-
1
-
-
0016029778
-
The relationship between variable selection and data augmentation and a method for prediction
-
D. Allen, The relationship between variable selection and data augmentation and a method for prediction, Technometrics 16 (1974) 125-127.
-
(1974)
Technometrics
, vol.16
, pp. 125-127
-
-
Allen, D.1
-
2
-
-
0027802035
-
Scale-sensitive-dimensions, uniform convergence, and learnability
-
N. Alon, S. Ben-David, N. Cesa-Bianchi and D. Haussler, Scale-sensitive-dimensions, uniform convergence, and learnability, in: Symposium on Foundations of Computer Science (1993).
-
(1993)
Symposium on Foundations of Computer Science
-
-
Alon, N.1
Ben-David, S.2
Cesa-Bianchi, N.3
Haussler, D.4
-
3
-
-
33749754615
-
A new learning algorithm for bling signal separation
-
MIT Press, Cambridge, MA
-
S. Amari, A. Cichocki and H. Yang, A new learning algorithm for bling signal separation, in: Advances in Neural Information Processing System (MIT Press, Cambridge, MA, 1995) pp. 757-763.
-
(1995)
Advances in Neural Information Processing System
, pp. 757-763
-
-
Amari, S.1
Cichocki, A.2
Yang, H.3
-
4
-
-
0000396062
-
Natural gradient works efficiently in learning
-
S.I. Amari, Natural gradient works efficiently in learning, Neural Comput. 10 (1998) 251-276.
-
(1998)
Neural Comput.
, vol.10
, pp. 251-276
-
-
Amari, S.I.1
-
5
-
-
5844297152
-
Theory of reproducing kernels
-
N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 686 (1950) 337-404.
-
(1950)
Trans. Amer. Math. Soc.
, vol.686
, pp. 337-404
-
-
Aronszajn, N.1
-
6
-
-
0032028728
-
The sample complexity of pattern classification with neural networks: The size of the weights is more important that the size of the network
-
P. Bartlett, The sample complexity of pattern classification with neural networks: the size of the weights is more important that the size of the network, IEEE Trans. Inform. Theory (1998).
-
(1998)
IEEE Trans. Inform. Theory
-
-
Bartlett, P.1
-
7
-
-
0030165580
-
Fat-shattering and the learnability of real-valued functions
-
P. Bartlett, P.M. Long and R.C. Williamson, Fat-shattering and the learnability of real-valued functions, J. Comput. Systems Sci. 52(3) (1996) 434-452.
-
(1996)
J. Comput. Systems Sci.
, vol.52
, Issue.3
, pp. 434-452
-
-
Bartlett, P.1
Long, P.M.2
Williamson, R.C.3
-
8
-
-
0002094343
-
Generalization performance of support vector machine and other patern classifiers
-
eds. C. Burges and B. Scholkopf MIT Press, Cambridge, MA
-
P. Bartlett and J. Shawe-Taylor, Generalization performance of support vector machine and other patern classifiers, in: Advances in Kernel Methods - Support Vector Learning, eds. C. Burges and B. Scholkopf (MIT Press, Cambridge, MA, 1998).
-
(1998)
Advances in Kernel Methods - Support Vector Learning
-
-
Bartlett, P.1
Shawe-Taylor, J.2
-
9
-
-
0029411030
-
An information maximization approach to blind separation and blind deconvolution
-
A.J. Bell and T. Sejnowski, An information maximization approach to blind separation and blind deconvolution, Neural Comput. 7 (1995) 1129-1159.
-
(1995)
Neural Comput.
, vol.7
, pp. 1129-1159
-
-
Bell, A.J.1
Sejnowski, T.2
-
10
-
-
0042439585
-
Regularization methods for linear inverse problems
-
ed. C.G. Talenti Springer, Berlin
-
M. Bertero, Regularization methods for linear inverse problems, in: Inverse Problems, ed. C.G. Talenti (Springer, Berlin, 1986).
-
(1986)
Inverse Problems
-
-
Bertero, M.1
-
11
-
-
0024057651
-
Ill-posed problems in early vision
-
M. Bertero, T. Poggio and V. Torre, Ill-posed problems in early vision, Proc. IEEE 76 (1988) 869-889.
-
(1988)
Proc. IEEE
, vol.76
, pp. 869-889
-
-
Bertero, M.1
Poggio, T.2
Torre, V.3
-
12
-
-
0000876414
-
Local learning algorithms
-
L. Bottou and V. Vapnik, Local learning algorithms, Neural Comput. 4(6) (1992) 888-900.
-
(1992)
Neural Comput.
, vol.4
, Issue.6
, pp. 888-900
-
-
Bottou, L.1
Vapnik, V.2
-
13
-
-
0000098430
-
Multivariate cardinal interpolation with radial basis functions
-
M.D. Buhmann, Multivariate cardinal interpolation with radial basis functions, Constr. Approx. 6 (1990) 225-255.
-
(1990)
Constr. Approx.
, vol.6
, pp. 225-255
-
-
Buhmann, M.D.1
-
15
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Kluwer Academic, Boston
-
C. Burges, A tutorial on support vector machines for pattern recognition, in: Data Mining and Knowledge Discovery, Vol. 2 (Kluwer Academic, Boston, 1998).
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
-
-
Burges, C.1
-
17
-
-
0004134624
-
-
Department of Statistics, Stanford University May
-
S. Chen, D. Donoho and M. Saunders, Atomic decomposition by basis pursuit, Technical Report 479, Department of Statistics, Stanford University (May 1995).
-
(1995)
Atomic Decomposition by Basis Pursuit, Technical Report
, pp. 479
-
-
Chen, S.1
Donoho, D.2
Saunders, M.3
-
18
-
-
0003958737
-
-
Ph.D. thesis, Department of Statistics, Stanford University November
-
S. Chen, Basis Pursuit, Ph.D. thesis, Department of Statistics, Stanford University (November 1995).
-
(1995)
Basis Pursuit
-
-
Chen, S.1
-
19
-
-
0003890671
-
-
Wiley, New York
-
V. Cherkassky and F. Mulier, Learning from Data: Concepts, Theory, and Methods (Wiley, New York, 1998).
-
(1998)
Learning from Data: Concepts, Theory, and Methods
-
-
Cherkassky, V.1
Mulier, F.2
-
23
-
-
84950296671
-
-
Interscience, London, England
-
R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 2 (Interscience, London, England, 1962).
-
(1962)
Methods of Mathematical Physics
, vol.2
-
-
Courant, R.1
Hilbert, D.2
-
25
-
-
0001833663
-
Quasi-interpolants and approximation power of multivariate splines
-
eds. M. Gasca and C.A. Micchelli Kluwer Academic, Dordrecht, Netherlands
-
C. de Boor, Quasi-interpolants and approximation power of multivariate splines, in: Computation of Curves and Surfaces, eds. M. Gasca and C.A. Micchelli (Kluwer Academic, Dordrecht, Netherlands, 1990) pp. 313-345.
-
(1990)
Computation of Curves and Surfaces
, pp. 313-345
-
-
De Boor, C.1
-
26
-
-
85009724776
-
Nonlinear approximation
-
R.A. DeVore, Nonlinear approximation, Acta Numerica (1998) 51-150.
-
(1998)
Acta Numerica
, pp. 51-150
-
-
DeVore, R.A.1
-
27
-
-
0003336572
-
A Probabilistic Theory of Pattern Recognition
-
Springer, New York
-
L. Devroye, L. Györfi and G. Lugosi, A Probabilistic Theory of Pattern Recognition, Applications of Mathematics, Vol. 31 (Springer, New York, 1996).
-
(1996)
Applications of Mathematics
, vol.31
-
-
Devroye, L.1
Györfi, L.2
Lugosi, G.3
-
29
-
-
0000085854
-
A course on empirical processes
-
R.M. Dudley, A course on empirical processes, in: Lecture Notes in Mathematics, Vol. 1097 (1984) pp. 2-142.
-
(1984)
Lecture Notes in Mathematics
, vol.1097
, pp. 2-142
-
-
Dudley, R.M.1
-
30
-
-
0000050198
-
Uniform and universal Glivenko-Cantelli classes
-
R.M. Dudley, E. Gine and J. Zinn, Uniform and universal Glivenko-Cantelli classes, J. Theoret. Probab. 4 (1991) 485-510.
-
(1991)
J. Theoret. Probab.
, vol.4
, pp. 485-510
-
-
Dudley, R.M.1
Gine, E.2
Zinn, J.3
-
31
-
-
0000463437
-
Interpolation and approximation by radial and related functions
-
eds. C.K. Chui, L.L. Schumaker and D.J. Ward Academic Press, New York
-
N. Dyn, Interpolation and approximation by radial and related functions, in: Approximation Theory VI, eds. C.K. Chui, L.L. Schumaker and D.J. Ward (Academic Press, New York, 1991) pp. 211-234.
-
(1991)
Approximation Theory VI
, pp. 211-234
-
-
Dyn, N.1
-
32
-
-
0041548209
-
On multivariate approximation by integer translates of a basis function
-
University of Wisconsin-Madison November
-
N. Dyn, I.R.H. Jackson, D. Levin and A. Ron, On multivariate approximation by integer translates of a basis function, Computer Sciences Technical Report 886, University of Wisconsin-Madison (November 1989).
-
(1989)
Computer Sciences Technical Report 886
-
-
Dyn, N.1
Jackson, I.R.H.2
Levin, D.3
Ron, A.4
-
33
-
-
0001070566
-
Numerical procedures for surface fitting of scattered data by radial functions
-
N. Dyn, D. Levin and S. Rippa, Numerical procedures for surface fitting of scattered data by radial functions, SIAM J. Sci. Statist. Comput. 7(2) (1986) 639-659.
-
(1986)
SIAM J. Sci. Statist. Comput.
, vol.7
, Issue.2
, pp. 639-659
-
-
Dyn, N.1
Levin, D.2
Rippa, S.3
-
34
-
-
0043051175
-
Bounds on the generalization performance of kernel machines ensembles
-
T. Evgeniou, L. Perez-Breva, M. Pontil and T. Poggio, Bounds on the generalization performance of kernel machines ensembles, A.I. Memo, MIT Artificial Intelligence Lab. (1999).
-
(1999)
A.I. Memo, MIT Artificial Intelligence Lab.
-
-
Evgeniou, T.1
Perez-Breva, L.2
Pontil, M.3
Poggio, T.4
-
38
-
-
0000249788
-
An equivalence between sparse approximation and Support Vector Machines
-
F. Girosi, An equivalence between sparse approximation and Support Vector Machines, Neural Comput. 10(6) (1998) 1455-1480.
-
(1998)
Neural Comput.
, vol.10
, Issue.6
, pp. 1455-1480
-
-
Girosi, F.1
-
39
-
-
0001219859
-
Regularization theory and neural networks architectures
-
F. Girosi, M. Jones and T. Poggio, Regularization theory and neural networks architectures, Neural Comput. 7 (1995) 219-269.
-
(1995)
Neural Comput.
, vol.7
, pp. 219-269
-
-
Girosi, F.1
Jones, M.2
Poggio, T.3
-
40
-
-
0002438120
-
Extensions of a theory of networks for approximation and learning: Outliers and negative examples
-
eds. R. Lippmann, J. Moody and D. Touretzky Morgan Kaufmann, San Mateo, CA
-
F. Girosi, T. Poggio and B. Caprile, Extensions of a theory of networks for approximation and learning: outliers and negative examples, in: Advances in Neural Information Processings Systems, Vol. 3, eds. R. Lippmann, J. Moody and D. Touretzky (Morgan Kaufmann, San Mateo, CA, 1991).
-
(1991)
Advances in Neural Information Processings Systems
, vol.3
-
-
Girosi, F.1
Poggio, T.2
Caprile, B.3
-
42
-
-
0000852458
-
Development of low entropy coding in a recurrent network
-
G.F. Harpur and R.W. Prager, Development of low entropy coding in a recurrent network, Network 7 (1996) 277-284.
-
(1996)
Network
, vol.7
, pp. 277-284
-
-
Harpur, G.F.1
Prager, R.W.2
-
45
-
-
0004002099
-
-
Wiley Classics Library Wiley, New York
-
H. Hochstadt, Integral Equations, Wiley Classics Library (Wiley, New York, 1973).
-
(1973)
Integral Equations
-
-
Hochstadt, H.1
-
50
-
-
0028460231
-
Efficient distribution-free learning of probabilistic concepts
-
M. Kearns and R. E. Shapire, Efficient distribution-free learning of probabilistic concepts, J. Comput. Syst. Sci. 48(3) (1994) 464-497.
-
(1994)
J. Comput. Syst. Sci.
, vol.48
, Issue.3
, pp. 464-497
-
-
Kearns, M.1
Shapire, R.E.2
-
51
-
-
0000406385
-
A correspondence between Bayesan estimation on stochastic processes and smoothing by splines
-
G.S. Kimeldorf and G. Wahba, A correspondence between Bayesan estimation on stochastic processes and smoothing by splines, Ann. Math. Statist. 41(2) (1971) 495-502.
-
(1971)
Ann. Math. Statist.
, vol.41
, Issue.2
, pp. 495-502
-
-
Kimeldorf, G.S.1
Wahba, G.2
-
56
-
-
38249017388
-
Polyharmonic cardinal splines: A minimization property
-
W.R. Madych and S.A. Nelson, Polyharmonic cardinal splines: a minimization property, J. Approx. Theory 63 (1990) 303-320.
-
(1990)
J. Approx. Theory
, vol.63
, pp. 303-320
-
-
Madych, W.R.1
Nelson, S.A.2
-
57
-
-
0027842081
-
Matching Pursuit in a time-frequency dictionary
-
S. Mallat and Z. Zhang, Matching Pursuit in a time-frequency dictionary, IEEE Trans. Signal Process. 41 (1993) 3397-3415.
-
(1993)
IEEE Trans. Signal Process.
, vol.41
, pp. 3397-3415
-
-
Mallat, S.1
Zhang, Z.2
-
58
-
-
84950881632
-
Probabilistic solution of ill-posed problems in computational vision
-
J.L. Marroquin, S. Mitter and T. Poggio, Probabilistic solution of ill-posed problems in computational vision, J. Amer. Statist. Assoc. 82 (1987) 76-89.
-
(1987)
J. Amer. Statist. Assoc.
, vol.82
, pp. 76-89
-
-
Marroquin, J.L.1
Mitter, S.2
Poggio, T.3
-
59
-
-
77950603295
-
Neural networks for localized approximation of real functions
-
eds. C.A. Kamm et al. IEEE Signal Processing Society, New York
-
H.N. Mhaskar, Neural networks for localized approximation of real functions, in: Neural Networks for Signal Processing III, Proceedings of the 1993 IEEE-SP Workshop, eds. C.A. Kamm et al. (IEEE Signal Processing Society, New York, 1993) pp. 190-196.
-
(1993)
Neural Networks for Signal Processing III, Proceedings of the 1993 IEEE-SP Workshop
, pp. 190-196
-
-
Mhaskar, H.N.1
-
60
-
-
34250122797
-
Interpolation of scattered data: Distance matrices and conditionally positive definite functions
-
C.A. Micchelli, Interpolation of scattered data: distance matrices and conditionally positive definite functions, Constr. Approx. 2 (1986) 11-22.
-
(1986)
Constr. Approx.
, vol.2
, pp. 11-22
-
-
Micchelli, C.A.1
-
61
-
-
0000482137
-
On the relationship between generalization error, hypothesis complexity, and sample complexity for radial basis functions
-
P. Niyogi and F. Girosi, On the relationship between generalization error, hypothesis complexity, and sample complexity for radial basis functions, Neural Comput. 8 (1996) 819-842.
-
(1996)
Neural Comput.
, vol.8
, pp. 819-842
-
-
Niyogi, P.1
Girosi, F.2
-
62
-
-
0032203371
-
Incorporating prior information in machine learning by creating virt ual examples
-
P. Niyogi, F. Girosi and T. Poggio, Incorporating prior information in machine learning by creating virt ual examples, Proc. IEEE 86(11) (1998) 2196-2209.
-
(1998)
Proc. IEEE
, vol.86
, Issue.11
, pp. 2196-2209
-
-
Niyogi, P.1
Girosi, F.2
Poggio, T.3
-
63
-
-
0343416807
-
The nonlinear pea learning rule in independent component analysis
-
E. Oja, The nonlinear pea learning rule in independent component analysis, Neurocomput. 17 (1997) 25-45.
-
(1997)
Neurocomput.
, vol.17
, pp. 25-45
-
-
Oja, E.1
-
65
-
-
0029938380
-
Emergence of simple-cell receptive field properties by learning a sparse code for natural images
-
B.A. Olshausen and D.J. Field, Emergence of simple-cell receptive field properties by learning a sparse code for natural images, Nature 381 (1996) 607-609.
-
(1996)
Nature
, vol.381
, pp. 607-609
-
-
Olshausen, B.A.1
Field, D.J.2
-
66
-
-
85016863855
-
Sparse correlation kernel based signal reconstruction
-
Artificial Intelligence Laboratory, Massachusetts Institute of Technology (CBCL Memo 162.)
-
C. Papageorgiou, F. Girosi and T. Poggio, Sparse correlation kernel based signal reconstruction, Technical Report 1635, Artificial Intelligence Laboratory, Massachusetts Institute of Technology (1998). (CBCL Memo 162.)
-
(1998)
Technical Report 1635
-
-
Papageorgiou, C.1
Girosi, F.2
Poggio, T.3
-
68
-
-
0016765357
-
On optimal nonlinear associative recall
-
T. Poggio, On optimal nonlinear associative recall, Biological Cybernetics 19 (1975) 201-209.
-
(1975)
Biological Cybernetics
, vol.19
, pp. 201-209
-
-
Poggio, T.1
-
70
-
-
0025490985
-
Networks for approximation and learning
-
T. Poggio and F. Girosi, Networks for approximation and learning, Proc. IEEE 78(9) (1990).
-
(1990)
Proc. IEEE
, vol.78
, Issue.9
-
-
Poggio, T.1
Girosi, F.2
-
71
-
-
0042049518
-
Networks for approximation and learning
-
ed. C. Lau IEEE Press, Piscataway, NJ
-
T. Poggio and F. Girosi, Networks for approximation and learning, in: Foundations of Neural Networks, ed. C. Lau (IEEE Press, Piscataway, NJ, 1992) pp. 91-106.
-
(1992)
Foundations of Neural Networks
, pp. 91-106
-
-
Poggio, T.1
Girosi, F.2
-
72
-
-
0000473139
-
A sparse representation for function approximation
-
T. Poggio and F. Girosi, A sparse representation for function approximation, Neural Comput. 10(6) (1998).
-
(1998)
Neural Comput.
, vol.10
, Issue.6
-
-
Poggio, T.1
Girosi, F.2
-
73
-
-
0022417790
-
Computational vision and regularization theory
-
T. Poggio, V. Torre and C. Koch, Computational vision and regularization theory, Nature 317 (1985) 314-319.
-
(1985)
Nature
, vol.317
, pp. 314-319
-
-
Poggio, T.1
Torre, V.2
Koch, C.3
-
78
-
-
0009630715
-
How to build quasi-interpolants. Applications to polyharmonic B-splines
-
eds. P.-J. Laurent, A. Le Méhauté and L.L. Schumaker Academic Press, New York
-
C. Rabut, How to build quasi-interpolants. Applications to polyharmonic B-splines, in: Curves and Surfaces, eds. P.-J. Laurent, A. Le Méhauté and L.L. Schumaker (Academic Press, New York, 1991) pp. 391-402.
-
(1991)
Curves and Surfaces
, pp. 391-402
-
-
Rabut, C.1
-
79
-
-
0042550336
-
An introduction to Schoenberg's approximation
-
C. Rabut, An introduction to Schoenberg's approximation, Comput. Math. Appl. 24(12) (1992) 149-175.
-
(1992)
Comput. Math. Appl.
, vol.24
, Issue.12
, pp. 149-175
-
-
Rabut, C.1
-
81
-
-
0018015137
-
Modeling by shortest data description
-
J. Rissanen, Modeling by shortest data description, Automatica 14 (1978) 465-471.
-
(1978)
Automatica
, vol.14
, pp. 465-471
-
-
Rissanen, J.1
-
82
-
-
0002308457
-
Contributions to the problem of approximation of equidistant data by analytic functions, Part A: On the problem of smoothing of graduation, a first class of analytic approximation formulae
-
I.J. Schoenberg, Contributions to the problem of approximation of equidistant data by analytic functions, Part A: On the problem of smoothing of graduation, a first class of analytic approximation formulae, Quart. Appl. Math. 4 (1946) 45-99.
-
(1946)
Quart. Appl. Math.
, vol.4
, pp. 45-99
-
-
Schoenberg, I.J.1
-
83
-
-
0000326721
-
Cardinal interpolation and spline functions
-
I.J. Schoenberg, Cardinal interpolation and spline functions, J. Approx. Theory 2 (1969) 167-206.
-
(1969)
J. Approx. Theory
, vol.2
, pp. 167-206
-
-
Schoenberg, I.J.1
-
86
-
-
0032166068
-
Structural risk minimization over data-dependent hierarchies
-
to appear. Also: NeuroCOLT Technical Report NC-TR-96-053 (1996)
-
J. Shawe-Taylor, P.L. Bartlett, R.C. Williamson and M. Anthony, Structural risk minimization over data-dependent hierarchies, IEEE Trans. Inform. Theory (1998) to appear. Also: NeuroCOLT Technical Report NC-TR-96-053 (1996) ftp://ftp.dcs.rhbnc.ac.uk/pub/neurocolt/tech_reports.
-
(1998)
IEEE Trans. Inform. Theory
-
-
Shawe-Taylor, J.1
Bartlett, P.L.2
Williamson, R.C.3
Anthony, M.4
-
88
-
-
0000997747
-
Spline smoothing: The equivalent variable kernel method
-
B.W. Silverman, Spline smoothing: the equivalent variable kernel method, Ann. Statist. 12 (1984) 898-916.
-
(1984)
Ann. Statist.
, vol.12
, pp. 898-916
-
-
Silverman, B.W.1
-
90
-
-
24044515976
-
On a kernel-based method for pattern recognition, regression, approximation and operator inversion
-
A. Smola and B. Schölkopf, On a kernel-based method for pattern recognition, regression, approximation and operator inversion, Algorithmica 22 (1998) 211-231.
-
(1998)
Algorithmica
, vol.22
, pp. 211-231
-
-
Smola, A.1
Schölkopf, B.2
-
91
-
-
0001558197
-
Positive definite functions and generalizations, an historical survey
-
J. Stewart, Positive definite functions and generalizations, an historical survey, Rocky Mountain J. Math. 6 (1976) 409-434.
-
(1976)
Rocky Mountain J. Math.
, vol.6
, pp. 409-434
-
-
Stewart, J.1
-
97
-
-
0001024505
-
On the uniform convergence of relative frequences of events to their probabilities
-
V.N. Vapnik and A.Y. Chervonenkis, On the uniform convergence of relative frequences of events to their probabilities, Theory Probab. Appl. 17(2) (1971) 264-280.
-
(1971)
Theory Probab. Appl.
, vol.17
, Issue.2
, pp. 264-280
-
-
Vapnik, V.N.1
Chervonenkis, A.Y.2
-
98
-
-
0041548213
-
The necessary and sufficient conditions for the uniform convergence of averages to their expected values
-
V.N. Vapnik and A.Ya. Chervonenkis, The necessary and sufficient conditions for the uniform convergence of averages to their expected values, Teor. Veroyatn. i Primenen. 26(3) (1981) 543-564.
-
(1981)
Teor. Veroyatn. i Primenen.
, vol.26
, Issue.3
, pp. 543-564
-
-
Vapnik, V.N.1
Chervonenkis, A.Y.2
-
99
-
-
0000864140
-
The necessary and sufficient conditions for consistency in the empirical risk minimization method
-
V.N. Vapnik and A.Ya. Chervonenkis, The necessary and sufficient conditions for consistency in the empirical risk minimization method, Pattern Recognition and Image Analysis 1(3) (1991) 283-305.
-
(1991)
Pattern Recognition and Image Analysis
, vol.1
, Issue.3
, pp. 283-305
-
-
Vapnik, V.N.1
Chervonenkis, A.Y.2
-
100
-
-
0005173689
-
Spline bases, regularization, and generalized cross-validation for solving approximation problems with large quantities of noisy data
-
eds. J. Ward and E. Cheney, Austin, TX January 8-10, 1980 Academic Press
-
G. Wahba, Spline bases, regularization, and generalized cross-validation for solving approximation problems with large quantities of noisy data, in: Proceedings of the International Conference on Approximation Theory in Honour of George Lorenz, eds. J. Ward and E. Cheney, Austin, TX January 8-10, 1980 (Academic Press, 1980).
-
(1980)
Proceedings of the International Conference on Approximation Theory in Honour of George Lorenz
-
-
Wahba, G.1
-
101
-
-
0000608177
-
A comparison of GCV and GML for choosing the smoothing parameter in the generalized splines smoothing problem
-
G. Wahba, A comparison of GCV and GML for choosing the smoothing parameter in the generalized splines smoothing problem, Ann. Statist. 13 (1985) 1378-1402.
-
(1985)
Ann. Statist.
, vol.13
, pp. 1378-1402
-
-
Wahba, G.1
-
102
-
-
0003241883
-
Splines Models for Observational Data
-
SIAM, Philadelphia, PA
-
G. Wahba, Splines Models for Observational Data, Series in Applied Mathematics, Vol. 59 (SIAM, Philadelphia, PA, 1990).
-
(1990)
Series in Applied Mathematics
, vol.59
-
-
Wahba, G.1
-
103
-
-
0003731482
-
Generalization performance of regularization networks and support vector machines via entropy numbers
-
Royal Holloway College University of London
-
R. Williamson, A. Smola and B. Scholkopf, Generalization performance of regularization networks and support vector machines via entropy numbers, Technical Report NC-TR-98-019, Royal Holloway College University of London (1998).
-
(1998)
Technical Report NC-TR-98-019
-
-
Williamson, R.1
Smola, A.2
Scholkopf, B.3
|