메뉴 건너뛰기




Volumn 6, Issue 1, 2007, Pages

Fully bayesian mixture model for differential gene expression: Simulations and model checks

Author keywords

Bayesian analysis; MCMC; Microarray; Mixture model; Predictive checks

Indexed keywords

ARTICLE; BAYES THEOREM; GENE EXPRESSION; GENE OVEREXPRESSION; GENETIC VARIABILITY; KNOCKOUT MOUSE; NONHUMAN; SIMULATION; STATISTICAL ANALYSIS; STATISTICAL MODEL; WILD TYPE; ANIMAL; BIOLOGICAL MODEL; COMPUTER SIMULATION; GENE EXPRESSION PROFILING; MOUSE;

EID: 37849035161     PISSN: None     EISSN: 15446115     Source Type: Journal    
DOI: 10.2202/1544-6115.1314     Document Type: Article
Times cited : (26)

References (31)
  • 1
    • 0034948896 scopus 로고    scopus 로고
    • A Bayesian framework for the analysis of microarray data: Regularized t-test and statistical inferences of gene changes
    • Baldi, P. and Long, A. D. (2001). A Bayesian framework for the analysis of microarray data: regularized t-test and statistical inferences of gene changes. Bioinformatics 17, 509-519.
    • (2001) Bioinformatics , vol.17 , pp. 509-519
    • Baldi, P.1    Long, A.D.2
  • 3
    • 0001677717 scopus 로고
    • Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing
    • Benjamini, Y. and Hochberg, Y. (1995). Controlling the False Discovery Rate: a Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society, Series B 57, 289-300.
    • (1995) Journal of the Royal Statistical Society, Series B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 4
    • 33749626257 scopus 로고    scopus 로고
    • A Laplace mixture model for identification of differential expression in microarray experiments
    • Bhowmick, D., Davison, A. C., Goldstein, D. R., and Ruffieux, Y. (2006). A Laplace mixture model for identification of differential expression in microarray experiments. Biostatistics 7, 630-641.
    • (2006) Biostatistics , vol.7 , pp. 630-641
    • Bhowmick, D.1    Davison, A.C.2    Goldstein, D.R.3    Ruffieux, Y.4
  • 5
    • 1842507530 scopus 로고    scopus 로고
    • Degrees of differential gene expression: Detecting biologically significant expression differences and estimating their magnitudes
    • Bickel, D. R. (2004). Degrees of differential gene expression: detecting biologically significant expression differences and estimating their magnitudes. Bioinformatics 20, 682-688.
    • (2004) Bioinformatics , vol.20 , pp. 682-688
    • Bickel, D.R.1
  • 6
    • 85153295057 scopus 로고    scopus 로고
    • Tail posterior probability for inference in pairwise and multiclass gene expression data
    • doi:10.1111/j.1541-0420.2006.00807.x
    • Bochkina, N. and Richardson, S. (2007). Tail posterior probability for inference in pairwise and multiclass gene expression data. Biometrics advanced access: doi:10.1111/j.1541-0420.2006.00807.x.
    • (2007) Biometrics advanced access
    • Bochkina, N.1    Richardson, S.2
  • 7
    • 8844236882 scopus 로고    scopus 로고
    • A mixture model based strategy for selecting sets of genes in multiclass response microarray experiments
    • Bröet, P., Lewin, A., Richardson, S., Dalmasso, C., and Magdelenat, H. (2004). A mixture model based strategy for selecting sets of genes in multiclass response microarray experiments. Bioinformatics 20(16), 2562-2571.
    • (2004) Bioinformatics , vol.20 , Issue.16 , pp. 2562-2571
    • Bröet, P.1    Lewin, A.2    Richardson, S.3    Dalmasso, C.4    Magdelenat, H.5
  • 8
    • 0036401627 scopus 로고    scopus 로고
    • Bayesian Hierarchical Model for Identifying Changes in Gene Expression from Microarray Experiments
    • Bröet, P., Richardson, S., and Radvanyi, F. (2002). Bayesian Hierarchical Model for Identifying Changes in Gene Expression from Microarray Experiments. Journal of Computational Biology 9, 671-683.
    • (2002) Journal of Computational Biology , vol.9 , pp. 671-683
    • Bröet, P.1    Richardson, S.2    Radvanyi, F.3
  • 11
    • 25444500666 scopus 로고    scopus 로고
    • Normal uniform mixture differential gene expression detection for cDNA microarrays
    • Dean, N. and Raftery, A. E. (2005). Normal uniform mixture differential gene expression detection for cDNA microarrays. BMC Bioinformatics 6.
    • (2005) BMC Bioinformatics , vol.6
    • Dean, N.1    Raftery, A.E.2
  • 12
    • 18444401138 scopus 로고    scopus 로고
    • A Bayesian mixture model for differential gene expression
    • Do, K.-A., Mueller, P., and Tang, F. (2005). A Bayesian mixture model for differential gene expression. Applied Statistics 54, 627-644.
    • (2005) Applied Statistics , vol.54 , pp. 627-644
    • Do, K.-A.1    Mueller, P.2    Tang, F.3
  • 13
    • 2142732441 scopus 로고    scopus 로고
    • Large-Scale Simultaneous Hypothesis Testing: The Choice of a Null Hypothesis
    • Efron, B. (2004). Large-Scale Simultaneous Hypothesis Testing: The Choice of a Null Hypothesis. Journal of the American Statistical Society 99, 96-104.
    • (2004) Journal of the American Statistical Society , vol.99 , pp. 96-104
    • Efron, B.1
  • 15
    • 25444484077 scopus 로고    scopus 로고
    • Posterior Predictive Assessment of Model Fitness via Realized Discrepancies
    • Gelman, A., Meng, X.-L., and Stern, H. (1996). Posterior Predictive Assessment of Model Fitness via Realized Discrepancies. Statistica Sinica 6, 733-807.
    • (1996) Statistica Sinica , vol.6 , pp. 733-807
    • Gelman, A.1    Meng, X.-L.2    Stern, H.3
  • 16
    • 33645059029 scopus 로고    scopus 로고
    • Markov chain Monte Carlo computations with mixture of singular distributions
    • Technical Report 470, Statistics Department, University of Washington, Seattle, Seattle
    • Gottardo, R. and Raftery, A. E. (2004). Markov chain Monte Carlo computations with mixture of singular distributions. Technical Report 470, Statistics Department, University of Washington, Seattle.
    • (2004)
    • Gottardo, R.1    Raftery, A.E.2
  • 17
    • 33645086851 scopus 로고    scopus 로고
    • Bayesian Robust Inference for Differential Gene Expression in Microarrays with Multiple Samples
    • Gottardo, R., Raftery, A. E., Yeung, K. Y., and Bumgarner, R. E. (2006). Bayesian Robust Inference for Differential Gene Expression in Microarrays with Multiple Samples. Biometrics 62, 10-18.
    • (2006) Biometrics , vol.62 , pp. 10-18
    • Gottardo, R.1    Raftery, A.E.2    Yeung, K.Y.3    Bumgarner, R.E.4
  • 18
    • 0035531242 scopus 로고    scopus 로고
    • Modelling heterogeneity with and without the Dirichlet process
    • Green, P. and Richardson, S. (2001). Modelling heterogeneity with and without the Dirichlet process. Scandinavian Journal of Statistics 28, 355-375.
    • (2001) Scandinavian Journal of Statistics , vol.28 , pp. 355-375
    • Green, P.1    Richardson, S.2
  • 19
    • 0036947892 scopus 로고    scopus 로고
    • Robust estimators for expression analysis
    • Hubbell, E., Liu, W., and Rui, M. (2002). Robust estimators for expression analysis. Bioinformatics 18, 1585-1592.
    • (2002) Bioinformatics , vol.18 , pp. 1585-1592
    • Hubbell, E.1    Liu, W.2    Rui, M.3
  • 23
    • 17244361971 scopus 로고    scopus 로고
    • Hierarchical Bayes models for cDNA microarray gene expression
    • L̈onnstedt, I. and Britton, T. (2005). Hierarchical Bayes models for cDNA microarray gene expression. Biostatistics 6, 279-291.
    • (2005) Biostatistics , vol.6 , pp. 279-291
    • L̈onnstedt, I.1    Britton, T.2
  • 25
    • 0037687725 scopus 로고    scopus 로고
    • Approximate cross-validatory predictive checks in disease mapping models
    • Marshall, E. C. and Spiegelhalter, D. J. (2003). Approximate cross-validatory predictive checks in disease mapping models. Statistics in Medicine 22, 1649-1660.
    • (2003) Statistics in Medicine , vol.22 , pp. 1649-1660
    • Marshall, E.C.1    Spiegelhalter, D.J.2
  • 26
    • 0034923013 scopus 로고    scopus 로고
    • On Differential Variability of Expression Ratios: Improving Statistical Inference about Gene Expression Changes from Microarray Data
    • Newton, M., Kendziorski, C., Richmond, C., Blattner, F., and Tsui, K. (2001). On Differential Variability of Expression Ratios: Improving Statistical Inference about Gene Expression Changes from Microarray Data. Journal of Computational Biology 8, 37-52.
    • (2001) Journal of Computational Biology , vol.8 , pp. 37-52
    • Newton, M.1    Kendziorski, C.2    Richmond, C.3    Blattner, F.4    Tsui, K.5
  • 27
    • 4444235995 scopus 로고    scopus 로고
    • Detecting differential gene expression with a semiparametric hierarchical mixture model
    • Newton, M., Noueiry, A., Sarkar, D., and Ahlquist, P. (2004). Detecting differential gene expression with a semiparametric hierarchical mixture model. Biostatistics 5, 155-176.
    • (2004) Biostatistics , vol.5 , pp. 155-176
    • Newton, M.1    Noueiry, A.2    Sarkar, D.3    Ahlquist, P.4
  • 29
    • 37849000338 scopus 로고    scopus 로고
    • Approximating Interval hypothesis : P-values and Bayes factors
    • Technical Report, Université Paris Dauphine
    • Rousseau, J. (2006). Approximating Interval hypothesis : p-values and Bayes factors. Technical Report, Université Paris Dauphine.
    • (2006)
    • Rousseau, J.1
  • 30
    • 4544341015 scopus 로고    scopus 로고
    • Linear models and empirical Bayes methods for assessing differential expression in microarray experiments
    • Smyth, G. K. (2004). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology 3, 3.
    • (2004) Statistical Applications in Genetics and Molecular Biology , vol.3 , pp. 3
    • Smyth, G.K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.