-
1
-
-
0002460150
-
The ALARM monitoring system: A case study with two probabilistic inference techniques for belief networks
-
Berlin: Springer-Verlag
-
Beinlich, I., Suermondt, G., Chavez, R., & Cooper, G. (1989). The ALARM monitoring system: A case study with two probabilistic inference techniques for belief networks. In Proc. 2nd European Conf. on A1 and Medicine, Berlin: Springer-Verlag.
-
(1989)
Proc. 2nd European Conf. on AI and Medicine
-
-
Beinlich, I.1
Suermondt, G.2
Chavez, R.3
Cooper, G.4
-
2
-
-
0001926525
-
Theory refinement on Bayesian networks
-
In B. D. D'Ambrosio, P. Smets, & P. P. Bonissone (Eds.); San Francisco: Morgan Kaufmann
-
Buntine, W. L. (1991). Theory refinement on Bayesian networks. In B. D. D'Ambrosio, P. Smets, & P. P. Bonissone (Eds.) Proc. Seventh Annual Conference on Uncertainty Artificial Intelligence (UAI '91) (pp. 52-60). San Francisco: Morgan Kaufmann.
-
(1991)
Proc. Seventh Annual Conference on Uncertainty Artificial Intelligence (UAI '91)
, pp. 52-60
-
-
Buntine, W.L.1
-
3
-
-
0030124955
-
A guide to the literature on learning probabilistic networks from data
-
Buntine, W. L. (1996). A guide to the literature on learning probabilistic networks from data. IEEE Transactions on Knowledge and Data Engineering, 8, 195-210.
-
(1996)
IEEE Transactions on Knowledge and Data Engineering
, vol.8
, pp. 195-210
-
-
Buntine, W.L.1
-
4
-
-
0002205556
-
Rao-blackwellisation of sampling schemes
-
Casella, G., & Robert, C. (1996). Rao-Blackwellisation of sampling schemes. Biometrika, 83:1, 81-94.
-
(1996)
Biometrika
, vol.83
, Issue.1
, pp. 81-94
-
-
Casella, G.1
Robert, C.2
-
5
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
Cooper, G. F., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309-347.
-
(1992)
Machine Learning
, vol.9
, pp. 309-347
-
-
Cooper, G.F.1
Herskovits, E.2
-
7
-
-
0033707946
-
Using Bayesian networks to analyze expression data
-
Friedman, N., Linial, M., Nachman, I., & Pe'er, D. (2000). Using Bayesian networks to analyze expression data. J. Computational Biology, 7, 601-620.
-
(2000)
J. Computational Biology
, vol.7
, pp. 601-620
-
-
Friedman, N.1
Linial, M.2
Nachman, I.3
Pe'er, D.4
-
8
-
-
84950453304
-
Sampling based approaches to calculating marginal densities
-
Gelfand, A., & Smith, A. (1990). Sampling based approaches to calculating marginal densities. Journal American Statistical Association, 85, 398-409.
-
(1990)
Journal American Statistical Association
, vol.85
, pp. 398-409
-
-
Gelfand, A.1
Smith, A.2
-
10
-
-
0001099335
-
Decomposable graphical Gaussian model determination
-
Giudici, P., & Green, P. (1999). Decomposable graphical Gaussian model determination. Biometrika, 86, 4, 785-801.
-
(1999)
Biometrika
, vol.86
, Issue.4
, pp. 785-801
-
-
Giudici, P.1
Green, P.2
-
11
-
-
0007196525
-
Efficient model determination for discrete graphical models
-
Discussion Paper 99-93, Department of Statistics, Athens University of Economics and Business
-
Giudici, P., Green, P., & Tarantola, C. (2000). Efficient model determination for discrete graphical models. Discussion Paper 99-93, Department of Statistics, Athens University of Economics and Business.
-
(2000)
-
-
Giudici, P.1
Green, P.2
Tarantola, C.3
-
12
-
-
77956889087
-
Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
-
Green, P. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82, 711-732.
-
(1995)
Biometrika
, vol.82
, pp. 711-732
-
-
Green, P.1
-
13
-
-
0002370418
-
A tutorial on learning with Bayesian networks
-
In M. I. Jordan (Ed.); Dordrecht, The Netherlands: Kluwer
-
Heckerman, D. (1998). A tutorial on learning with Bayesian networks. In M. I. Jordan (Ed.), Learning in graphical models. Dordrecht, The Netherlands: Kluwer.
-
(1998)
Learning in Graphical Models
-
-
Heckerman, D.1
-
14
-
-
0002594891
-
Learning Bayesian networks: A unification for discrete and Gaussian domains
-
In P. Besnard & S. Hanks (Eds.); San Francisco: Morgan Kaufmann
-
Heckerman, D., & Geiger, D. (1995) Learning Bayesian networks: A unification for discrete and Gaussian domains. In P. Besnard & S. Hanks (Eds.) Proc. Eleventh Conference on Uncertainty in Artificial Intelligence (UAI '95) (pp. 274-284). San Francisco: Morgan Kaufmann.
-
(1995)
Proc. Eleventh Conference on Uncertainty in Artificial Intelligence (UAI '95)
, pp. 274-284
-
-
Heckerman, D.1
Geiger, D.2
-
15
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
Heckerman, D., Geiger, D., & Chickering, D. M. (1995). Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20, 197-243.
-
(1995)
Machine Learning
, vol.20
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.M.3
-
16
-
-
0004334192
-
A Bayesian approach to causal discovery
-
Technical Report MSR-TR-97-05, Microsoft Research
-
Heckerman, D., Meek, C., & Cooper, G. (1997). A Bayesian approach to causal discovery. Technical Report MSR-TR-97-05, Microsoft Research.
-
(1997)
-
-
Heckerman, D.1
Meek, C.2
Cooper, G.3
-
17
-
-
84984932880
-
Array of hope
-
Lander, E. (1999). Array of hope. Nature Genetics, 21:1, 3-4.
-
(1999)
Nature Genetics
, vol.21
, Issue.1
, pp. 3-4
-
-
Lander, E.1
-
18
-
-
0030192667
-
Learning Bayesian network structures by searching for the best ordering with genetic algorithms
-
Larrañaga, P., Kuijpers, C., Murga, R., & Yurramendi, Y. (1996). Learning Bayesian network structures by searching for the best ordering with genetic algorithms. IEEE Transactions on System, Man and Cybernetics 26:4, 487-493.
-
(1996)
IEEE Transactions on System, Man and Cybernetics
, vol.26
, Issue.4
, pp. 487-493
-
-
Larrañaga, P.1
Kuijpers, C.2
Murga, R.3
Yurramendi, Y.4
-
19
-
-
0001789822
-
Coveriance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes
-
Liu, J., Wong, W., & Kong, A. (1994). Coveriance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes. Biometrika, 81: 1, 27-40.
-
(1994)
Biometrika
, vol.81
, Issue.1
, pp. 27-40
-
-
Liu, J.1
Wong, W.2
Kong, A.3
-
20
-
-
0000220791
-
Bayesian model averaging and model selection for Markov equivalence classes of acyclic graphs
-
Madigan, D., Andersson, S., Perlman, M., & Volinsky, C. (1996). Bayesian model averaging and model selection for Markov equivalence classes of acyclic graphs. Communications in Statistics: Theory and Methods, 25, 2493-2519.
-
(1996)
Communications in Statistics: Theory and Methods
, vol.25
, pp. 2493-2519
-
-
Madigan, D.1
Andersson, S.2
Perlman, M.3
Volinsky, C.4
-
21
-
-
84950945692
-
Model selection and accounting for model uncertainty in graphical models using Occam's window
-
Madigan, D., & Raffery, E. (1994). Model selection and accounting for model uncertainty in graphical models using Occam's window. Journal American Statistical Association, 89, 1535-1546.
-
(1994)
Journal American Statistical Association
, vol.89
, pp. 1535-1546
-
-
Madigan, D.1
Raffery, E.2
-
22
-
-
21844520724
-
Bayesian graphical models for discrete data
-
Madigan, D., & York, J. (1995). Bayesian graphical models for discrete data. International Statistical Review, 63, 215-232.
-
(1995)
International Statistical Review
, vol.63
, pp. 215-232
-
-
Madigan, D.1
York, J.2
-
23
-
-
5744249209
-
Equation of state calculation by fast computing machines
-
Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., & Teller, E. (1953). Equation of state calculation by fast computing machines. Journal of Chemical Physics, 21, 1087-1092.
-
(1953)
Journal of Chemical Physics
, vol.21
, pp. 1087-1092
-
-
Metropolis, N.1
Rosenbluth, A.2
Rosenbluth, M.3
Teller, A.4
Teller, E.5
-
24
-
-
0003408496
-
UCI repository of machine learning databases
-
Murphy, P. M., & Aha, D. W. (1995). UCI repository of machine learning databases. Available at http://www.ics.uci.edu/~mlearn/MLRepository.html.
-
(1995)
-
-
Murphy, P.M.1
Aha, D.W.2
-
26
-
-
0032595782
-
An efficient extension to mixture techniques for prediction and decision trees
-
Pereira, F., & Singer, Y. (1999). An efficient extension to mixture techniques for prediction and decision trees. Machine Learning, 36:3, 183-199.
-
(1999)
Machine Learning
, vol.36
, Issue.3
, pp. 183-199
-
-
Pereira, F.1
Singer, Y.2
-
27
-
-
0031742022
-
Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
-
Spellman, P., Sherlock, G., Zhang, M., Iyer, V., Anders, K., Eisen, M., Brown, P., Botstein, D., & Futcher (1998). Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell, 9, 3273-3297.
-
(1998)
Molecular Biology of the Cell
, vol.9
, pp. 3273-3297
-
-
Spellman, P.1
Sherlock, G.2
Zhang, M.3
Iyer, V.4
Anders, K.5
Eisen, M.6
Brown, P.7
Botstein, D.8
Futcher9
-
28
-
-
0003338515
-
Causation, prediction and search
-
New York: Springer-Verlag
-
Sprites, P., Glymour, C., & Scheines, R. (1993). Causation, prediction and search, Vol. 81 of Lecture Notes in Statistics. New York: Springer-Verlag.
-
(1993)
Lecture Notes in Statistics
, vol.81
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
|