메뉴 건너뛰기




Volumn 19, Issue SUPPL. 2, 2003, Pages

Estimating gene networks from gene expression data by combining Bayesian network model with promoter element detection

Author keywords

[No Author keywords available]

Indexed keywords

TRANSCRIPTION FACTOR;

EID: 3242891560     PISSN: 13674803     EISSN: 13674811     Source Type: Journal    
DOI: 10.1093/bioinformatics/btg1082     Document Type: Conference Paper
Times cited : (151)

References (36)
  • 1
    • 0037418747 scopus 로고    scopus 로고
    • Identification of gene regulatory networks by strategic gene disruptions and gene overexpressions
    • Akutsu, T., Kuhara, S., Maruyama, O. and Miyano, S. (2003) Identification of gene regulatory networks by strategic gene disruptions and gene overexpressions. Theor. Comput. Sci., 298, 235-251.
    • (2003) Theor. Comput. Sci. , vol.298 , pp. 235-251
    • Akutsu, T.1    Kuhara, S.2    Maruyama, O.3    Miyano, S.4
  • 2
  • 3
    • 0032616683 scopus 로고    scopus 로고
    • Identification of genetic networks from a small number of gene expression patterns under the Boolean network model
    • Akutsu, T., Miyano, S. and Kuhara, S. (1999) Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. Pac. Symp. Biocomput., 4, 17-28.
    • (1999) Pac. Symp. Biocomput. , vol.4 , pp. 17-28
    • Akutsu, T.1    Miyano, S.2    Kuhara, S.3
  • 4
    • 0033677274 scopus 로고    scopus 로고
    • Algorithms for identifying Boolean networks and related biological networks based on matrix multiplication and fingerprint function
    • Akutsu, T., Miyano, S. and Kuhara, S. (2000a) Algorithms for identifying Boolean networks and related biological networks based on matrix multiplication and fingerprint function. J. Comp. Biol., 7, 331-344.
    • (2000) J. Comp. Biol. , vol.7 , pp. 331-344
    • Akutsu, T.1    Miyano, S.2    Kuhara, S.3
  • 5
    • 0033737840 scopus 로고    scopus 로고
    • Inferring qualitative relations in genetic networks and metabolic pathways
    • Akutsu, T., Miyano, S. and Kuhara, S. (2000b) Inferring qualitative relations in genetic networks and metabolic pathways. Bioinformatics, 16, 727-734.
    • (2000) Bioinformatics , vol.16 , pp. 727-734
    • Akutsu, T.1    Miyano, S.2    Kuhara, S.3
  • 6
    • 0642313001 scopus 로고    scopus 로고
    • A string pattern regression algorithm and its application to pattern discovery in long introns
    • Bannai, H., Inenaga, S., Shinohara, A., Takeda, M. and Miyano, S. (2002) A string pattern regression algorithm and its application to pattern discovery in long introns. Genome Informatics, 13, 3-11.
    • (2002) Genome Informatics , vol.13 , pp. 3-11
    • Bannai, H.1    Inenaga, S.2    Shinohara, A.3    Takeda, M.4    Miyano, S.5
  • 9
    • 0032413411 scopus 로고    scopus 로고
    • Predicting gene regulatory elements in silica on a genomic scale
    • Brazma, A., Jonassen, I., Vilo, J. and Ukkonen, E. (1998) Predicting gene regulatory elements in silica on a genomic scale. Genome Res., 8, 1202-1215.
    • (1998) Genome Res. , vol.8 , pp. 1202-1215
    • Brazma, A.1    Jonassen, I.2    Vilo, J.3    Ukkonen, E.4
  • 10
    • 0035135420 scopus 로고    scopus 로고
    • Regulatory element detection using correlation with expression
    • Bussemaker, H.J., Li, H. and Siggia, E.D. (2001) Regulatory element detection using correlation with expression. Nat. Genet., 27, 167-171.
    • (2001) Nat. Genet. , vol.27 , pp. 167-171
    • Bussemaker, H.J.1    Li, H.2    Siggia, E.D.3
  • 11
    • 0032611513 scopus 로고    scopus 로고
    • Modeling gene expression with differential equations
    • Chen, T., He, H.L. and Church, G.M. (1999) Modeling gene expression with differential equations. Pac. Symp. Biocomput., 4, 29-40.
    • (1999) Pac. Symp. Biocomput. , vol.4 , pp. 29-40
    • Chen, T.1    He, H.L.2    Church, G.M.3
  • 12
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper, G. and Herskovits, E. (1992) A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309-347.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.1    Herskovits, E.2
  • 13
    • 0002211373 scopus 로고
    • Approximate predictive likelihood
    • Davison, A.C. (1986) Approximate predictive likelihood. Biometrika, 73, 323-332.
    • (1986) Biometrika , vol.73 , pp. 323-332
    • Davison, A.C.1
  • 14
    • 0043130707 scopus 로고    scopus 로고
    • Inferring gene regulatory networks from time-ordered gene expression data of Bacillus subtilis using differential equations
    • De Hoon, M.J.L., Imoto, S., Kobayashi, K., Ogasawara, N. and Miyano, S. (2003) Inferring gene regulatory networks from time-ordered gene expression data of Bacillus subtilis using differential equations. Pac. Symp. Biocomput., 8, 17-28.
    • (2003) Pac. Symp. Biocomput. , vol.8 , pp. 17-28
    • De Hoon, M.J.L.1    Imoto, S.2    Kobayashi, K.3    Ogasawara, N.4    Miyano, S.5
  • 16
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian network to analyze expression data
    • Friedman, N., Linial, M., Nachman, I. and Pe'er, D. (2000) Using Bayesian network to analyze expression data. J. Comp. Biol., 7, 601-620.
    • (2000) J. Comp. Biol. , vol.7 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'Er, D.4
  • 17
    • 0035221560 scopus 로고    scopus 로고
    • Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks
    • Hartemink, A.J., Gifford, D.K., Jaakkola, T.S. and Young, R.A. (2001) Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. Pac. Symp. Biocomput., 6, 422-433.
    • (2001) Pac. Symp. Biocomput. , vol.6 , pp. 422-433
    • Hartemink, A.J.1    Gifford, D.K.2    Jaakkola, T.S.3    Young, R.A.4
  • 18
    • 0036366689 scopus 로고    scopus 로고
    • Combining location and expression data for principled discovery of genetic regulatory network models
    • Hartemink, A.J., Gifford, D.K., Jaakkola, T.S. and Young, R.A. (2002) Combining location and expression data for principled discovery of genetic regulatory network models. Pac. Symp. Biocomput., 7, 437-449.
    • (2002) Pac. Symp. Biocomput. , vol.7 , pp. 437-449
    • Hartemink, A.J.1    Gifford, D.K.2    Jaakkola, T.S.3    Young, R.A.4
  • 20
    • 0034564606 scopus 로고    scopus 로고
    • Finding regulatory elements using joint likelihoods for sequence and expression profile data
    • Holmes, I. and Bruno, W.J. (2000) Finding regulatory elements using joint likelihoods for sequence and expression profile data. In Proceedings of Intelligent Systems for Molecular Biology. pp. 202-210.
    • (2000) Proceedings of Intelligent Systems for Molecular Biology. , pp. 202-210
    • Holmes, I.1    Bruno, W.J.2
  • 21
    • 0036372453 scopus 로고    scopus 로고
    • Estimation of genetic networks and functional structures between genes by using Bayesian network and nonparametric regression
    • Imoto, S., Goto, T. and Miyano, S. (2002) Estimation of genetic networks and functional structures between genes by using Bayesian network and nonparametric regression. Pac. Symp. Biocomput., 7, 175-186.
    • (2002) Pac. Symp. Biocomput. , vol.7 , pp. 175-186
    • Imoto, S.1    Goto, T.2    Miyano, S.3
  • 25
    • 0036740483 scopus 로고    scopus 로고
    • Identification of regulatory elements using a feature selection method
    • Keleş, S., van der Laan, M. and Eisen, M.B. (2002) Identification of regulatory elements using a feature selection method. Bioinformatics, 18, 1167-1175.
    • (2002) Bioinformatics , vol.18 , pp. 1167-1175
    • Keleş, S.1    Van Der Laan, M.2    Eisen, M.B.3
  • 26
    • 84958595689 scopus 로고    scopus 로고
    • Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data
    • Lecture Note in Computer Science, 2602, Springer
    • Kim, S., Imoto, S. and Miyano, S. (2003) Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. In Proceedings of the 1st International Workshop on Computational Methods in Systems Biology, Lecture Note in Computer Science, 2602, Springer, pp. 104-113.
    • (2003) Proceedings of the 1st International Workshop on Computational Methods in Systems Biology , pp. 104-113
    • Kim, S.1    Imoto, S.2    Miyano, S.3
  • 28
    • 0035221090 scopus 로고    scopus 로고
    • Development of a system for the inference of large scale genetic networks
    • Maki, Y., Tominaga, D., Okamoto, M., Watanabe, S. and Eguchi, Y. (2001) Development of a system for the inference of large scale genetic networks. Pac. Symp. Biocomput., 6, 446-458.
    • (2001) Pac. Symp. Biocomput. , vol.6 , pp. 446-458
    • Maki, Y.1    Tominaga, D.2    Okamoto, M.3    Watanabe, S.4    Eguchi, Y.5
  • 30
    • 18144442687 scopus 로고    scopus 로고
    • Inferring subnetworks from perturbed expression profiles
    • Pe'er, D., Regev, A., Elidan, G. and Friedman, N. (2001) Inferring subnetworks from perturbed expression profiles. Bioinformatics, 17, S215-S224.
    • (2001) Bioinformatics , vol.17
    • Pe'Er, D.1    Regev, A.2    Elidan, G.3    Friedman, N.4
  • 32
    • 0034785443 scopus 로고    scopus 로고
    • Identifying regulatory networks by combinatorial analysis of promoter elements
    • Pilpel, Y., Sudarsanam, P. and Church, G.M. (2001) Identifying regulatory networks by combinatorial analysis of promoter elements. Nat. Genet., 29, 153-159.
    • (2001) Nat. Genet. , vol.29 , pp. 153-159
    • Pilpel, Y.1    Sudarsanam, P.2    Church, G.M.3
  • 34
    • 0036184629 scopus 로고    scopus 로고
    • Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks
    • Shmulevich, I., Dougherty, E.R., Kim, S. and Zhang, W. (2002) Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics, 18, 261-274.
    • (2002) Bioinformatics , vol.18 , pp. 261-274
    • Shmulevich, I.1    Dougherty, E.R.2    Kim, S.3    Zhang, W.4
  • 35
    • 0023823878 scopus 로고
    • GAL11 protein, an auxiliary transcription activator for genes encoding galactose-metabolizing enzymes in Saccharomyces cerevisiae
    • Suzuki, Y., Nogi, Y., Abe, A. and Fukasawa, T. (1988) GAL11 protein, an auxiliary transcription activator for genes encoding galactose-metabolizing enzymes in Saccharomyces cerevisiae. Mol. Cell. Biol., 8, 4991-4999.
    • (1988) Mol. Cell. Biol. , vol.8 , pp. 4991-4999
    • Suzuki, Y.1    Nogi, Y.2    Abe, A.3    Fukasawa, T.4
  • 36
    • 84950871099 scopus 로고
    • Accurate approximations for posterior moments and marginal densities
    • Tinerey, L. and Kadane, J.B. (1986) Accurate approximations for posterior moments and marginal densities. J. Amer. Statist. Assoc., 81, 82-86.
    • (1986) J. Amer. Statist. Assoc. , vol.81 , pp. 82-86
    • Tinerey, L.1    Kadane, J.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.