decisions and the quantitative analysis of cDNA microarray images. Journ. Biomedical Optics, 4, 364-374.
    • (1997) Journ. Biomedical Optics , vol.4 , pp. 364-374
    • Chen, Y.1    Dougherty, E.R.2    Bittner, M.L.3
  • 49
    • 33748582940 scopus 로고    scopus 로고
    • A bayesian determination of threshold for identifying differentially expressed genes in microarray experiments
    • Chen, J., and Sarkar, S.K. (2005) A bayesian determination of threshold for identifying differentially expressed genes in microarray experiments. Statistics in Medicine, 25, 3174-3189.
    • (2005) Statistics in Medicine , vol.25 , pp. 3174-3189
    • Chen, J.1    Sarkar, S.K.2
  • 50
    • 0000911137 scopus 로고    scopus 로고
    • Analysis of multivariate probit models
    • Chib, S., and Greenberg, E. (1998). Analysis of multivariate probit models. Biometrika, 85, 347-361.
    • (1998) Biometrika , vol.85 , pp. 347-361
    • Chib, S.1    Greenberg, E.2
  • 51
    • 34547672810 scopus 로고    scopus 로고
    • Bayesian hierarchical modeling for time course microarray experiments
    • Chi, Y., Ibrahim, J., Bissahoyo, A., and Threadgill, D. (2007) Bayesian hierarchical modeling for time course microarray experiments. Biometrics, 63, 496-504.
    • (2007) Biometrics , vol.63 , pp. 496-504
    • Chi, Y.1    Ibrahim, J.2    Bissahoyo, A.3    Threadgill, D.4
  • 52
    • 70249145275 scopus 로고    scopus 로고
    • Sample size and positive false discovery rate control for multiple testing
    • Chi, Z. (2007) Sample size and positive false discovery rate control for multiple testing, Elec. Journ. of Stat., 1, 77-118.
    • (2007) Elec. Journ. of Stat , vol.1 , pp. 77-118
    • Chi, Z.1
  • 54
    • 0036900895 scopus 로고    scopus 로고
    • Fundamentals of experimental design for cDNA microarrays
    • Churchill GA (2002) Fundamentals of experimental design for cDNA microarrays. Nature Genetics, 32, 490-495.
    • (2002) Nature Genetics , vol.32 , pp. 490-495
    • Churchill, G.A.1
  • 56
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper, G., and Herskovitz, E. (1992) A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309-347.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.1    Herskovitz, E.2
  • 57
  • 59
    • 0002563962 scopus 로고    scopus 로고
    • Constructing partial prior specifications for models of complex physical systems
    • Craig, P., Goldstein, M., Seheult, A., and Smith, J. (1998) Constructing partial prior specifications for models of complex physical systems. The Statistician, 47, 37-53.
    • (1998) The Statistician , vol.47 , pp. 37-53
    • Craig, P.1    Goldstein, M.2    Seheult, A.3    Smith, J.4
  • 63
    • 21344482755 scopus 로고
    • Hyper Markov laws in the statistical analysis of decomposable graphical models
    • Dawid, A.P., and Lauritzen, S. (1995) Hyper Markov laws in the statistical analysis of decomposable graphical models. Annals of Statistics, 21, 1272-1317.
    • (1995) Annals of Statistics , vol.21 , pp. 1272-1317
    • Dawid, A.P.1    Lauritzen, S.2
  • 64
    • 3342955888 scopus 로고
    • Funzione caratteristica di un fenomeno aleatoria
    • de Finetti, B. (1930) Funzione caratteristica di un fenomeno aleatoria. Men. Acad. Naz. Lincei., 4, 86-133.
    • (1930) Men. Acad. Naz. Lincei , vol.4 , pp. 86-133
    • De Finetti, B.1
  • 65
    • 0001918661 scopus 로고
    • La prévision: ses lois logiques, ses source subjectives
    • Reprinted (1964) in H.E. Kyburg and H.E. Smokler (eds), Studies in Subjective Probability, New York: John Wiley & Sons, Inc
    • de Finetti, B. (1937) La prévision: ses lois logiques, ses source subjectives. Annales de l'Institut Henri Poincaré, 7(1), 1-68. Reprinted (1964) in H.E. Kyburg and H.E. Smokler (eds), Studies in Subjective Probability. New York: John Wiley & Sons, Inc.
    • (1937) Annales de l'Institut Henri Poincaré , vol.7 , Issue.1 , pp. 1-68
    • De Finetti, B.1
  • 66
  • 67
    • 84948068517 scopus 로고
    • Probabilità. Reprinted (1972) as: Conditional probabilities and decision theory
    • New York: John Wiley & Sons, Inc
    • de Finetti, B. (1964) Probabilità. Reprinted (1972) as: Conditional probabilities and decision theory. In Probability, Induction and Statistics: The Art of Guessing. New York: John Wiley & Sons, Inc.
    • (1964) Probability, Induction and Statistics: The Art of Guessing
    • De Finetti, B.1
  • 71
    • 0030669030 scopus 로고    scopus 로고
    • Exploring the metabolic and genetic control of gene expression on a genomic scale
    • DeRisi, J. L., Iyer, V. R., and Brown, P. O. (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science, 278, 680-685.
    • (1997) Science , vol.278 , pp. 680-685
    • DeRisi, J.L.1    Iyer, V.R.2    Brown, P.O.3
  • 76
    • 2342643338 scopus 로고
    • Asymptotic corrections to the Wigner semicircular eigenvalue spectrum of a large real symmetric random matrix using the replica method
    • Printed in the UK
    • Dhesi, G.S., and Jones, R.C. (1990) Asymptotic corrections to the Wigner semicircular eigenvalue spectrum of a large real symmetric random matrix using the replica method. J. Phys. A: Math. Gen, 23, 5577-5599. Printed in the UK.
    • (1990) J. Phys. A: Math. Gen , vol.23 , pp. 5577-5599
    • Dhesi, G.S.1    Jones, R.C.2
  • 77
    • 29244480587 scopus 로고    scopus 로고
    • A nonparametric Bayesian mixture model for gene expression
    • Do, K.A., Mueller, P., and Tang, F. (2005) A nonparametric Bayesian mixture model for gene expression. Applied Statistics, 54(3), 1-18.
    • (2005) Applied Statistics , vol.54 , Issue.3 , pp. 1-18
    • Do, K.A.1    Mueller, P.2    Tang, F.3
  • 81
    • 0035076190 scopus 로고    scopus 로고
    • Small sample issues for microarray-based classification
    • Dougherty ER (2001) Small sample issues for microarray-based classification. Comp Funct Genomics., 2(1): 28-34.
    • (2001) Comp Funct Genomics , vol.2 , Issue.1 , pp. 28-34
    • Dougherty, E.R.1
  • 83
    • 0036376993 scopus 로고    scopus 로고
    • Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments
    • Dudoit S., Y. H. Yang, T. P. Speed, and M. J. Callow (2002). Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Statistica Sinica, Vol. 12, No. 1, p. 111-139.
    • (2002) Statistica Sinica , vol.12 , Issue.1 , pp. 111-139
    • Dudoit, S.1    Yang, Y.H.2    Speed, T.P.3    Callow, M.J.4
  • 84
    • 0043203327 scopus 로고    scopus 로고
    • Multiple hypothesis testing in microarray experiments
    • Dudoit S., Shaffer, J.P. and Boldrick, J.C. (2003). Multiple hypothesis testing in microarray experiments. STATSCI, Vol. 18, No. 1, p. 71-103.
    • (2003) STATSCI , vol.18 , Issue.1 , pp. 71-103
    • Dudoit, S.1    Shaffer, J.P.2    Boldrick, J.C.3
  • 87
    • 0000162039 scopus 로고
    • A bayesian approach to multiple comparisons
    • Duncan, D.B. (1965) A bayesian approach to multiple comparisons. Technometrics, 7, 171-222.
    • (1965) Technometrics , vol.7 , pp. 171-222
    • Duncan, D.B.1
  • 88
    • 0035992248 scopus 로고    scopus 로고
    • Empirical Bayes methods and false discovery rates for microarrays
    • Efron, B. and Tibshirani, R. (2002) Empirical Bayes methods and false discovery rates for microarrays. Genetic Epidemiology, 23, 70-86.
    • (2002) Genetic Epidemiology , vol.23 , pp. 70-86
    • Efron, B.1    Tibshirani, R.2
  • 91
    • 0032441150 scopus 로고    scopus 로고
    • Cluster analysis and display of genome-wide expression patterns
    • Eisen, M.B., Spellman, P.T., Brown, P.O., and Botstein, D. (1998) Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA, 95(25), 14863-14868.
    • (1998) Proc. Natl. Acad. Sci. USA , vol.95 , Issue.25 , pp. 14863-14868
    • Eisen, M.B.1    Spellman, P.T.2    Brown, P.O.3    Botstein, D.4
  • 96
    • 0842321044 scopus 로고    scopus 로고
    • Normalization and analysis of cDNA microarrays using within-array replications applied to neuroblastoma cell response to a cytokine
    • Fan, J., Tam, P., Woude, G.V., and Ren, Y. (2004) Normalization and analysis of cDNA microarrays using within-array replications applied to neuroblastoma cell response to a cytokine. Proc. Natl. Acad. Sci. USA, 101(5), 1135-1140.
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , Issue.5 , pp. 1135-1140
    • Fan, J.1    Tam, P.2    Woude, G.V.3    Ren, Y.4
  • 99
    • 0001120413 scopus 로고
    • A Bayesian analysis of some nonparametric problems
    • Ferguson, T.S. (1973) A Bayesian analysis of some nonparametric problems. Annals of Statistics, 1, 209-230.
    • (1973) Annals of Statistics , vol.1 , pp. 209-230
    • Ferguson, T.S.1
  • 100
  • 102
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis, and density estimation
    • Fraley, C., and Raftery, A.E. (2002) Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association, 97(458), 611-631.
    • (2002) Journal of the American Statistical Association , vol.97 , Issue.458 , pp. 611-631
    • Fraley, C.1    Raftery, A.E.2
  • 103
    • 0000202123 scopus 로고
    • On the asymptotic behavior of Bayes estimate in the discrete case
    • Freedman, D.A. (1963) On the asymptotic behavior of Bayes estimate in the discrete case. Annals of Mathematical Statistics, 34, 1386-1403.
    • (1963) Annals of Mathematical Statistics , vol.34 , pp. 1386-1403
    • Freedman, D.A.1
  • 104
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines (with discussion)
    • Friedman, J.H. (1991). Multivariate adaptive regression splines (with discussion). Annals of Mathematical Statistics, 19, 1-141.
    • (1991) Annals of Mathematical Statistics , vol.19 , pp. 1-141
    • Friedman, J.H.1
  • 105
    • 21744462998 scopus 로고    scopus 로고
    • On bias, variance, 0/1 - loss, and the curse-of-dimensionality
    • Friedman, J. H. (1997) On bias, variance, 0/1 - loss, and the curse-of-dimensionality. Data Mining and Knowledge Discovery, 1(1), 55-77.
    • (1997) Data Mining and Knowledge Discovery , vol.1 , Issue.1 , pp. 55-77
    • Friedman, J.H.1
  • 106
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • Friedman, N. (2004) Inferring cellular networks using probabilistic graphical models. Science, 30, 799-805.
    • (2004) Science , vol.30 , pp. 799-805
    • Friedman, N.1
  • 107
    • 0037262841 scopus 로고    scopus 로고
    • Being Bayesian about network structure: a Bayesian approach to structure discovery in ayesian networks
    • Friedman, N., and Koller, D. (2003) Being Bayesian about network structure: a Bayesian approach to structure discovery in ayesian networks. Machine Learning, 50, 95-125.
    • (2003) Machine Learning , vol.50 , pp. 95-125
    • Friedman, N.1    Koller, D.2
  • 109
    • 34250756042 scopus 로고    scopus 로고
    • Transcriptomic signatures in breast cancer
    • Fu, J., Jeffrey, S.S. (2007) Transcriptomic signatures in breast cancer. Mol. Biosyst., 3(7), 466-472.
    • (2007) Mol. Biosyst , vol.3 , Issue.7 , pp. 466-472
    • Fu, J.1    Jeffrey, S.S.2
  • 110
    • 0030296512 scopus 로고    scopus 로고
    • Quantifying and using expert opinion for variable-selection problems in regression
    • discussion 27-43
    • Garthwaite, P.H., and Dickey, J.M. (1996) Quantifying and using expert opinion for variable-selection problems in regression. Chemometrics and Intelligent Laboratory Systems, 35, 1-26; discussion 27-43.
    • (1996) Chemometrics and Intelligent Laboratory Systems , vol.35 , pp. 1-26
    • Garthwaite, P.H.1    Dickey, J.M.2
  • 112
    • 0031510558 scopus 로고    scopus 로고
    • A characterization of Dirichlet distributions through local and global independence
    • Geiger, D. and Heckerman, D. (1997) A characterization of Dirichlet distributions through local and global independence. Annals of Statistics, 25, 1344-1368.
    • (1997) Annals of Statistics , vol.25 , pp. 1344-1368
    • Geiger, D.1    Heckerman, D.2
  • 114
    • 0001803816 scopus 로고    scopus 로고
    • Model determination using sampling-based methods
    • W.R. Gilks, S. Richardson, and D.J. Spiegelhalter (eds), London: Chapman & Hall
    • Gelfand, A. (1996). Model determination using sampling-based methods. In W.R. Gilks, S. Richardson, and D.J. Spiegelhalter (eds), Markov Chain Monte Carlo in Practice. London: Chapman & Hall.
    • (1996) Markov Chain Monte Carlo in Practice
    • Gelfand, A.1
  • 117
    • 0043089918 scopus 로고    scopus 로고
    • Transformation and normalization of oligonucleotide microarra data
    • Geller, S.C., Gregg, J.P., Hagerman, P., and Rocke, D.M. (2003) Transformation and normalization of oligonucleotide microarra data. Bioinformatics, 19(14), 1817-1823.
    • (2003) Bioinformatics , vol.19 , Issue.14 , pp. 1817-1823
    • Geller, S.C.1    Gregg, J.P.2    Hagerman, P.3    Rocke, D.M.4
  • 118
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • Gelman, A., and Rubin, D.B. (1992) Inference from iterative simulation using multiple sequences. Stat. Sci., 7, 457-511.
    • (1992) Stat. Sci , vol.7 , pp. 457-511
    • Gelman, A.1    Rubin, D.B.2
  • 120
    • 0036020944 scopus 로고    scopus 로고
    • Operating characteristics and extensions of the false discovery rate procedure
    • Genovese, C., and Wasserman, L. (2002) Operating characteristics and extensions of the false discovery rate procedure. Journal of the Royal Statistical Society, Series B, 64(3), 499-517.
    • (2002) Journal of the Royal Statistical Society, Series B , vol.64 , Issue.3 , pp. 499-517
    • Genovese, C.1    Wasserman, L.2
  • 121
    • 10844286757 scopus 로고    scopus 로고
    • A stochastic process approach to false discovery control
    • Genovese, C., and Wasserman, L. (2004) A stochastic process approach to false discovery control. Annnals of Statistics, 32, 1035-1061.
    • (2004) Annnals of Statistics , vol.32 , pp. 1035-1061
    • Genovese, C.1    Wasserman, L.2
  • 123
    • 0345832338 scopus 로고    scopus 로고
    • A global test for groups of genes: testing association with a clinical outcome
    • Geoman, J.J., van de Geer, S., de Kort, F., and van Houwelingen, H.C. (2004) A global test for groups of genes: testing association with a clinical outcome. Bioinformatics, 20, 93-99.
    • (2004) Bioinformatics , vol.20 , pp. 93-99
    • Geoman, J.J.1    Van De Geer, S.2    De Kort, F.3    Van Houwelingen, H.C.4
  • 125
    • 0031526204 scopus 로고    scopus 로고
    • Approaches for Bayesian variable selection
    • George, E.I., and McCulloch, R.E. (1997) Approaches for Bayesian variable selection. Statistica Sinica, 7, 339.
    • (1997) Statistica Sinica , vol.7 , pp. 339
    • George, E.I.1    McCulloch, R.E.2
  • 126
    • 84972511893 scopus 로고
    • Practical Markov chain Monte Carlo
    • Geyer, C.J. (1992) Practical Markov chain Monte Carlo. Statistical Science, 7(4), 473-483.
    • (1992) Statistical Science , vol.7 , Issue.4 , pp. 473-483
    • Geyer, C.J.1
  • 127
    • 0000324169 scopus 로고
    • Adaptive rejection sampling for Gibbs sampling
    • Gilks, W.R., and Wild, P. (1992) Adaptive rejection sampling for Gibbs sampling. Applied Statistics, 41, 337-348.
    • (1992) Applied Statistics , vol.41 , pp. 337-348
    • Gilks, W.R.1    Wild, P.2
  • 128
    • 26944480820 scopus 로고    scopus 로고
    • Inter-gene correlation on oligonucleotide arrays: how much does normalization matter?
    • Gold, D.L., Wang, J., and Coombes, K.R. (2005) Inter-gene correlation on oligonucleotide arrays: how much does normalization matter? American Journal of Pharmacogenomics, 5, 271-279.
    • (2005) American Journal of Pharmacogenomics , vol.5 , pp. 271-279
    • Gold, D.L.1    Wang, J.2    Coombes, K.R.3
  • 129
    • 34250613174 scopus 로고    scopus 로고
    • Enrichment analysis in high-throughput genomics - accounting for dependency in the NULL
    • Gold, D.L., Coombes, K.R., Wang, J. and Mallick, B. (2007) Enrichment analysis in high-throughput genomics - accounting for dependency in the NULL. Briefings in Bioinformatics, 8, 71-77.
    • (2007) Briefings in Bioinformatics , vol.8 , pp. 71-77
    • Gold, D.L.1    Coombes, K.R.2    Wang, J.3    Mallick, B.4
  • 132
    • 84972494130 scopus 로고
    • The interface between statistics and philosophy of science (with discussion)
    • Good, I.J. (1988) The interface between statistics and philosophy of science (with discussion). Statistical Science, 3, 386-398.
    • (1988) Statistical Science , vol.3 , pp. 386-398
    • Good, I.J.1
  • 133
    • 33645086851 scopus 로고    scopus 로고
    • Bayesian robust inference for differential gene expression in microarrays with multiple samples
    • Gottardo, R., Raftery, A.E., Yee Y.K., and Bumgarner, R.E. (2006) Bayesian robust inference for differential gene expression in microarrays with multiple samples. Biometrics, 62, 10-18.
    • (2006) Biometrics , vol.62 , pp. 10-18
    • Gottardo, R.1    Raftery, A.E.2    Yee, Y.K.3    Bumgarner, R.E.4
  • 134
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • Green, P.J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82, 711-732.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.J.1
  • 135
    • 0141850391 scopus 로고    scopus 로고
    • Statistical significance analysis of longitudinal gene expression data
    • Guo, X., Qi, H., Verfaillie, C., and Pan, W. (2003). Statistical significance analysis of longitudinal gene expression data. Bioinformatics, 19, 1628-1635.
    • (2003) Bioinformatics , vol.19 , pp. 1628-1635
    • Guo, X.1    Qi, H.2    Verfaillie, C.3    Pan, W.4
  • 136
    • 0035221240 scopus 로고    scopus 로고
    • Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions
    • research 0004.1-0004.13
    • Haab, B.B., Dunham, M.J., and Brown, P.O. (2001) Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biology, 2(2), research 0004.1-0004.13.
    • (2001) Genome Biology , vol.2 , Issue.2
    • Haab, B.B.1    Dunham, M.J.2    Brown, P.O.3
  • 137
    • 0035226961 scopus 로고    scopus 로고
    • Supervised harvesting of expression trees
    • research 0003.1-0003.12
    • Hastie, T., Tibshirani, R., Botstein, D., and Brown, P. (2001) Supervised harvesting of expression trees. Genome Biology, 2, research 0003.1-0003.12.
    • (2001) Genome Biology , vol.2
    • Hastie, T.1    Tibshirani, R.2    Botstein, D.3    Brown, P.4
  • 138
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings W. (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97-110.
    • (1970) Biometrika , vol.57 , pp. 97-110
    • Hastings, W.1
  • 139
    • 28044449342 scopus 로고    scopus 로고
    • A Bayesian coclustering of Anopheles gene expression time series response to multiple immune challenges
    • Heard, N., Holmes, C., Stephens, D., Hand, D. and Dimopoulos, G. (2005) A Bayesian coclustering of Anopheles gene expression time series response to multiple immune challenges. Proc. Natl. Acad. Sci. USA, 102, 16939-16944.
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 16939-16944
    • Heard, N.1    Holmes, C.2    Stephens, D.3    Hand, D.4    Dimopoulos, G.5
  • 140
    • 34249761849 scopus 로고
    • Learning Bayesian networks: the combination of knowledge and statistical data
    • Heckerman, D., Geiger, D., and Chickering, D. (1995) Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning, 20, 197-243.
    • (1995) Machine Learning , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.3
  • 143
    • 0035501370 scopus 로고    scopus 로고
    • Microarrays: handling the deluge of data and extracting reliable information
    • Hess, K.R., Zhang, W., Baggerly, K.A., Stivers, D.N., and Coombes, K.R. (2001) Microarrays: handling the deluge of data and extracting reliable information. Trends Biotechnol., 19(11), 463-468.
    • (2001) Trends Biotechnol , vol.19 , Issue.11 , pp. 463-468
    • Hess, K.R.1    Zhang, W.2    Baggerly, K.A.3    Stivers, D.N.4    Coombes, K.R.5
  • 144
    • 0001750294 scopus 로고    scopus 로고
    • Some algebra and geometry for hierarchical models, applied to diagnostics
    • Hodges, J.S. (1998) Some algebra and geometry for hierarchical models, applied to diagnostics. Journal of the Royal Statistical Society, Series B, 60, 497-536.
    • (1998) Journal of the Royal Statistical Society, Series B , vol.60 , pp. 497-536
    • Hodges, J.S.1
  • 145
    • 0037269731 scopus 로고    scopus 로고
    • Classification with Bayesian MARS
    • Holmes, C.C., and Denison, D.G.T. (2003). Classification with Bayesian MARS. Machine Learning, 50, 159-173.
    • (2003) Machine Learning , vol.50 , pp. 159-173
    • Holmes, C.C.1    Denison, D.G.T.2
  • 146
    • 84867151416 scopus 로고    scopus 로고
    • Bayesian auxiliary variable models for binary and polychotomous regression
    • Holmes, C.C. and Held, K. (2006) Bayesian auxiliary variable models for binary and polychotomous regression. Bayesian Analysis, 1(1), 145-168.
    • (2006) Bayesian Analysis , vol.1 , Issue.1 , pp. 145-168
    • Holmes, C.C.1    Held, K.2
  • 148
    • 0032809387 scopus 로고    scopus 로고
    • Gene expression profiling, genetic networks and cellular states; an integrating concept for tumorigenesis and drug discovery
    • Huang, S. (1999). Gene expression profiling, genetic networks and cellular states; an integrating concept for tumorigenesis and drug discovery. J. Mol. Med., 77, 469-480.
    • (1999) J. Mol. Med , vol.77 , pp. 469-480
    • Huang, S.1
  • 149
    • 13244283624 scopus 로고    scopus 로고
    • A two-way semilinear model for normalization and analysis of cDNA microarray data
    • Huang, J., Wang, D., and Zhang, C. (2005) A two-way semilinear model for normalization and analysis of cDNA microarray data. Journal of the American Statistical Association, 471, 814-829.
    • (2005) Journal of the American Statistical Association , vol.471 , pp. 814-829
    • Huang, J.1    Wang, D.2    Zhang, C.3
  • 151
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic bayesian networks
    • Husmeier, D. (2003) Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic bayesian networks. Bioinformatics, 19, 2271-2282.
    • (2003) Bioinformatics , vol.19 , pp. 2271-2282
    • Husmeier, D.1
  • 153
    • 0034921979 scopus 로고    scopus 로고
    • Testing for differentially-expressed genes by maximum-likelihood analysis of microarray data
    • Ideker, T., Thorsson, V., Siegel, A.F., and Hood, L.R. (2000). Testing for differentially-expressed genes by maximum-likelihood analysis of microarray data. Journal of Computational Biology, 6, 805-817.
    • (2000) Journal of Computational Biology , vol.6 , pp. 805-817
    • Ideker, T.1    Thorsson, V.2    Siegel, A.F.3    Hood, L.R.4
  • 157
    • 0042744696 scopus 로고    scopus 로고
    • Detecting differentially expressed genes in microarrays using Bayesian model selection
    • Ishwaran, H., and Rao, J.S. (2003). Detecting differentially expressed genes in microarrays using Bayesian model selection. Journal of the American Statistical Association, 98, 438-455.
    • (2003) Journal of the American Statistical Association , vol.98 , pp. 438-455
    • Ishwaran, H.1    Rao, J.S.2
  • 159
  • 160
    • 22544479764 scopus 로고    scopus 로고
    • Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling
    • Jasra, A., Holmes, C.C., and Stephens, D.A. (2005) Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling. Statist. Sci., 20(1), 50-67.
    • (2005) Statist. Sci , vol.20 , Issue.1 , pp. 50-67
    • Jasra, A.1    Holmes, C.C.2    Stephens, D.A.3
  • 163
    • 33646929817 scopus 로고    scopus 로고
    • A two-stage empirical Bayes method for identifying differentially expressed genes
    • Ji, Y., Tsui, K.-W., and Kim, K.M. (2006) A two-stage empirical Bayes method for identifying differentially expressed genes. Computational Statistics & Data Analysis, 50, 3592-3604.
    • (2006) Computational Statistics & Data Analysis , vol.50 , pp. 3592-3604
    • Ji, Y.1    Tsui, K.-W.2    Kim, K.M.3
  • 164
    • 33847324900 scopus 로고    scopus 로고
    • Extensions to gene set enrichment
    • Jiang, Z., and Gentleman, R. (2007) Extensions to gene set enrichment. Bioinformatics, 23(3), 306-313.
    • (2007) Bioinformatics , vol.23 , Issue.3 , pp. 306-313
    • Jiang, Z.1    Gentleman, R.2
  • 165
    • 0002645879 scopus 로고    scopus 로고
    • Experience in elicitation
    • Kadane, J. and Wolfson, L. (1998) Experience in elicitation. The Statistician, 47, 3-19.
    • (1998) The Statistician , vol.47 , pp. 3-19
    • Kadane, J.1    Wolfson, L.2
  • 168
    • 0012983316 scopus 로고
    • Asymptotics in Bayesian computation
    • J.M. Bernardo, M.H. DeGroot, D.V. Lindley, and A.F.M. Smith (eds), Oxford: Oxford University Press
    • Kass, R., Tierney, L., and Kadane J. (1988) Asymptotics in Bayesian computation. In J.M. Bernardo, M.H. DeGroot, D.V. Lindley, and A.F.M. Smith (eds), Bayesian Statistics 3, pp. 263-278. Oxford: Oxford University Press.
    • (1988) Bayesian Statistics , vol.3 , pp. 263-278
    • Kass, R.1    Tierney, L.2    Kadane, J.3
  • 169
    • 0001560641 scopus 로고
    • Fully exponential Laplace approximations to expectations and variances of nonpositive functions
    • Kass, R., Tierney, L., and Kadane J. (1989). Fully exponential Laplace approximations to expectations and variances of nonpositive functions. Journal of the American Statistical Association, 84, 710-716.
    • (1989) Journal of the American Statistical Association , vol.84 , pp. 710-716
    • Kass, R.1    Tierney, L.2    Kadane, J.3
  • 170
    • 0000884487 scopus 로고    scopus 로고
    • Experimental design for gene expression microarrays
    • Kerr, M.K., and Churchill, G.A. (2001a) Experimental design for gene expression microarrays. Biostatistics, 2(2), 183-201.
    • (2001) Biostatistics , vol.2 , Issue.2 , pp. 183-201
    • Kerr, M.K.1    Churchill, G.A.2
  • 171
    • 0035032570 scopus 로고    scopus 로고
    • Statistical design and the analysis of gene expression microarray data
    • Kerr, M.K., and Chruchill, G.A. (2001b) Statistical design and the analysis of gene expression microarray data. Genetics Research, 77, 123-128.
    • (2001) Genetics Research , vol.77 , pp. 123-128
    • Kerr, M.K.1    Chruchill, G.A.2
  • 172
  • 173
    • 0842309206 scopus 로고    scopus 로고
    • Inferring gene networks from time series microarray data using dynamic Bayesian networks
    • Kim, S., Imoto, S., and Miyano, S. (2003) Inferring gene networks from time series microarray data using dynamic Bayesian networks. Briefings in Bioinformatics, 4, 228-235.
    • (2003) Briefings in Bioinformatics , vol.4 , pp. 228-235
    • Kim, S.1    Imoto, S.2    Miyano, S.3
  • 174
    • 25444502609 scopus 로고    scopus 로고
    • PAGE: Parametric Analysis of Gene Set Enrichment
    • Kim, S.-Y., and Volsky, D.J. (2005) PAGE: Parametric Analysis of Gene Set Enrichment. BMC Bioinformatics, 6, 144.
    • (2005) BMC Bioinformatics , vol.6 , pp. 144
    • Kim, S.-Y.1    Volsky, D.J.2
  • 176
    • 0842342616 scopus 로고    scopus 로고
    • A genomewide oscillation in transcription gates DNA replication and cell cycle
    • Klevecz, R.R., Bolen, J., Forrest, G., and Murray D.B. (2004). A genomewide oscillation in transcription gates DNA replication and cell cycle. Proc. Natl. Acad. Sci. USA, 101, 1200-1205.
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 1200-1205
    • Klevecz, R.R.1    Bolen, J.2    Forrest, G.3    Murray, D.B.4
  • 177
    • 38149015568 scopus 로고    scopus 로고
    • Critical review of microarray-based prognostic tests and trials in breast cancer
    • Koscielny S (2008) Critical review of microarray-based prognostic tests and trials in breast cancer. Curr. Opin. Obstet. Gynecol., 20(1), 47-50.
    • (2008) Curr. Opin. Obstet. Gynecol , vol.20 , Issue.1 , pp. 47-50
    • Koscielny, S.1
  • 179
    • 0034628834 scopus 로고    scopus 로고
    • Journey to the center of biology
    • Lander, E.S., and Weinberg, R.A. (2000). Journey to the center of biology. Science, 287, 1777-1782.
    • (2000) Science , vol.287 , pp. 1777-1782
    • Lander, E.S.1    Weinberg, R.A.2
  • 181
  • 182
    • 33748688753 scopus 로고    scopus 로고
    • Bayesian methods for variable selection in survival models with application to DNA microarray data
    • Lee, K., and Mallick, B. (2004) Bayesian methods for variable selection in survival models with application to DNA microarray data. Sankhya, 66, 756-778.
    • (2004) Sankhya , vol.66 , pp. 756-778
    • Lee, K.1    Mallick, B.2
  • 186
    • 17744413236 scopus 로고    scopus 로고
    • Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application
    • research 0032.I-0032.II
    • Li, C., and Wong, W.H. (2001) Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application. Genome Biology. 2(8), research 0032.I-0032.II
    • (2001) Genome Biology , vol.2 , Issue.8
    • Li, C.1    Wong, W.H.2
  • 187
    • 12744266814 scopus 로고    scopus 로고
    • Partial Cox regression analysis for high-dimensional microarray gene expression data
    • Li, H., and Gui, J. (2004) Partial Cox regression analysis for high-dimensional microarray gene expression data. Bioinformatics, 20, 208-215.
    • (2004) Bioinformatics , vol.20 , pp. 208-215
    • Li, H.1    Gui, J.2
  • 188
    • 0036772522 scopus 로고    scopus 로고
    • Bayesian automatic relevance determination algorithms for classifying gene expression data
    • Li, Y., Campbell, C., and Tipping, M. (2002). Bayesian automatic relevance determination algorithms for classifying gene expression data. Bioinformatics, 18, 1332-1339.
    • (2002) Bioinformatics , vol.18 , pp. 1332-1339
    • Li, Y.1    Campbell, C.2    Tipping, M.3
  • 190
    • 0000810338 scopus 로고
    • A statistical paradox
    • Lindley, D.V. (1957) A statistical paradox. Biometrika, 45, 533-534.
    • (1957) Biometrika , vol.45 , pp. 533-534
    • Lindley, D.V.1
  • 192
    • 25144474547 scopus 로고    scopus 로고
    • 2 multivariate profiling for detecting differential expression in microarrays
    • 2 multivariate profiling for detecting differential expression in microarrays. Bioinformatics, 21(14), 3105-3113.
    • (2005) Bioinformatics , vol.21 , Issue.14 , pp. 3105-3113
    • Lu, Y.1    Liu, P.Y.2    Xiao, P.3    Deng, H.W.4
  • 193
    • 1342288029 scopus 로고    scopus 로고
    • Model-based methods for identifying periodically expressed genes based on time course microarraygene expression data
    • Luan, Y., and Li, H. (2004). Model-based methods for identifying periodically expressed genes based on time course microarraygene expression data. Bioinformatics, 20, 332-339.
    • (2004) Bioinformatics , vol.20 , pp. 332-339
    • Luan, Y.1    Li, H.2
  • 194
    • 84972808999 scopus 로고
    • Estimating normal means with a conjugate style Dirichlet process prior
    • MacEachern, S. (1994) Estimating normal means with a conjugate style Dirichlet process prior. Communications in Statistics, B, 23, 727-741.
    • (1994) Communications in Statistics, B , vol.23 , pp. 727-741
    • MacEachern, S.1
  • 196
    • 33947425580 scopus 로고    scopus 로고
    • Supervised group lasso with applications to microarray data analysis
    • Ma, S., Song, X., and Huang, J. (2007) Supervised group lasso with applications to microarray data analysis. BMC Bioinformatics, 8, 60.
    • (2007) BMC Bioinformatics , vol.8 , pp. 60
    • Ma, S.1    Song, X.2    Huang, J.3
  • 197
    • 84950945692 scopus 로고
    • Model selection and accounting for model uncertainty in graphical models using Occam's window
    • Madigan, D., and Raftery, A. (1994) Model selection and accounting for model uncertainty in graphical models using Occam's window. Journal of the American Statistical Association, 89, 1535-1546.
    • (1994) Journal of the American Statistical Association , vol.89 , pp. 1535-1546
    • Madigan, D.1    Raftery, A.2
  • 199
    • 33748491517 scopus 로고    scopus 로고
    • The MicroArray Quality Control (MAQC) project shows interand intraplatform reproducibility of gene expression measurements
    • MAQC Consortium (2006) The MicroArray Quality Control (MAQC) project shows interand intraplatform reproducibility of gene expression measurements. Nature Biotech., 24, 1151-1161.
    • (2006) Nature Biotech , vol.24 , pp. 1151-1161
  • 200
    • 55249097671 scopus 로고    scopus 로고
    • Consolidated strategy for the analysis of microarray spike-in data
    • McCall, M.N., and Irizarry, R.A. (2008) Consolidated strategy for the analysis of microarray spike-in data. Nucleic Acids Research, 36(17), e108.
    • (2008) Nucleic Acids Research , vol.36 , Issue.17 , pp. e108
    • McCall, M.N.1    Irizarry, R.A.2
  • 202
    • 0036739286 scopus 로고    scopus 로고
    • Bayesian infinite mixture model-based clustering of gene expression profiles
    • Medvedovic, M., and Sivaganesan, S. (2002) Bayesian infinite mixture model-based clustering of gene expression profiles. Bioinformatics, 18, 1194-1206.
    • (2002) Bioinformatics , vol.18 , pp. 1194-1206
    • Medvedovic, M.1    Sivaganesan, S.2
  • 203
    • 0028844979 scopus 로고
    • A mathematical framework for describing and analyzing gene regulatory network
    • Mestl, T., Plahte, E., and Omholt, S. (1995). A mathematical framework for describing and analyzing gene regulatory network. Journal of Theoretical Biology, 176, 291-300.
    • (1995) Journal of Theoretical Biology , vol.176 , pp. 291-300
    • Mestl, T.1    Plahte, E.2    Omholt, S.3
  • 209
    • 0000405155 scopus 로고
    • Natural exponential families with quadratic variance functions: statistical theory
    • Morris, C.N. (1983) Natural exponential families with quadratic variance functions: statistical theory. Annals of Statistics, 11, 515-529.
    • (1983) Annals of Statistics , vol.11 , pp. 515-529
    • Morris, C.N.1
  • 215
    • 77950032550 scopus 로고    scopus 로고
    • Markov chain methods for Dirichlet process mixture models
    • Neal, R. (2000) Markov chain methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics, 9, 249-265.
    • (2000) Journal of Computational and Graphical Statistics , vol.9 , pp. 249-265
    • Neal, R.1
  • 216
    • 0034923013 scopus 로고    scopus 로고
    • On differential variability of expression ratios: Improving statistical inference about gene expression changes from microarray data
    • Newton M.A., Kendziorski C.M., Richmond, C.S., Blattner, F.R., and Tsui, K.W. (2001). On differential variability of expression ratios: Improving statistical inference about gene expression changes from microarray data. Journal of Computational Biology, 8, 37-52.
    • (2001) Journal of Computational Biology , vol.8 , pp. 37-52
    • Newton, M.A.1    Kendziorski, C.M.2    Richmond, C.S.3    Blattner, F.R.4    Tsui, K.W.5
  • 218
    • 0036956225 scopus 로고    scopus 로고
    • Partial least squares proportional hazard regression for application to DNA microarray survival data
    • Nguyen, D., and Rocke, D. (2002) Partial least squares proportional hazard regression for application to DNA microarray survival data. Bioinformatics, 18, 1625-1632.
    • (2002) Bioinformatics , vol.18 , pp. 1625-1632
    • Nguyen, D.1    Rocke, D.2
  • 219
    • 12244284624 scopus 로고    scopus 로고
    • DNA microarray experiments: biological and technological aspects
    • Nguyen, D., Arpat, A., Wang, N., and Carroll, R. (2002) DNA microarray experiments: biological and technological aspects. Biometrics, 58, 701-717.
    • (2002) Biometrics , vol.58 , pp. 701-717
    • Nguyen, D.1    Arpat, A.2    Wang, N.3    Carroll, R.4
  • 220
    • 0346856880 scopus 로고    scopus 로고
    • Eliciting expert beliefs in substantial practical applications
    • O'Hagan, A. (1998) Eliciting expert beliefs in substantial practical applications, The Statistician, 47, 21-35.
    • (1998) The Statistician , vol.47 , pp. 21-35
    • O'Hagan, A.1
  • 222
    • 4444289880 scopus 로고    scopus 로고
    • Application of microarray profiling to clinical trials in cancer
    • Olson, J. (2004) Application of microarray profiling to clinical trials in cancer. Surgery, 136(3), 519-523.
    • (2004) Surgery , vol.136 , Issue.3 , pp. 519-523
    • Olson, J.1
  • 223
    • 0344844807 scopus 로고    scopus 로고
    • Modelling regulatory pathways in E. coli from time series expression profiles
    • Ong, I., Glasner, J., and Page, D. (2002) Modelling regulatory pathways in E. coli from time series expression profiles. Bioinformatics, 18(Suppl. 1), 241-248.
    • (2002) Bioinformatics , vol.18 , pp. 241-248
    • Ong, I.1    Glasner, J.2    Page, D.3
  • 226
    • 0037433769 scopus 로고    scopus 로고
    • Statistical tests for identifying differentially expressed genes in time-course microarray experiments
    • Park, T., Yi, A.G., Lee, S. Yoo, D.H., Ahn, J.I., and Lee, Y.S. (2003). Statistical tests for identifying differentially expressed genes in time-course microarray experiments. Bioinformatics, 19, 694-703.
    • (2003) Bioinformatics , vol.19 , pp. 694-703
    • Park, T.1    Yi, A.G.2    Lee, S.3    Yoo, D.H.4    Ahn, J.I.5    Lee, Y.S.6
  • 227
    • 0035222126 scopus 로고    scopus 로고
    • A nonparametric scoring algorithm for identifying informative genes from microarray data
    • Park, P.J., Pagano, M., and Bonetti, M. (2001) A nonparametric scoring algorithm for identifying informative genes from microarray data. Pacific Symposium on Biocomputing, 6, 52-63.
    • (2001) Pacific Symposium on Biocomputing , vol.6 , pp. 52-63
    • Park, P.J.1    Pagano, M.2    Bonetti, M.3
  • 230
    • 0005043637 scopus 로고
    • Statistical inference on time series by rkhs methods
    • R. Pyke (ed.), Montreal: Canadian Mathematical Congress
    • Parzen, E. (1970) Statistical inference on time series by rkhs methods. In R. Pyke (ed.), Proc. 12th Bienn. Sem., pp. 1-37. Montreal: Canadian Mathematical Congress.
    • (1970) Proc. 12th Bienn. Sem , pp. 1-37
    • Parzen, E.1
  • 233
    • 0037165140 scopus 로고    scopus 로고
    • Prediction of central nervous system embryonal tumor outcome based on gene expression
    • Pomeroy, S.L., Tamayo, P., Gaasenbeek, M. et al. (2002). Prediction of central nervous system embryonal tumor outcome based on gene expression. Nature, 415(24), 436-442.
    • (2002) Nature , vol.415 , Issue.24 , pp. 436-442
    • Pomeroy, S.L.1    Tamayo, P.2    Gaasenbeek, M.3
  • 234
    • 0034419669 scopus 로고    scopus 로고
    • Regularization networks and support vector machines
    • Pontil, M., Evgeniou, T., and Poggio, T. (2000) Regularization networks and support vector machines. Adv. Comput. Math., 13, 1-50.
    • (2000) Adv. Comput. Math , vol.13 , pp. 1-50
    • Pontil, M.1    Evgeniou, T.2    Poggio, T.3
  • 235
    • 0038156106 scopus 로고    scopus 로고
    • Estimating the occurrence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of p-values
    • Pounds, S., and Morris, S.W. (2003) Estimating the occurrence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of p-values. Bioinformatics, 19, 1236-1242.
    • (2003) Bioinformatics , vol.19 , pp. 1236-1242
    • Pounds, S.1    Morris, S.W.2
  • 236
    • 33747828250 scopus 로고    scopus 로고
    • Robust estimation of the false discovery rate
    • Pounds, S. and Cheng, C. (2006) Robust estimation of the false discovery rate. Bioinformatics, 22(16), 1979-1987.
    • (2006) Bioinformatics , vol.22 , Issue.16 , pp. 1979-1987
    • Pounds, S.1    Cheng, C.2
  • 238
    • 10944260135 scopus 로고    scopus 로고
    • Clinical trial design for microarray predictive marker discovery and assessment
    • Pusztai, L., and Hess, K.R. (2004) Clinical trial design for microarray predictive marker discovery and assessment. Ann. Oncol., 15(12), 1731-1737.
    • (2004) Ann. Oncol , vol.15 , Issue.12 , pp. 1731-1737
    • Pusztai, L.1    Hess, K.R.2
  • 239
    • 0035861975 scopus 로고    scopus 로고
    • Beyond synexpression relationships: local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions
    • Qian, J., Dolled-Filhart, M., Lin, J., Yu, H., and Gerstein, M. (2001) Beyond synexpression relationships: local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions. Journal of Molecular Biology, 314(5), 1053-1066.
    • (2001) Journal of Molecular Biology , vol.314 , Issue.5 , pp. 1053-1066
    • Qian, J.1    Dolled-Filhart, M.2    Lin, J.3    Yu, H.4    Gerstein, M.5
  • 242
    • 0036534202 scopus 로고    scopus 로고
    • DNA microarrays in clinical oncology
    • Ramaswamy, S. and Golub, T.R. (2002) DNA microarrays in clinical oncology. Journal of Clinical Oncology, 20(7), 1932-1941.
    • (2002) Journal of Clinical Oncology , vol.20 , Issue.7 , pp. 1932-1941
    • Ramaswamy, S.1    Golub, T.R.2
  • 244
    • 0037226593 scopus 로고    scopus 로고
    • A molecular signature of metastasis in primary solid tumors
    • Ramaswamy, S., Ross, K.N., Lander, E.S., and Golub, T.R. (2003) A molecular signature of metastasis in primary solid tumors. Nature Genetics, 33(1), 49-54.
    • (2003) Nature Genetics , vol.33 , Issue.1 , pp. 49-54
    • Ramaswamy, S.1    Ross, K.N.2    Lander, E.S.3    Golub, T.R.4
  • 246
    • 0031963203 scopus 로고    scopus 로고
    • DNA chips: state-of-the art
    • Ramsay, G. (1998) DNA chips: state-of-the art. Nature Biotechnology, 16(1), 40-44.
    • (1998) Nature Biotechnology , vol.16 , Issue.1 , pp. 40-44
    • Ramsay, G.1
  • 247
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • Rand, W.M. (1971) Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66, 846-850.
    • (1971) Journal of the American Statistical Association , vol.66 , pp. 846-850
    • Rand, W.M.1
  • 251
    • 18244378520 scopus 로고    scopus 로고
    • On Bayesian analysis of mixtures with an unknown number of components (with discussion)
    • Richardson, S., and Green, P.J. (1997). On Bayesian analysis of mixtures with an unknown number of components (with discussion). Journal of the Royal Statistical Society, Series B, 59, 731-792.
    • (1997) Journal of the Royal Statistical Society, Series B , vol.59 , pp. 731-792
    • Richardson, S.1    Green, P.J.2
  • 252
    • 30244504792 scopus 로고    scopus 로고
    • Bayesian discrimination between two multivariate normal populations with equal covariance matrices
    • Rigby, R.A. (1997) Bayesian discrimination between two multivariate normal populations with equal covariance matrices. Journal of the American Statistical Association, 92(439), 1151-1154.
    • (1997) Journal of the American Statistical Association , vol.92 , Issue.439 , pp. 1151-1154
    • Rigby, R.A.1
  • 255
    • 0001153986 scopus 로고
    • Simulation of truncated normal variables
    • Robert, C.P. (1995) Simulation of truncated normal variables. Statistics and Computing, 5, 121-125.
    • (1995) Statistics and Computing , vol.5 , pp. 121-125
    • Robert, C.P.1
  • 258
    • 0037142053 scopus 로고    scopus 로고
    • The use of molecular profiling to predict survival after chemotherapy for diffuse large B-cell lymphoma
    • Rosenwald, A. et al. (2002) The use of molecular profiling to predict survival after chemotherapy for diffuse large B-cell lymphoma. New England Journal of Medicine, 346, 1937-1946.
    • (2002) New England Journal of Medicine , vol.346 , pp. 1937-1946
    • Rosenwald, A.1
  • 260
    • 0035752668 scopus 로고    scopus 로고
    • Feature extraction and normalization algorithms for high-density oligonucleotide gene expression array data
    • Schadt, E.E., Li, Ch., Ellis, B., and Wong, W.H. (2001) Feature extraction and normalization algorithms for high-density oligonucleotide gene expression array data. Journal of Cellular Biochemistry, Supplement 37, 120-125.
    • (2001) Journal of Cellular Biochemistry , pp. 120-125
    • Schadt, E.E.1    Li, C.2    Ellis, B.3    Wong, W.H.4
  • 261
    • 15944364151 scopus 로고    scopus 로고
    • An emepirical Bayes approach to inferring large-scale gene association networks
    • Schaffer, J., and Strimmer, K. (2005) An emepirical Bayes approach to inferring large-scale gene association networks. Bioinformatics, 21, 754-764.
    • (2005) Bioinformatics , vol.21 , pp. 754-764
    • Schaffer, J.1    Strimmer, K.2
  • 262
    • 34547659833 scopus 로고    scopus 로고
    • When should one subtract background fluorescence in 2-color microarrays?
    • Scharpf, R.B., Lacobuzio-Donahue, C.A., Sneddon, J.B., and Parmigiani, G. (2006) When should one subtract background fluorescence in 2-color microarrays? Biostatistcs, 8(4), 697-707.
    • (2006) Biostatistcs , vol.8 , Issue.4 , pp. 697-707
    • Scharpf, R.B.1    Lacobuzio-Donahue, C.A.2    Sneddon, J.B.3    Parmigiani, G.4
  • 263
    • 0028806048 scopus 로고
    • Quantitative monitoring of gene expression patterns with a complementary DNA microarray
    • Schena, M., Shalon, D., Davis, R., and Brown, P. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270, 467-470.
    • (1995) Science , vol.270 , pp. 467-470
    • Schena, M.1    Shalon, D.2    Davis, R.3    Brown, P.4
  • 266
    • 4944252468 scopus 로고    scopus 로고
    • Using hidden Markov models to analyze gene expression time course data
    • Schliep, A., Schonhuth, A., and Steinhoff, C. (2003) Using hidden Markov models to analyze gene expression time course data. Bioinformatics, 19, I264-I272.
    • (2003) Bioinformatics , vol.19 , pp. I264-I272
    • Schliep, A.1    Schonhuth, A.2    Steinhoff, C.3
  • 268
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978) Estimating the dimension of a model. Annals of Statistics, 6, 461-464.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 269
    • 0346605836 scopus 로고    scopus 로고
    • Statistical challenges in functional genomics (with discussion)
    • Sebastiani, P., Gussoni, E., Kohane, I., and Ramoni, M. (2003) Statistical challenges in functional genomics (with discussion). Statistical Science, 18, 33-70.
    • (2003) Statistical Science , vol.18 , pp. 33-70
    • Sebastiani, P.1    Gussoni, E.2    Kohane, I.3    Ramoni, M.4
  • 271
    • 0037941585 scopus 로고    scopus 로고
    • Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data
    • Segal, E., Shapira, M., Regev, A., Koller, D., and Friedman, N. (2003) Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nature Genetics, 34, 166-176.
    • (2003) Nature Genetics , vol.34 , pp. 166-176
    • Segal, E.1    Shapira, M.2    Regev, A.3    Koller, D.4    Friedman, N.5
  • 272
    • 0000720609 scopus 로고
    • A constructive definition of Dirichlet priors
    • Sethuraman, J. (1994) A constructive definition of Dirichlet priors. Statistica Sinica, 4, 639-650.
    • (1994) Statistica Sinica , vol.4 , pp. 639-650
    • Sethuraman, J.1
  • 273
    • 0000971673 scopus 로고
    • Convergence of Dirichlet measures and the interpretation of their paramegters
    • S.S. Gupta and J.O. Berger (eds), New York: Academic Press
    • Sethuraman, J., and Tiwari, R. (1982) Convergence of Dirichlet measures and the interpretation of their paramegters. In S.S. Gupta and J.O. Berger (eds), Statistical Decision theory and related topics, III, pp. 305-315. New York: Academic Press.
    • (1982) Statistical Decision theory and related topics , vol.3 , pp. 305-315
    • Sethuraman, J.1    Tiwari, R.2
  • 274
    • 33748686773 scopus 로고    scopus 로고
    • Bayesian variable selection for the analysis of microarray data with consored outcome
    • Sha, N., Tadesse, M.G., and Vannucci, M. (2006). Bayesian variable selection for the analysis of microarray data with consored outcome. Bioinformatics, 22(18), 2262-2268.
    • (2006) Bioinformatics , vol.22 , Issue.18 , pp. 2262-2268
    • Sha, N.1    Tadesse, M.G.2    Vannucci, M.3
  • 275
    • 0029812283 scopus 로고    scopus 로고
    • A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization
    • Shalon, D., Smith, S.J., and Brown, P.O. (1996) A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Research, 6(7), 639-645.
    • (1996) Genome Research , vol.6 , Issue.7 , pp. 639-645
    • Shalon, D.1    Smith, S.J.2    Brown, P.O.3
  • 277
    • 0033199777 scopus 로고    scopus 로고
    • Bayesian statistics in genetics, a guide for the uninitiated
    • Shoemaker, J., Painter, I., and Weir, B. (1999) Bayesian statistics in genetics, a guide for the uninitiated. Trends in Genetics, 15, 354-358.
    • (1999) Trends in Genetics , vol.15 , pp. 354-358
    • Shoemaker, J.1    Painter, I.2    Weir, B.3
  • 279
    • 0001173999 scopus 로고
    • Construction of Bayesian network structures from data: A brief survey and efficient algorithm
    • Singh, M., and Valtorta, M. (1995) Construction of Bayesian network structures from data: A brief survey and efficient algorithm. International Journal of Approximate Reasoning, 12, 111-131.
    • (1995) International Journal of Approximate Reasoning , vol.12 , pp. 111-131
    • Singh, M.1    Valtorta, M.2
  • 280
    • 0000824232 scopus 로고    scopus 로고
    • Nonparametric regression using Bayesian variable selection
    • Smith, M., and Kohn, R. (1996) Nonparametric regression using Bayesian variable selection. Journal of Econometrics, 75, 317-344.
    • (1996) Journal of Econometrics , vol.75 , pp. 317-344
    • Smith, M.1    Kohn, R.2
  • 281
    • 0036163572 scopus 로고    scopus 로고
    • Bayesian methods for support vector machines: evidence and predictive class probabilities
    • Sollich, P. (2001) Bayesian methods for support vector machines: evidence and predictive class probabilities. Machine Learning, 46, 21-52.
    • (2001) Machine Learning , vol.46 , pp. 21-52
    • Sollich, P.1
  • 282
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • Specht, D. F. (1990). Probabilistic neural networks. Neur. Networks, 3, 109-118.
    • (1990) Neur. Networks , vol.3 , pp. 109-118
    • Specht, D.F.1
  • 284
    • 84986980101 scopus 로고
    • Sequential updating of conditional probabilities on directed graphical structures
    • Spiegelhalter, D., and Lauritzen, S. (1990) Sequential updating of conditional probabilities on directed graphical structures. Networks, 20, 157-224.
    • (1990) Networks , vol.20 , pp. 157-224
    • Spiegelhalter, D.1    Lauritzen, S.2
  • 288
    • 0345822598 scopus 로고    scopus 로고
    • The positive false discovery rate: a Bayesian interpretation and the q-value
    • Storey, J.D. (2003) The positive false discovery rate: a Bayesian interpretation and the q-value. Annals of Statistics, 31(6), 2013-2035.
    • (2003) Annals of Statistics , vol.31 , Issue.6 , pp. 2013-2035
    • Storey, J.D.1
  • 289
    • 1142273091 scopus 로고    scopus 로고
    • Strong control, conservative point estimation, and simultaneous conservative consistency of false discovery rates: A unified approach
    • Storey J.D., Taylor J.E., and Siegmund D. (2004) Strong control, conservative point estimation, and simultaneous conservative consistency of false discovery rates: A unified approach. Journal of the Royal Statistical Society, Series B, 66, 187-205.
    • (2004) Journal of the Royal Statistical Society, Series B , vol.66 , pp. 187-205
    • Storey, J.D.1    Taylor, J.E.2    Siegmund, D.3
  • 293
    • 36549027355 scopus 로고    scopus 로고
    • GSEA-P: a desktop application for gene set enrichment analysis
    • Subramanian, A., Kuehn, H., Gould, J., Tamayo, P., and Mesirov, J.P. (2007) GSEA-P: a desktop application for gene set enrichment analysis. Bioinformatics, 23(23), 3251-3253.
    • (2007) Bioinformatics , vol.23 , Issue.23 , pp. 3251-3253
    • Subramanian, A.1    Kuehn, H.2    Gould, J.3    Tamayo, P.4    Mesirov, J.P.5
  • 295
    • 33750414249 scopus 로고    scopus 로고
    • A multivariate empirical Bayes statistic for replicated microarray time course data
    • Tai, Y.C., and Speed, T.P. (2006). A multivariate empirical Bayes statistic for replicated microarray time course data. Annals of Statistics, 34(5), 2387-2412.
    • (2006) Annals of Statistics , vol.34 , Issue.5 , pp. 2387-2412
    • Tai, Y.C.1    Speed, T.P.2
  • 296
    • 3242891560 scopus 로고    scopus 로고
    • Estimating gene networks from gene expression data by combining Bayesian network model with promoter element detection
    • Tamada, Y., Kim, S.Y., Bannai, H., Imoto, S., Tashiro, K., Kuhara, S., and Miyano, S. (2003) Estimating gene networks from gene expression data by combining Bayesian network model with promoter element detection. Bioinformatics, 19, 227-236.
    • (2003) Bioinformatics , vol.19 , pp. 227-236
    • Tamada, Y.1    Kim, S.Y.2    Bannai, H.3    Imoto, S.4    Tashiro, K.5    Kuhara, S.6    Miyano, S.7
  • 297
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation
    • Tanner, M. and Wong, W. (1987) The calculation of posterior distributions by data augmentation, Journal of the American Statistical Association, 82, 528-540.
    • (1987) Journal of the American Statistical Association , vol.82 , pp. 528-540
    • Tanner, M.1    Wong, W.2
  • 298
    • 61349198183 scopus 로고    scopus 로고
    • Comparison of the diagnostic performance of human whole genome microarrays using mixed-tissue RNA reference samples
    • Thompson, K.L., and Pine, P,S. (2009) Comparison of the diagnostic performance of human whole genome microarrays using mixed-tissue RNA reference samples. Toxicology Letters, 186(1), 58-61.
    • (2009) Toxicology Letters , vol.186 , Issue.1 , pp. 58-61
    • Thompson, K.L.1    Pine, P.S.2
  • 302
    • 0035942271 scopus 로고    scopus 로고
    • Significance analysis of microarrays applied to the ionizing radiation response
    • Tusher, V.G., Tibshirani, R., and Chu, G. (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA, 98(9), 5116-5121.
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , Issue.9 , pp. 5116-5121
    • Tusher, V.G.1    Tibshirani, R.2    Chu, G.3
  • 303
    • 0000217080 scopus 로고    scopus 로고
    • Gene expression analysis with the parametric bootstrap
    • van der Laan, M., and Bryan, J. (2001) Gene expression analysis with the parametric bootstrap. Biostatistics, 2, 445-461.
    • (2001) Biostatistics , vol.2 , pp. 445-461
    • Van Der Laan, M.1    Bryan, J.2
  • 305
    • 28444448000 scopus 로고    scopus 로고
    • Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues
    • Wachi S., Yoneda K., and Wu, R. (2005) Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues. Bioinformatics 21: 4205-4208.
    • (2005) Bioinformatics , vol.21 , pp. 4205-4208
    • Wachi, S.1    Yoneda, K.2    Wu, R.3
  • 306
    • 0003466536 scopus 로고
    • Philadelphia: Society for Industrial and Applied Mathematics
    • Wahba, G. (1990). Spline Models for Observational Data. Philadelphia: Society for Industrial and Applied Mathematics.
    • (1990) Spline Models for Observational Data
    • Wahba, G.1
  • 307
    • 0001873883 scopus 로고    scopus 로고
    • Support vector machines, reproducing kernel Hilbert spaces and the randomized GACV
    • B. Schölkopf, C. Burges and A. Smola (eds), Cambridge, MA: MIT Press
    • Wahba, G. (1999) Support vector machines, reproducing kernel Hilbert spaces and the randomized GACV. In B. Schölkopf, C. Burges and A. Smola (eds), Advances in Kernel Methods, pp. 69-88. Cambridge, MA: MIT Press.
    • (1999) Advances in Kernel Methods , pp. 69-88
    • Wahba, G.1
  • 308
    • 4243839021 scopus 로고
    • Bayesian analysis of linear and non-linear population models by using the Gibbs sampler
    • Wakefield J.C., Smith, A., Racine-Poon, A., and Gelfand A. (1994) Bayesian analysis of linear and non-linear population models by using the Gibbs sampler. Applied Statistics, 43, 201-221.
    • (1994) Applied Statistics , vol.43 , pp. 201-221
    • Wakefield, J.C.1    Smith, A.2    Racine-Poon, A.3    Gelfand, A.4
  • 309
    • 27744518228 scopus 로고    scopus 로고
    • Modeling gene expression over time: curve clustering with informative prior distributions
    • J.M. Bernardo, M. Bayarri, A.P. Dawid, J.O. Berger, D. Heckerman, A.F.M. Smith and M. West (eds), Oxford: Oxford University Press
    • Wakefield, J., Zhou, C., and Self, S. (2003) Modeling gene expression over time: curve clustering with informative prior distributions. In J.M. Bernardo, M. Bayarri, A.P. Dawid, J.O. Berger, D. Heckerman, A.F.M. Smith and M. West (eds), Bayesian Statistics 7. Oxford: Oxford University Press.
    • (2003) Bayesian Statistics 7
    • Wakefield, J.1    Zhou, C.2    Self, S.3
  • 311
    • 34548546707 scopus 로고    scopus 로고
    • Characterization of mismatch and high-signal intensity probes associated with Affymetrix genechips
    • Wang, Y., Miao, Z.H., Pommier, Y., Kawasaki, E.S., and Player, A. (2007) Characterization of mismatch and high-signal intensity probes associated with Affymetrix genechips. Bioinformatics, 23(16), 2088-2095.
    • (2007) Bioinformatics , vol.23 , Issue.16 , pp. 2088-2095
    • Wang, Y.1    Miao, Z.H.2    Pommier, Y.3    Kawasaki, E.S.4    Player, A.5
  • 312
    • 33749048664 scopus 로고
    • Genetical implications of the structure of deoxyribonucleic acid
    • Watson, J., and Crick, F. (1953) Genetical implications of the structure of deoxyribonucleic acid. Nature, 171, 964-967.
    • (1953) Nature , vol.171 , pp. 964-967
    • Watson, J.1    Crick, F.2
  • 315
    • 0027080802 scopus 로고
    • The accelerated failure time model: a useful alternative to the Cox regression model in survival analysis
    • Wei, L. (1992) The accelerated failure time model: a useful alternative to the Cox regression model in survival analysis. Statistics in Medicine, 11, 1871-1879.
    • (1992) Statistics in Medicine , vol.11 , pp. 1871-1879
    • Wei, L.1
  • 316
    • 34147120136 scopus 로고    scopus 로고
    • Nonparametric pathway-based regression models for analysis of genomic data
    • Wei, Z. and Li, H. (2007) Nonparametric pathway-based regression models for analysis of genomic data. Biostatistics, 8, 265-284.
    • (2007) Biostatistics , vol.8 , pp. 265-284
    • Wei, Z.1    Li, H.2
  • 318
    • 0034353981 scopus 로고    scopus 로고
    • Binary probability maps using a hidden conditional autoregressive Gaussian process with an application to Finnish common toad data
    • Weir, I.S., and Pettitt, A.N. (2000) Binary probability maps using a hidden conditional autoregressive Gaussian process with an application to Finnish common toad data. Applied Statistics, 49, 473-484.
    • (2000) Applied Statistics , vol.49 , pp. 473-484
    • Weir, I.S.1    Pettitt, A.N.2
  • 319
    • 0242295767 scopus 로고    scopus 로고
    • Bayesian factor regression models in the 'large p, small n' paradigm
    • J.M. Bernardo, M. Bayarri, A.P. Dawid, J.O. Berger, D. Heckerman, A.F.M. Smith and M. West (eds), Oxford: Oxford University Press
    • West, M. (2003) Bayesian factor regression models in the 'large p, small n' paradigm. In J.M. Bernardo, M. Bayarri, A.P. Dawid, J.O. Berger, D. Heckerman, A.F.M. Smith and M. West (eds), Bayesian Statistics 7, pp. 723-732. Oxford: Oxford University Press.
    • (2003) Bayesian Statistics , vol.7 , pp. 723-732
    • West, M.1
  • 320
    • 0002612391 scopus 로고
    • Hierarchical priors and mixture models with application in regression and density estimation
    • A.F.M. Smith and P.R. Freeman (eds), Chichester: John Wiley & Sons, Ltd
    • West, M., Muller, P., and Escobar, M. (1994) Hierarchical priors and mixture models with application in regression and density estimation. In A.F.M. Smith and P.R. Freeman (eds), Aspects of Uncertainty: a tribute to D.V. Lindley, pp. 363-386. Chichester: John Wiley & Sons, Ltd.
    • (1994) Aspects of Uncertainty: a tribute to D.V. Lindley , pp. 363-386
    • West, M.1    Muller, P.2    Escobar, M.3
  • 325
    • 33845963840 scopus 로고    scopus 로고
    • A Bayesian false discovery rate for multiple testing
    • Whittemore, A.S. (2007) A Bayesian false discovery rate for multiple testing. Journal of Applied Statistics, 34, 1-9.
    • (2007) Journal of Applied Statistics , vol.34 , pp. 1-9
    • Whittemore, A.S.1
  • 326
    • 0000840166 scopus 로고
    • Characteristic vectors of bordered matrices with infinite dimensions characteristic vectors of bordered matrices with infinite dimensions
    • Wigner, E.P. (1955) Characteristic vectors of bordered matrices with infinite dimensions characteristic vectors of bordered matrices with infinite dimensions. Ann. Math. 62, 548-564.
    • (1955) Ann. Math , vol.62 , pp. 548-564
    • Wigner, E.P.1
  • 327
    • 34250658998 scopus 로고    scopus 로고
    • Bayesian methods in bioinformatics and computational systems biology
    • Wilkinson, D.J. (2007) Bayesian methods in bioinformatics and computational systems biology. Briefings in Bioinformatics, 8, 109-116.
    • (2007) Briefings in Bioinformatics , vol.8 , pp. 109-116
    • Wilkinson, D.J.1
  • 328
    • 0141457184 scopus 로고    scopus 로고
    • Conditional simulation from highly structured Gaussian systems, with application to blocking-MCMC for the Bayesian analysis of very large linear models
    • Wilkinson, D.J. and Yeung, S.K.H. (2002) Conditional simulation from highly structured Gaussian systems, with application to blocking-MCMC for the Bayesian analysis of very large linear models. Statistics and Computing, 12, 287-300.
    • (2002) Statistics and Computing , vol.12 , pp. 287-300
    • Wilkinson, D.J.1    Yeung, S.K.H.2
  • 330
  • 331
    • 34548589669 scopus 로고    scopus 로고
    • Identification of genomic classifiers that distinguish induction failure in T-lineage acute lymphoblastic leukemia: a report from the Children's Oncology Group
    • Winter, S.S., Jiang, Z., Khawaja, H.M., Griffin, T., Devidas, M., Asselin, B.L., Larson, R.S., and Children's Oncology Group (2007) Identification of genomic classifiers that distinguish induction failure in T-lineage acute lymphoblastic leukemia: a report from the Children's Oncology Group. Blood, 110(5), 1429-1438.
    • (2007) Blood , vol.110 , Issue.5 , pp. 1429-1438
    • Winter, S.S.1    Jiang, Z.2    Khawaja, H.M.3    Griffin, T.4    Devidas, M.5    Asselin, B.L.6    Larson, R.S.7    Children's Oncology, Group8
  • 333
    • 0037101842 scopus 로고    scopus 로고
    • A regression-based method to identify differentially expressed genes in time course studies and its application to inducible Huntington's disease
    • Xu, X., Olson, J., and Zhao, L. (2002) A regression-based method to identify differentially expressed genes in time course studies and its application to inducible Huntington's disease. Hum. Mol. Genet., 11, 1977-1985.
    • (2002) Hum. Mol. Genet , vol.11 , pp. 1977-1985
    • Xu, X.1    Olson, J.2    Zhao, L.3
  • 335
    • 1342294092 scopus 로고    scopus 로고
    • Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation
    • Yang, Y.H., Dudoit, S, Luu, P., Lin, D.M., Peng, V., Ngai, J., and Speed, T.P. (2002a) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Research, 30(4), e15.
    • (2002) Nucleic Acids Research , vol.30 , Issue.4 , pp. e15
    • Yang, Y.H.1    Dudoit, S.2    Luu, P.3    Lin, D.M.4    Peng, V.5    Ngai, J.6    Speed, T.P.7
  • 339
    • 0035733108 scopus 로고    scopus 로고
    • The control of the false discovery rate in multiple testing under dependency
    • Yekutieli, D., and Benjamini, Y. (2001) The control of the false discovery rate in multiple testing under dependency. Annals of Statistics, 29(4), 1165-1188.
    • (2001) Annals of Statistics , vol.29 , Issue.4 , pp. 1165-1188
    • Yekutieli, D.1    Benjamini, Y.2
  • 340
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan, M., and Lin, Y. (2006) Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society, Series B, 68, 49-67.
    • (2006) Journal of the Royal Statistical Society, Series B , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 342
    • 0002817906 scopus 로고
    • On assessing prior distributions and Bayesian regression analysis with g-prior distributions
    • P.K. Goel and A. Zellner (eds), New York: Elsevier
    • Zellner, A. (1986) On assessing prior distributions and Bayesian regression analysis with g-prior distributions. In P.K. Goel and A. Zellner (eds), Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti, pp. 233-243. New York: Elsevier.
    • (1986) Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti , pp. 233-243
    • Zellner, A.1
  • 343
    • 0034334064 scopus 로고    scopus 로고
    • Assessing reliability of gene clusters from gene expression data
    • Zhang, K., and Zhao, H. (2000) Assessing reliability of gene clusters from gene expression data. Funct. Integr. Genomics, 1(3), 156-173.
    • (2000) Funct. Integr. Genomics , vol.1 , Issue.3 , pp. 156-173
    • Zhang, K.1    Zhao, H.2
  • 344
    • 0038729666 scopus 로고    scopus 로고
    • A model of molecular interactions on short oligonucleotide microarrays
    • Zhang, L., Miles, M.F., and Aldape, K.D. (2003) A model of molecular interactions on short oligonucleotide microarrays. Nature Biotechnology, 21(7), 818-821.
    • (2003) Nature Biotechnology , vol.21 , Issue.7 , pp. 818-821
    • Zhang, L.1    Miles, M.F.2    Aldape, K.D.3
  • 345
  • 346
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of lasso
    • Zhao, P., and and Yu, B. (2006) On model selection consistency of lasso. Journal of Machine Learning Research, 7, 2541-2563.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2
  • 348
    • 52649154223 scopus 로고    scopus 로고
    • Bayesian adaptive design for targeted therapy development in lung cancer - a step toward personalized medicine
    • Zhou, X., Liu, S., Kim, E.S., Herbst, R.S., and Lee, J.J. (2008) Bayesian adaptive design for targeted therapy development in lung cancer - a step toward personalized medicine. Clin. Trials, 5(3), 181-193.
    • (2008) Clin. Trials , vol.5 , Issue.3 , pp. 181-193
    • Zhou, X.1    Liu, S.2    Kim, E.S.3    Herbst, R.S.4    Lee, J.J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.