메뉴 건너뛰기




Volumn 13, Issue 1, 2000, Pages 1-50

Regularization Networks and Support Vector Machines

Author keywords

Radial Basis Functions; Regularization; Reproducing Kernel Hilbert Space; Structural Risk Minimization; Support Vector Machines

Indexed keywords


EID: 0034419669     PISSN: 10197168     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1018946025316     Document Type: Article
Times cited : (1047)

References (103)
  • 1
    • 0016029778 scopus 로고
    • The relationship between variable selection and data augmentation and a method for prediction
    • D. Allen, The relationship between variable selection and data augmentation and a method for prediction, Technometrics 16 (1974) 125-127.
    • (1974) Technometrics , vol.16 , pp. 125-127
    • Allen, D.1
  • 4
    • 0000396062 scopus 로고    scopus 로고
    • Natural gradient works efficiently in learning
    • S.I. Amari, Natural gradient works efficiently in learning, Neural Comput. 10 (1998) 251-276.
    • (1998) Neural Comput. , vol.10 , pp. 251-276
    • Amari, S.I.1
  • 5
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 686 (1950) 337-404.
    • (1950) Trans. Amer. Math. Soc. , vol.686 , pp. 337-404
    • Aronszajn, N.1
  • 6
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: The size of the weights is more important that the size of the network
    • P. Bartlett, The sample complexity of pattern classification with neural networks: the size of the weights is more important that the size of the network, IEEE Trans. Inform. Theory (1998).
    • (1998) IEEE Trans. Inform. Theory
    • Bartlett, P.1
  • 7
    • 0030165580 scopus 로고    scopus 로고
    • Fat-shattering and the learnability of real-valued functions
    • P. Bartlett, P.M. Long and R.C. Williamson, Fat-shattering and the learnability of real-valued functions, J. Comput. Systems Sci. 52(3) (1996) 434-452.
    • (1996) J. Comput. Systems Sci. , vol.52 , Issue.3 , pp. 434-452
    • Bartlett, P.1    Long, P.M.2    Williamson, R.C.3
  • 8
    • 0002094343 scopus 로고    scopus 로고
    • Generalization performance of support vector machine and other patern classifiers
    • eds. C. Burges and B. Scholkopf MIT Press, Cambridge, MA
    • P. Bartlett and J. Shawe-Taylor, Generalization performance of support vector machine and other patern classifiers, in: Advances in Kernel Methods - Support Vector Learning, eds. C. Burges and B. Scholkopf (MIT Press, Cambridge, MA, 1998).
    • (1998) Advances in Kernel Methods - Support Vector Learning
    • Bartlett, P.1    Shawe-Taylor, J.2
  • 9
    • 0029411030 scopus 로고
    • An information maximization approach to blind separation and blind deconvolution
    • A.J. Bell and T. Sejnowski, An information maximization approach to blind separation and blind deconvolution, Neural Comput. 7 (1995) 1129-1159.
    • (1995) Neural Comput. , vol.7 , pp. 1129-1159
    • Bell, A.J.1    Sejnowski, T.2
  • 10
    • 0042439585 scopus 로고
    • Regularization methods for linear inverse problems
    • ed. C.G. Talenti Springer, Berlin
    • M. Bertero, Regularization methods for linear inverse problems, in: Inverse Problems, ed. C.G. Talenti (Springer, Berlin, 1986).
    • (1986) Inverse Problems
    • Bertero, M.1
  • 11
    • 0024057651 scopus 로고
    • Ill-posed problems in early vision
    • M. Bertero, T. Poggio and V. Torre, Ill-posed problems in early vision, Proc. IEEE 76 (1988) 869-889.
    • (1988) Proc. IEEE , vol.76 , pp. 869-889
    • Bertero, M.1    Poggio, T.2    Torre, V.3
  • 12
    • 0000876414 scopus 로고
    • Local learning algorithms
    • L. Bottou and V. Vapnik, Local learning algorithms, Neural Comput. 4(6) (1992) 888-900.
    • (1992) Neural Comput. , vol.4 , Issue.6 , pp. 888-900
    • Bottou, L.1    Vapnik, V.2
  • 13
    • 0000098430 scopus 로고
    • Multivariate cardinal interpolation with radial basis functions
    • M.D. Buhmann, Multivariate cardinal interpolation with radial basis functions, Constr. Approx. 6 (1990) 225-255.
    • (1990) Constr. Approx. , vol.6 , pp. 225-255
    • Buhmann, M.D.1
  • 15
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Kluwer Academic, Boston
    • C. Burges, A tutorial on support vector machines for pattern recognition, in: Data Mining and Knowledge Discovery, Vol. 2 (Kluwer Academic, Boston, 1998).
    • (1998) Data Mining and Knowledge Discovery , vol.2
    • Burges, C.1
  • 18
    • 0003958737 scopus 로고
    • Ph.D. thesis, Department of Statistics, Stanford University November
    • S. Chen, Basis Pursuit, Ph.D. thesis, Department of Statistics, Stanford University (November 1995).
    • (1995) Basis Pursuit
    • Chen, S.1
  • 22
  • 25
    • 0001833663 scopus 로고
    • Quasi-interpolants and approximation power of multivariate splines
    • eds. M. Gasca and C.A. Micchelli Kluwer Academic, Dordrecht, Netherlands
    • C. de Boor, Quasi-interpolants and approximation power of multivariate splines, in: Computation of Curves and Surfaces, eds. M. Gasca and C.A. Micchelli (Kluwer Academic, Dordrecht, Netherlands, 1990) pp. 313-345.
    • (1990) Computation of Curves and Surfaces , pp. 313-345
    • De Boor, C.1
  • 26
    • 85009724776 scopus 로고    scopus 로고
    • Nonlinear approximation
    • R.A. DeVore, Nonlinear approximation, Acta Numerica (1998) 51-150.
    • (1998) Acta Numerica , pp. 51-150
    • DeVore, R.A.1
  • 27
    • 0003336572 scopus 로고    scopus 로고
    • A Probabilistic Theory of Pattern Recognition
    • Springer, New York
    • L. Devroye, L. Györfi and G. Lugosi, A Probabilistic Theory of Pattern Recognition, Applications of Mathematics, Vol. 31 (Springer, New York, 1996).
    • (1996) Applications of Mathematics , vol.31
    • Devroye, L.1    Györfi, L.2    Lugosi, G.3
  • 29
    • 0000085854 scopus 로고
    • A course on empirical processes
    • R.M. Dudley, A course on empirical processes, in: Lecture Notes in Mathematics, Vol. 1097 (1984) pp. 2-142.
    • (1984) Lecture Notes in Mathematics , vol.1097 , pp. 2-142
    • Dudley, R.M.1
  • 30
    • 0000050198 scopus 로고
    • Uniform and universal Glivenko-Cantelli classes
    • R.M. Dudley, E. Gine and J. Zinn, Uniform and universal Glivenko-Cantelli classes, J. Theoret. Probab. 4 (1991) 485-510.
    • (1991) J. Theoret. Probab. , vol.4 , pp. 485-510
    • Dudley, R.M.1    Gine, E.2    Zinn, J.3
  • 31
    • 0000463437 scopus 로고
    • Interpolation and approximation by radial and related functions
    • eds. C.K. Chui, L.L. Schumaker and D.J. Ward Academic Press, New York
    • N. Dyn, Interpolation and approximation by radial and related functions, in: Approximation Theory VI, eds. C.K. Chui, L.L. Schumaker and D.J. Ward (Academic Press, New York, 1991) pp. 211-234.
    • (1991) Approximation Theory VI , pp. 211-234
    • Dyn, N.1
  • 32
    • 0041548209 scopus 로고
    • On multivariate approximation by integer translates of a basis function
    • University of Wisconsin-Madison November
    • N. Dyn, I.R.H. Jackson, D. Levin and A. Ron, On multivariate approximation by integer translates of a basis function, Computer Sciences Technical Report 886, University of Wisconsin-Madison (November 1989).
    • (1989) Computer Sciences Technical Report 886
    • Dyn, N.1    Jackson, I.R.H.2    Levin, D.3    Ron, A.4
  • 33
    • 0001070566 scopus 로고
    • Numerical procedures for surface fitting of scattered data by radial functions
    • N. Dyn, D. Levin and S. Rippa, Numerical procedures for surface fitting of scattered data by radial functions, SIAM J. Sci. Statist. Comput. 7(2) (1986) 639-659.
    • (1986) SIAM J. Sci. Statist. Comput. , vol.7 , Issue.2 , pp. 639-659
    • Dyn, N.1    Levin, D.2    Rippa, S.3
  • 38
    • 0000249788 scopus 로고    scopus 로고
    • An equivalence between sparse approximation and Support Vector Machines
    • F. Girosi, An equivalence between sparse approximation and Support Vector Machines, Neural Comput. 10(6) (1998) 1455-1480.
    • (1998) Neural Comput. , vol.10 , Issue.6 , pp. 1455-1480
    • Girosi, F.1
  • 39
    • 0001219859 scopus 로고
    • Regularization theory and neural networks architectures
    • F. Girosi, M. Jones and T. Poggio, Regularization theory and neural networks architectures, Neural Comput. 7 (1995) 219-269.
    • (1995) Neural Comput. , vol.7 , pp. 219-269
    • Girosi, F.1    Jones, M.2    Poggio, T.3
  • 40
    • 0002438120 scopus 로고
    • Extensions of a theory of networks for approximation and learning: Outliers and negative examples
    • eds. R. Lippmann, J. Moody and D. Touretzky Morgan Kaufmann, San Mateo, CA
    • F. Girosi, T. Poggio and B. Caprile, Extensions of a theory of networks for approximation and learning: outliers and negative examples, in: Advances in Neural Information Processings Systems, Vol. 3, eds. R. Lippmann, J. Moody and D. Touretzky (Morgan Kaufmann, San Mateo, CA, 1991).
    • (1991) Advances in Neural Information Processings Systems , vol.3
    • Girosi, F.1    Poggio, T.2    Caprile, B.3
  • 42
    • 0000852458 scopus 로고    scopus 로고
    • Development of low entropy coding in a recurrent network
    • G.F. Harpur and R.W. Prager, Development of low entropy coding in a recurrent network, Network 7 (1996) 277-284.
    • (1996) Network , vol.7 , pp. 277-284
    • Harpur, G.F.1    Prager, R.W.2
  • 45
    • 0004002099 scopus 로고
    • Wiley Classics Library Wiley, New York
    • H. Hochstadt, Integral Equations, Wiley Classics Library (Wiley, New York, 1973).
    • (1973) Integral Equations
    • Hochstadt, H.1
  • 50
    • 0028460231 scopus 로고
    • Efficient distribution-free learning of probabilistic concepts
    • M. Kearns and R. E. Shapire, Efficient distribution-free learning of probabilistic concepts, J. Comput. Syst. Sci. 48(3) (1994) 464-497.
    • (1994) J. Comput. Syst. Sci. , vol.48 , Issue.3 , pp. 464-497
    • Kearns, M.1    Shapire, R.E.2
  • 51
    • 0000406385 scopus 로고
    • A correspondence between Bayesan estimation on stochastic processes and smoothing by splines
    • G.S. Kimeldorf and G. Wahba, A correspondence between Bayesan estimation on stochastic processes and smoothing by splines, Ann. Math. Statist. 41(2) (1971) 495-502.
    • (1971) Ann. Math. Statist. , vol.41 , Issue.2 , pp. 495-502
    • Kimeldorf, G.S.1    Wahba, G.2
  • 56
    • 38249017388 scopus 로고
    • Polyharmonic cardinal splines: A minimization property
    • W.R. Madych and S.A. Nelson, Polyharmonic cardinal splines: a minimization property, J. Approx. Theory 63 (1990) 303-320.
    • (1990) J. Approx. Theory , vol.63 , pp. 303-320
    • Madych, W.R.1    Nelson, S.A.2
  • 57
    • 0027842081 scopus 로고
    • Matching Pursuit in a time-frequency dictionary
    • S. Mallat and Z. Zhang, Matching Pursuit in a time-frequency dictionary, IEEE Trans. Signal Process. 41 (1993) 3397-3415.
    • (1993) IEEE Trans. Signal Process. , vol.41 , pp. 3397-3415
    • Mallat, S.1    Zhang, Z.2
  • 58
    • 84950881632 scopus 로고
    • Probabilistic solution of ill-posed problems in computational vision
    • J.L. Marroquin, S. Mitter and T. Poggio, Probabilistic solution of ill-posed problems in computational vision, J. Amer. Statist. Assoc. 82 (1987) 76-89.
    • (1987) J. Amer. Statist. Assoc. , vol.82 , pp. 76-89
    • Marroquin, J.L.1    Mitter, S.2    Poggio, T.3
  • 59
    • 77950603295 scopus 로고
    • Neural networks for localized approximation of real functions
    • eds. C.A. Kamm et al. IEEE Signal Processing Society, New York
    • H.N. Mhaskar, Neural networks for localized approximation of real functions, in: Neural Networks for Signal Processing III, Proceedings of the 1993 IEEE-SP Workshop, eds. C.A. Kamm et al. (IEEE Signal Processing Society, New York, 1993) pp. 190-196.
    • (1993) Neural Networks for Signal Processing III, Proceedings of the 1993 IEEE-SP Workshop , pp. 190-196
    • Mhaskar, H.N.1
  • 60
    • 34250122797 scopus 로고
    • Interpolation of scattered data: Distance matrices and conditionally positive definite functions
    • C.A. Micchelli, Interpolation of scattered data: distance matrices and conditionally positive definite functions, Constr. Approx. 2 (1986) 11-22.
    • (1986) Constr. Approx. , vol.2 , pp. 11-22
    • Micchelli, C.A.1
  • 61
    • 0000482137 scopus 로고    scopus 로고
    • On the relationship between generalization error, hypothesis complexity, and sample complexity for radial basis functions
    • P. Niyogi and F. Girosi, On the relationship between generalization error, hypothesis complexity, and sample complexity for radial basis functions, Neural Comput. 8 (1996) 819-842.
    • (1996) Neural Comput. , vol.8 , pp. 819-842
    • Niyogi, P.1    Girosi, F.2
  • 62
    • 0032203371 scopus 로고    scopus 로고
    • Incorporating prior information in machine learning by creating virt ual examples
    • P. Niyogi, F. Girosi and T. Poggio, Incorporating prior information in machine learning by creating virt ual examples, Proc. IEEE 86(11) (1998) 2196-2209.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2196-2209
    • Niyogi, P.1    Girosi, F.2    Poggio, T.3
  • 63
    • 0343416807 scopus 로고    scopus 로고
    • The nonlinear pea learning rule in independent component analysis
    • E. Oja, The nonlinear pea learning rule in independent component analysis, Neurocomput. 17 (1997) 25-45.
    • (1997) Neurocomput. , vol.17 , pp. 25-45
    • Oja, E.1
  • 65
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • B.A. Olshausen and D.J. Field, Emergence of simple-cell receptive field properties by learning a sparse code for natural images, Nature 381 (1996) 607-609.
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 66
    • 85016863855 scopus 로고    scopus 로고
    • Sparse correlation kernel based signal reconstruction
    • Artificial Intelligence Laboratory, Massachusetts Institute of Technology (CBCL Memo 162.)
    • C. Papageorgiou, F. Girosi and T. Poggio, Sparse correlation kernel based signal reconstruction, Technical Report 1635, Artificial Intelligence Laboratory, Massachusetts Institute of Technology (1998). (CBCL Memo 162.)
    • (1998) Technical Report 1635
    • Papageorgiou, C.1    Girosi, F.2    Poggio, T.3
  • 68
    • 0016765357 scopus 로고
    • On optimal nonlinear associative recall
    • T. Poggio, On optimal nonlinear associative recall, Biological Cybernetics 19 (1975) 201-209.
    • (1975) Biological Cybernetics , vol.19 , pp. 201-209
    • Poggio, T.1
  • 70
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • T. Poggio and F. Girosi, Networks for approximation and learning, Proc. IEEE 78(9) (1990).
    • (1990) Proc. IEEE , vol.78 , Issue.9
    • Poggio, T.1    Girosi, F.2
  • 71
    • 0042049518 scopus 로고
    • Networks for approximation and learning
    • ed. C. Lau IEEE Press, Piscataway, NJ
    • T. Poggio and F. Girosi, Networks for approximation and learning, in: Foundations of Neural Networks, ed. C. Lau (IEEE Press, Piscataway, NJ, 1992) pp. 91-106.
    • (1992) Foundations of Neural Networks , pp. 91-106
    • Poggio, T.1    Girosi, F.2
  • 72
    • 0000473139 scopus 로고    scopus 로고
    • A sparse representation for function approximation
    • T. Poggio and F. Girosi, A sparse representation for function approximation, Neural Comput. 10(6) (1998).
    • (1998) Neural Comput. , vol.10 , Issue.6
    • Poggio, T.1    Girosi, F.2
  • 73
    • 0022417790 scopus 로고
    • Computational vision and regularization theory
    • T. Poggio, V. Torre and C. Koch, Computational vision and regularization theory, Nature 317 (1985) 314-319.
    • (1985) Nature , vol.317 , pp. 314-319
    • Poggio, T.1    Torre, V.2    Koch, C.3
  • 78
    • 0009630715 scopus 로고
    • How to build quasi-interpolants. Applications to polyharmonic B-splines
    • eds. P.-J. Laurent, A. Le Méhauté and L.L. Schumaker Academic Press, New York
    • C. Rabut, How to build quasi-interpolants. Applications to polyharmonic B-splines, in: Curves and Surfaces, eds. P.-J. Laurent, A. Le Méhauté and L.L. Schumaker (Academic Press, New York, 1991) pp. 391-402.
    • (1991) Curves and Surfaces , pp. 391-402
    • Rabut, C.1
  • 79
    • 0042550336 scopus 로고
    • An introduction to Schoenberg's approximation
    • C. Rabut, An introduction to Schoenberg's approximation, Comput. Math. Appl. 24(12) (1992) 149-175.
    • (1992) Comput. Math. Appl. , vol.24 , Issue.12 , pp. 149-175
    • Rabut, C.1
  • 81
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • J. Rissanen, Modeling by shortest data description, Automatica 14 (1978) 465-471.
    • (1978) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 82
    • 0002308457 scopus 로고
    • Contributions to the problem of approximation of equidistant data by analytic functions, Part A: On the problem of smoothing of graduation, a first class of analytic approximation formulae
    • I.J. Schoenberg, Contributions to the problem of approximation of equidistant data by analytic functions, Part A: On the problem of smoothing of graduation, a first class of analytic approximation formulae, Quart. Appl. Math. 4 (1946) 45-99.
    • (1946) Quart. Appl. Math. , vol.4 , pp. 45-99
    • Schoenberg, I.J.1
  • 83
    • 0000326721 scopus 로고
    • Cardinal interpolation and spline functions
    • I.J. Schoenberg, Cardinal interpolation and spline functions, J. Approx. Theory 2 (1969) 167-206.
    • (1969) J. Approx. Theory , vol.2 , pp. 167-206
    • Schoenberg, I.J.1
  • 86
    • 0032166068 scopus 로고    scopus 로고
    • Structural risk minimization over data-dependent hierarchies
    • to appear. Also: NeuroCOLT Technical Report NC-TR-96-053 (1996)
    • J. Shawe-Taylor, P.L. Bartlett, R.C. Williamson and M. Anthony, Structural risk minimization over data-dependent hierarchies, IEEE Trans. Inform. Theory (1998) to appear. Also: NeuroCOLT Technical Report NC-TR-96-053 (1996) ftp://ftp.dcs.rhbnc.ac.uk/pub/neurocolt/tech_reports.
    • (1998) IEEE Trans. Inform. Theory
    • Shawe-Taylor, J.1    Bartlett, P.L.2    Williamson, R.C.3    Anthony, M.4
  • 88
    • 0000997747 scopus 로고
    • Spline smoothing: The equivalent variable kernel method
    • B.W. Silverman, Spline smoothing: the equivalent variable kernel method, Ann. Statist. 12 (1984) 898-916.
    • (1984) Ann. Statist. , vol.12 , pp. 898-916
    • Silverman, B.W.1
  • 90
    • 24044515976 scopus 로고    scopus 로고
    • On a kernel-based method for pattern recognition, regression, approximation and operator inversion
    • A. Smola and B. Schölkopf, On a kernel-based method for pattern recognition, regression, approximation and operator inversion, Algorithmica 22 (1998) 211-231.
    • (1998) Algorithmica , vol.22 , pp. 211-231
    • Smola, A.1    Schölkopf, B.2
  • 91
    • 0001558197 scopus 로고
    • Positive definite functions and generalizations, an historical survey
    • J. Stewart, Positive definite functions and generalizations, an historical survey, Rocky Mountain J. Math. 6 (1976) 409-434.
    • (1976) Rocky Mountain J. Math. , vol.6 , pp. 409-434
    • Stewart, J.1
  • 97
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequences of events to their probabilities
    • V.N. Vapnik and A.Y. Chervonenkis, On the uniform convergence of relative frequences of events to their probabilities, Theory Probab. Appl. 17(2) (1971) 264-280.
    • (1971) Theory Probab. Appl. , vol.17 , Issue.2 , pp. 264-280
    • Vapnik, V.N.1    Chervonenkis, A.Y.2
  • 98
    • 0041548213 scopus 로고
    • The necessary and sufficient conditions for the uniform convergence of averages to their expected values
    • V.N. Vapnik and A.Ya. Chervonenkis, The necessary and sufficient conditions for the uniform convergence of averages to their expected values, Teor. Veroyatn. i Primenen. 26(3) (1981) 543-564.
    • (1981) Teor. Veroyatn. i Primenen. , vol.26 , Issue.3 , pp. 543-564
    • Vapnik, V.N.1    Chervonenkis, A.Y.2
  • 99
    • 0000864140 scopus 로고
    • The necessary and sufficient conditions for consistency in the empirical risk minimization method
    • V.N. Vapnik and A.Ya. Chervonenkis, The necessary and sufficient conditions for consistency in the empirical risk minimization method, Pattern Recognition and Image Analysis 1(3) (1991) 283-305.
    • (1991) Pattern Recognition and Image Analysis , vol.1 , Issue.3 , pp. 283-305
    • Vapnik, V.N.1    Chervonenkis, A.Y.2
  • 100
    • 0005173689 scopus 로고
    • Spline bases, regularization, and generalized cross-validation for solving approximation problems with large quantities of noisy data
    • eds. J. Ward and E. Cheney, Austin, TX January 8-10, 1980 Academic Press
    • G. Wahba, Spline bases, regularization, and generalized cross-validation for solving approximation problems with large quantities of noisy data, in: Proceedings of the International Conference on Approximation Theory in Honour of George Lorenz, eds. J. Ward and E. Cheney, Austin, TX January 8-10, 1980 (Academic Press, 1980).
    • (1980) Proceedings of the International Conference on Approximation Theory in Honour of George Lorenz
    • Wahba, G.1
  • 101
    • 0000608177 scopus 로고
    • A comparison of GCV and GML for choosing the smoothing parameter in the generalized splines smoothing problem
    • G. Wahba, A comparison of GCV and GML for choosing the smoothing parameter in the generalized splines smoothing problem, Ann. Statist. 13 (1985) 1378-1402.
    • (1985) Ann. Statist. , vol.13 , pp. 1378-1402
    • Wahba, G.1
  • 102
    • 0003241883 scopus 로고
    • Splines Models for Observational Data
    • SIAM, Philadelphia, PA
    • G. Wahba, Splines Models for Observational Data, Series in Applied Mathematics, Vol. 59 (SIAM, Philadelphia, PA, 1990).
    • (1990) Series in Applied Mathematics , vol.59
    • Wahba, G.1
  • 103
    • 0003731482 scopus 로고    scopus 로고
    • Generalization performance of regularization networks and support vector machines via entropy numbers
    • Royal Holloway College University of London
    • R. Williamson, A. Smola and B. Scholkopf, Generalization performance of regularization networks and support vector machines via entropy numbers, Technical Report NC-TR-98-019, Royal Holloway College University of London (1998).
    • (1998) Technical Report NC-TR-98-019
    • Williamson, R.1    Smola, A.2    Scholkopf, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.