메뉴 건너뛰기




Volumn 50, Issue 1-2, 2003, Pages 95-125

Being Bayesian about network structure. A Bayesian approach to structure discovery in Bayesian networks

Author keywords

Bayesian model averaging; Bayesian networks; MCMC; Structure learning

Indexed keywords

ALGORITHMS; APPROXIMATION THEORY; MARKOV PROCESSES; MATHEMATICAL MODELS; MONTE CARLO METHODS; PROBABILITY;

EID: 0037262841     PISSN: 08856125     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1020249912095     Document Type: Article
Times cited : (749)

References (29)
  • 1
    • 0002460150 scopus 로고
    • The ALARM monitoring system: A case study with two probabilistic inference techniques for belief networks
    • Berlin: Springer-Verlag
    • Beinlich, I., Suermondt, G., Chavez, R., & Cooper, G. (1989). The ALARM monitoring system: A case study with two probabilistic inference techniques for belief networks. In Proc. 2nd European Conf. on A1 and Medicine, Berlin: Springer-Verlag.
    • (1989) Proc. 2nd European Conf. on AI and Medicine
    • Beinlich, I.1    Suermondt, G.2    Chavez, R.3    Cooper, G.4
  • 2
    • 0001926525 scopus 로고
    • Theory refinement on Bayesian networks
    • In B. D. D'Ambrosio, P. Smets, & P. P. Bonissone (Eds.); San Francisco: Morgan Kaufmann
    • Buntine, W. L. (1991). Theory refinement on Bayesian networks. In B. D. D'Ambrosio, P. Smets, & P. P. Bonissone (Eds.) Proc. Seventh Annual Conference on Uncertainty Artificial Intelligence (UAI '91) (pp. 52-60). San Francisco: Morgan Kaufmann.
    • (1991) Proc. Seventh Annual Conference on Uncertainty Artificial Intelligence (UAI '91) , pp. 52-60
    • Buntine, W.L.1
  • 3
    • 0030124955 scopus 로고    scopus 로고
    • A guide to the literature on learning probabilistic networks from data
    • Buntine, W. L. (1996). A guide to the literature on learning probabilistic networks from data. IEEE Transactions on Knowledge and Data Engineering, 8, 195-210.
    • (1996) IEEE Transactions on Knowledge and Data Engineering , vol.8 , pp. 195-210
    • Buntine, W.L.1
  • 4
    • 0002205556 scopus 로고    scopus 로고
    • Rao-blackwellisation of sampling schemes
    • Casella, G., & Robert, C. (1996). Rao-Blackwellisation of sampling schemes. Biometrika, 83:1, 81-94.
    • (1996) Biometrika , vol.83 , Issue.1 , pp. 81-94
    • Casella, G.1    Robert, C.2
  • 5
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper, G. F., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309-347.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 8
    • 84950453304 scopus 로고
    • Sampling based approaches to calculating marginal densities
    • Gelfand, A., & Smith, A. (1990). Sampling based approaches to calculating marginal densities. Journal American Statistical Association, 85, 398-409.
    • (1990) Journal American Statistical Association , vol.85 , pp. 398-409
    • Gelfand, A.1    Smith, A.2
  • 10
    • 0001099335 scopus 로고    scopus 로고
    • Decomposable graphical Gaussian model determination
    • Giudici, P., & Green, P. (1999). Decomposable graphical Gaussian model determination. Biometrika, 86, 4, 785-801.
    • (1999) Biometrika , vol.86 , Issue.4 , pp. 785-801
    • Giudici, P.1    Green, P.2
  • 11
    • 0007196525 scopus 로고    scopus 로고
    • Efficient model determination for discrete graphical models
    • Discussion Paper 99-93, Department of Statistics, Athens University of Economics and Business
    • Giudici, P., Green, P., & Tarantola, C. (2000). Efficient model determination for discrete graphical models. Discussion Paper 99-93, Department of Statistics, Athens University of Economics and Business.
    • (2000)
    • Giudici, P.1    Green, P.2    Tarantola, C.3
  • 12
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • Green, P. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82, 711-732.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.1
  • 13
    • 0002370418 scopus 로고    scopus 로고
    • A tutorial on learning with Bayesian networks
    • In M. I. Jordan (Ed.); Dordrecht, The Netherlands: Kluwer
    • Heckerman, D. (1998). A tutorial on learning with Bayesian networks. In M. I. Jordan (Ed.), Learning in graphical models. Dordrecht, The Netherlands: Kluwer.
    • (1998) Learning in Graphical Models
    • Heckerman, D.1
  • 14
    • 0002594891 scopus 로고
    • Learning Bayesian networks: A unification for discrete and Gaussian domains
    • In P. Besnard & S. Hanks (Eds.); San Francisco: Morgan Kaufmann
    • Heckerman, D., & Geiger, D. (1995) Learning Bayesian networks: A unification for discrete and Gaussian domains. In P. Besnard & S. Hanks (Eds.) Proc. Eleventh Conference on Uncertainty in Artificial Intelligence (UAI '95) (pp. 274-284). San Francisco: Morgan Kaufmann.
    • (1995) Proc. Eleventh Conference on Uncertainty in Artificial Intelligence (UAI '95) , pp. 274-284
    • Heckerman, D.1    Geiger, D.2
  • 15
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Heckerman, D., Geiger, D., & Chickering, D. M. (1995). Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20, 197-243.
    • (1995) Machine Learning , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 16
    • 0004334192 scopus 로고    scopus 로고
    • A Bayesian approach to causal discovery
    • Technical Report MSR-TR-97-05, Microsoft Research
    • Heckerman, D., Meek, C., & Cooper, G. (1997). A Bayesian approach to causal discovery. Technical Report MSR-TR-97-05, Microsoft Research.
    • (1997)
    • Heckerman, D.1    Meek, C.2    Cooper, G.3
  • 17
    • 84984932880 scopus 로고    scopus 로고
    • Array of hope
    • Lander, E. (1999). Array of hope. Nature Genetics, 21:1, 3-4.
    • (1999) Nature Genetics , vol.21 , Issue.1 , pp. 3-4
    • Lander, E.1
  • 19
    • 0001789822 scopus 로고
    • Coveriance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes
    • Liu, J., Wong, W., & Kong, A. (1994). Coveriance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes. Biometrika, 81: 1, 27-40.
    • (1994) Biometrika , vol.81 , Issue.1 , pp. 27-40
    • Liu, J.1    Wong, W.2    Kong, A.3
  • 21
    • 84950945692 scopus 로고
    • Model selection and accounting for model uncertainty in graphical models using Occam's window
    • Madigan, D., & Raffery, E. (1994). Model selection and accounting for model uncertainty in graphical models using Occam's window. Journal American Statistical Association, 89, 1535-1546.
    • (1994) Journal American Statistical Association , vol.89 , pp. 1535-1546
    • Madigan, D.1    Raffery, E.2
  • 22
    • 21844520724 scopus 로고
    • Bayesian graphical models for discrete data
    • Madigan, D., & York, J. (1995). Bayesian graphical models for discrete data. International Statistical Review, 63, 215-232.
    • (1995) International Statistical Review , vol.63 , pp. 215-232
    • Madigan, D.1    York, J.2
  • 24
    • 0003408496 scopus 로고
    • UCI repository of machine learning databases
    • Murphy, P. M., & Aha, D. W. (1995). UCI repository of machine learning databases. Available at http://www.ics.uci.edu/~mlearn/MLRepository.html.
    • (1995)
    • Murphy, P.M.1    Aha, D.W.2
  • 26
    • 0032595782 scopus 로고    scopus 로고
    • An efficient extension to mixture techniques for prediction and decision trees
    • Pereira, F., & Singer, Y. (1999). An efficient extension to mixture techniques for prediction and decision trees. Machine Learning, 36:3, 183-199.
    • (1999) Machine Learning , vol.36 , Issue.3 , pp. 183-199
    • Pereira, F.1    Singer, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.