메뉴 건너뛰기




Volumn 67, Issue 2, 2005, Pages 219-234

Bayesian classification of tumours by using gene expression data

Author keywords

Gibbs sampling; Markov chain Monte Carlo methods; Metropolis Hastings algorithm; Microarrays; Reproducing kernel Hubert space; Shrinkage parameters; Support vector machines

Indexed keywords


EID: 16244388597     PISSN: 13697412     EISSN: None     Source Type: Journal    
DOI: 10.1111/j.1467-9868.2005.00498.x     Document Type: Article
Times cited : (80)

References (45)
  • 1
    • 84916537550 scopus 로고
    • Bayesian analysis of binary and polychotomous response data
    • Albert, J. and Chib, S. (1993) Bayesian analysis of binary and polychotomous response data. J. Am. Statist. Ass., 88, 669-679.
    • (1993) J. Am. Statist. Ass. , vol.88 , pp. 669-679
    • Albert, J.1    Chib, S.2
  • 2
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon, U., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D. and Levine, A. J. (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natn. Acad. Sci. USA, 96, 6745-6750.
    • (1999) Proc. Natn. Acad. Sci. USA , vol.96 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.A.3    Gish, K.4    Ybarra, S.5    Mack, D.6    Levine, A.J.7
  • 3
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • Aronszajn, N. (1950) Theory of reproducing kernels. Trans. Am. Math. Soc., 68, 337-404.
    • (1950) Trans. Am. Math. Soc. , vol.68 , pp. 337-404
    • Aronszajn, N.1
  • 4
    • 0000626524 scopus 로고
    • Expected information as expected utility
    • Bernardo, J. M. (1979) Expected information as expected utility. Ann. Statist., 7, 686-690.
    • (1979) Ann. Statist. , vol.7 , pp. 686-690
    • Bernardo, J.M.1
  • 5
    • 0007725224 scopus 로고    scopus 로고
    • Variational relevance vector machines
    • (eds C. Boutilier and M. Goldszmidt). San Francisco: Morgan Kauffman
    • Bishop, C. and Tipping, M. (2000) Variational relevance vector machines. In Proc. 16th Conf. Uncertainty and Artificial Intelligence (eds C. Boutilier and M. Goldszmidt), pp. 46-53. San Francisco: Morgan Kauffman.
    • (2000) Proc. 16th Conf. Uncertainty and Artificial Intelligence , pp. 46-53
    • Bishop, C.1    Tipping, M.2
  • 9
    • 0030669030 scopus 로고    scopus 로고
    • Exploring the metabolic and genetic control of gene expression on a genomic scale
    • DeRisi, J. L., Iyer, V. R. and Brown, P. O. (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science, 278, 680-685.
    • (1997) Science , vol.278 , pp. 680-685
    • Derisi, J.L.1    Iyer, V.R.2    Brown, P.O.3
  • 10
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit, S., Fridlyand, J. and Speed, T. P. (2002) Comparison of discrimination methods for the classification of tumors using gene expression data. J. Am. Statist. Ass., 97, 77-87.
    • (2002) J. Am. Statist. Ass. , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 11
    • 4544258714 scopus 로고    scopus 로고
    • Adaptive sparseness using Jeffreys prior
    • (eds T. Dietterich, S. Becker and Z. Ghahramani). Cambridge: MIT Press
    • Figueiredo, M. (2002) Adaptive sparseness using Jeffreys prior. In Neural Information Processing Systems 14 (eds T. Dietterich, S. Becker and Z. Ghahramani), pp. 697-704. Cambridge: MIT Press.
    • (2002) Neural Information Processing Systems , vol.14 , pp. 697-704
    • Figueiredo, M.1
  • 13
    • 0001803816 scopus 로고    scopus 로고
    • Model determination using sampling-based methods
    • (eds W. R. Gilks, S. Richardson and D. J. Spiegelhalter). London: Chapman and Hall
    • Gelfand, A. ( 1996) Model determination using sampling-based methods. In Markov Chain Monte Carlo in Practice (eds W. R. Gilks, S. Richardson and D. J. Spiegelhalter), pp. 145-158. London: Chapman and Hall.
    • (1996) Markov Chain Monte Carlo in Practice , pp. 145-158
    • Gelfand, A.1
  • 14
    • 84950453304 scopus 로고
    • Sampling-based approaches to calculating marginal densities
    • Gelfand, A. and Smith, A. F. M. (1990) Sampling-based approaches to calculating marginal densities. J. Am. Statist. Ass., 85, 398-409.
    • (1990) J. Am. Statist. Ass. , vol.85 , pp. 398-409
    • Gelfand, A.1    Smith, A.F.M.2
  • 15
    • 0001582213 scopus 로고    scopus 로고
    • Inference and monitoring convergence
    • (eds W. R. Gilks, S. Richardson and D. J. Spiegelhalter). London: Chapman and Hall
    • Gelman, A. (1996) Inference and monitoring convergence. In Markov Chain Monte Carlo in Practice (eds W. R. Gilks, S. Richardson and D. J. Spiegelhalter), pp. 131-140. London: Chapman and Hall.
    • (1996) Markov Chain Monte Carlo in Practice , pp. 131-140
    • Gelman, A.1
  • 20
    • 12844265329 scopus 로고    scopus 로고
    • Bayesian auxiliary variable models for binary and polychotomous regression
    • Imperial College, London
    • Holmes, C. and Held, L. (2003) Bayesian auxiliary variable models for binary and polychotomous regression. Technical Report. Imperial College, London.
    • (2003) Technical Report
    • Holmes, C.1    Held, L.2
  • 21
    • 0015000439 scopus 로고
    • Some results on Tchebycheffian spline functions
    • Kimeldorf, G. and Wahba, G. (1971) Some results on Tchebycheffian spline functions. J. Math. Anal. Applic., 33, 82-95.
    • (1971) J. Math. Anal. Applic. , vol.33 , pp. 82-95
    • Kimeldorf, G.1    Wahba, G.2
  • 23
    • 0007826152 scopus 로고    scopus 로고
    • Bayesian non-linear modelling for the 1993 energy prediction competition
    • (ed. G. Heidbreder). Dordrecht: Kluwer
    • MacKay, D. (1996) Bayesian non-linear modelling for the 1993 energy prediction competition. In Maximum Entropy and Bayesian Methods (ed. G. Heidbreder), pp. 221-234. Dordrecht: Kluwer.
    • (1996) Maximum Entropy and Bayesian Methods , pp. 221-234
    • MacKay, D.1
  • 25
    • 0347079826 scopus 로고    scopus 로고
    • Analysis of molecular profile data using generative and discriminative methods
    • Moler, E. J., Chow, M. L. and Mian, I. S. (2000) Analysis of molecular profile data using generative and discriminative methods. Physiol. Genet., 4, 109-126.
    • (2000) Physiol. Genet. , vol.4 , pp. 109-126
    • Moler, E.J.1    Chow, M.L.2    Mian, I.S.3
  • 27
    • 0005043637 scopus 로고
    • Statistical inference on time series by rkhs methods
    • (ed. R. Pyke). Montreal: Canadian Mathematical Congress
    • Parzen, E. (1970) Statistical inference on time series by rkhs methods. In Proc. 12th Bienn. Sem. (ed. R. Pyke), pp. 1-37. Montreal: Canadian Mathematical Congress.
    • (1970) Proc. 12th Bienn. Sem. , pp. 1-37
    • Parzen, E.1
  • 28
    • 0034419669 scopus 로고    scopus 로고
    • Regularization networks and support vector machines
    • Pontil, M., Evgeniou, T. and Poggio, T. (2000) Regularization networks and support vector machines. Adv. Cornput. Math., 13, 1-50.
    • (2000) Adv. Cornput. Math. , vol.13 , pp. 1-50
    • Pontil, M.1    Evgeniou, T.2    Poggio, T.3
  • 32
    • 0028806048 scopus 로고
    • Quantitative monitoring of gene expression patterns with a complementary DNA microarray
    • Schena, M., Shalon, D., Davis, R. and Brown, P. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270, 467-470.
    • (1995) Science , vol.270 , pp. 467-470
    • Schena, M.1    Shalon, D.2    Davis, R.3    Brown, P.4
  • 34
    • 0036163572 scopus 로고    scopus 로고
    • Bayesian methods for support vector machines: Evidence and predictive class probabilities
    • Sollich, P. (2001) Bayesian methods for support vector machines: evidence and predictive class probabilities. Mach. Learn., 46, 21-52.
    • (2001) Mach. Learn. , vol.46 , pp. 21-52
    • Sollich, P.1
  • 35
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • Specht, D. F. (1990) Probabilistic neural networks. New. Netwrks, 3, 109-118.
    • (1990) New. Netwrks , vol.3 , pp. 109-118
    • Specht, D.F.1
  • 36
    • 84899032239 scopus 로고    scopus 로고
    • The relevance vector machine
    • (eds S. Solla, T. Leen and K. Muller), Cambridge: MIT Press
    • Tipping, M. (2000) The relevance vector machine. In Neural Information Processing Systems 12 (eds S. Solla, T. Leen and K. Muller), pp. 652-658. Cambridge: MIT Press.
    • (2000) Neural Information Processing Systems , vol.12 , pp. 652-658
    • Tipping, M.1
  • 37
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping, M. (2001) Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res., 1, 211-244.
    • (2001) J. Mach. Learn. Res. , vol.1 , pp. 211-244
    • Tipping, M.1
  • 39
    • 0003466536 scopus 로고
    • Philadelphia: Society for Industrial and Applied Mathematics
    • Wahba, G. (1990) Spline Models for Observational Data. Philadelphia: Society for Industrial and Applied Mathematics.
    • (1990) Spline Models for Observational Data
    • Wahba, G.1
  • 40
    • 0001873883 scopus 로고    scopus 로고
    • Support vector machines, reproducing kernel hilbert spaces and the randomized GACV
    • (eds B. Schölkopf, C. Surges and A. Smola). Cambridge: MIT Press
    • Wahba, G. (1999) Support vector machines, reproducing kernel hilbert spaces and the randomized GACV. In Advances in Kernel Methods (eds B. Schölkopf, C. Surges and A. Smola), pp. 69-88. Cambridge: MIT Press.
    • (1999) Advances in Kernel Methods , pp. 69-88
    • Wahba, G.1
  • 41
    • 2142670018 scopus 로고    scopus 로고
    • Optimal properties and adaptive tuning of standard and nonstandard support vector machines
    • (eds D. Denison, M. Hansen, C. Holmes, B. Mallick and B. Yu). New York: Springer
    • Wahba, G., Lin, Y., Lee, Y. and Zhang, H. (2002) Optimal properties and adaptive tuning of standard and nonstandard support vector machines. In Nonlinear Estimation and Classification (eds D. Denison, M. Hansen, C. Holmes, B. Mallick and B. Yu), pp. 125-143. New York: Springer.
    • (2002) In Nonlinear Estimation and Classification , pp. 125-143
    • Wahba, G.1    Lin, Y.2    Lee, Y.3    Zhang, H.4
  • 42
    • 0242295767 scopus 로고    scopus 로고
    • Bayesian factor regression models in the "large p, small n" paradigm
    • (eds J. M. Bernardo, M. Bayarri, A. P. Dawid, J. Berger, D. Heckerman, A. F. M. Smith and M. West). Oxford: Oxford University Press
    • West, M. (2003) Bayesian factor regression models in the "large p, small n" paradigm. In Bayesian Statistics 7 (eds J. M. Bernardo, M. Bayarri, A. P. Dawid, J. Berger, D. Heckerman, A. F. M. Smith and M. West), pp. 723-732. Oxford: Oxford University Press.
    • (2003) Bayesian Statistics , vol.7 , pp. 723-732
    • West, M.1
  • 44
    • 0034533063 scopus 로고    scopus 로고
    • Computational methods for gene expression-based tumor classification
    • Xiong, M., Jin, L., Li, W. and Boerwinkle, E. (2000) Computational methods for gene expression-based tumor classification. Biotechniques, 29, 1264-1270.
    • (2000) Biotechniques , vol.29 , pp. 1264-1270
    • Xiong, M.1    Jin, L.2    Li, W.3    Boerwinkle, E.4
  • 45
    • 84898974832 scopus 로고    scopus 로고
    • Kernel logistic regression and the import vector machine
    • (eds T. Dietterich, S. flecker and Z. Ghahramani). Cambridge: MIT Press
    • Zhu, J. and Hastie, T. (2002) Kernel logistic regression and the import vector machine. In Neural Information Processing Systems 14 (eds T. Dietterich, S. flecker and Z. Ghahramani), pp. 1081-1088. Cambridge: MIT Press.
    • (2002) Neural Information Processing Systems , vol.14 , pp. 1081-1088
    • Zhu, J.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.