메뉴 건너뛰기




Volumn 8, Issue 2, 2007, Pages 109-116

Bayesian methods in bioinformatics and computational systems biology

Author keywords

Bayesian inference; Computational systems biology; Graphical models; Networks; Predictive biology; Quantitative

Indexed keywords

ALGORITHM; BAYES THEOREM; BIOINFORMATICS; COMPUTER MODEL; COMPUTER NETWORK; COMPUTER SYSTEM; DATA ANALYSIS; GENOME ANALYSIS; MATHEMATICAL ANALYSIS; MATHEMATICAL COMPUTING; MEDICAL RESEARCH; MICROARRAY ANALYSIS; PREDICTION; PROTEIN DETERMINATION; QUANTITATIVE ANALYSIS; REVIEW; SEQUENCE ANALYSIS; ARTIFICIAL INTELLIGENCE; AUTOMATED PATTERN RECOGNITION; BIOLOGY; DNA MICROARRAY; GENE EXPRESSION PROFILING; METABOLISM; METHODOLOGY; PHYSIOLOGY; SIGNAL TRANSDUCTION; SYSTEMS BIOLOGY;

EID: 34250658998     PISSN: 14675463     EISSN: 14774054     Source Type: Journal    
DOI: 10.1093/bib/bbm007     Document Type: Review
Times cited : (169)

References (102)
  • 1
    • 1842532350 scopus 로고    scopus 로고
    • The Bayesian revolution in genetics
    • Beaumont MA, Rannala B. The Bayesian revolution in genetics. Nat Rev Genet 2004;5:251-61
    • (2004) Nat Rev Genet , vol.5 , pp. 251-261
    • Beaumont, M.A.1    Rannala, B.2
  • 3
    • 5744249209 scopus 로고
    • Equations of state calculations by fast computing machines
    • Metropolis N, Rosenbluth AW, Rosenbluth MN, et al. Equations of state calculations by fast computing machines. J Chem Phys 1953; 21:1087-92
    • (1953) J Chem Phys , vol.21 , pp. 1087-1092
    • Metropolis, N.1    Rosenbluth, A.W.2    Rosenbluth, M.N.3
  • 5
    • 0346205399 scopus 로고    scopus 로고
    • Markov chain Monte Carlo method and its application
    • Brooks SP. Markov chain Monte Carlo method and its application. Statistician 1998;47:69-100
    • (1998) Statistician , vol.47 , pp. 69-100
    • Brooks, S.P.1
  • 6
  • 7
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images
    • Geman S, Geman D. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 1984;6:721-41
    • (1984) IEEE Trans Pattern Anal Mach Intell , vol.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 8
    • 84937730674 scopus 로고
    • Explaining the Gibbs sampler
    • Cassella G, George EI. Explaining the Gibbs sampler. Am Stat 1992;46:167-74
    • (1992) Am Stat , vol.46 , pp. 167-174
    • Cassella, G.1    George, E.I.2
  • 9
    • 77956890234 scopus 로고
    • Carlo sampling methods using Markov chains and their applications
    • Hastings WK. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970;57:97-109
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Monte, H.W.K.1
  • 10
    • 0000576595 scopus 로고
    • Markov chains for exploring posterior distributions (with discussion)
    • Tierney L. Markov chains for exploring posterior distributions (with discussion). Ann Statist 1994;21:1701-62
    • (1994) Ann Statist , vol.21 , pp. 1701-1762
    • Tierney, L.1
  • 11
    • 84972511893 scopus 로고
    • Practical Markov chain Monte Carlo
    • Geyer CJ. Practical Markov chain Monte Carlo. Statistical Sci 1992;7:473-511
    • (1992) Statistical Sci , vol.7 , pp. 473-511
    • Geyer, C.J.1
  • 14
    • 0022474446 scopus 로고
    • Maximum likelihood alignment of DNA sequences
    • Bishop MJ, Thompson EA. Maximum likelihood alignment of DNA sequences. J Mol Biol 1986;190:159-65
    • (1986) J Mol Biol , vol.190 , pp. 159-165
    • Bishop, M.J.1    Thompson, E.A.2
  • 15
    • 0024557590 scopus 로고
    • Stochastic models for heterogeneous DNA sequences
    • Churchill GA. Stochastic models for heterogeneous DNA sequences. Bull Math Biol 1989;51:79-94
    • (1989) Bull Math Biol , vol.51 , pp. 79-94
    • Churchill, G.A.1
  • 16
    • 0033059370 scopus 로고    scopus 로고
    • Bayesian inference on biopolymer models
    • Liu JS, Lawrence CE. Bayesian inference on biopolymer models. Bioinformatics 1999;15:38-52
    • (1999) Bioinformatics , vol.15 , pp. 38-52
    • Liu, J.S.1    Lawrence, C.E.2
  • 17
    • 84950424966 scopus 로고
    • Bayesian models for multiple local sequence alignment and Gibbs sampling strategies
    • Liu JS, Neuwald AF, Lawrence CE. Bayesian models for multiple local sequence alignment and Gibbs sampling strategies. J Am Stat Assoc 1995;90:1156-70
    • (1995) J Am Stat Assoc , vol.90 , pp. 1156-1170
    • Liu, J.S.1    Neuwald, A.F.2    Lawrence, C.E.3
  • 18
    • 0442325057 scopus 로고    scopus 로고
    • Markovian structures in biological sequence alignments
    • Liu J, Neuwald A, Lawrence C. Markovian structures in biological sequence alignments. J Am Stat Assoc 1999; 94:1-15
    • (1999) J Am Stat Assoc , vol.94 , pp. 1-15
    • Liu, J.1    Neuwald, A.2    Lawrence, C.3
  • 19
    • 2342445980 scopus 로고    scopus 로고
    • Modelling within-motif dependence for transcription factor binding site predictions
    • Zhou Q, Liu JS. Modelling within-motif dependence for transcription factor binding site predictions. Bioinformatics 2004;20 909-16
    • (2004) Bioinformatics , vol.20 , pp. 909-916
    • Zhou, Q.1    Liu, J.S.2
  • 20
    • 33747879675 scopus 로고    scopus 로고
    • Informative priors based on transcription factor structural class improve de novo motif discovery
    • ISMB06
    • Narlikar L, Gordân R, Ohler U, Hartemink AJ. Informative priors based on transcription factor structural class improve de novo motif discovery. Bioinformatics 2006;22:e384-92, ISMB06
    • (2006) Bioinformatics , vol.22
    • Narlikar, L.1    Gordân, R.2    Ohler, U.3    Hartemink, A.J.4
  • 21
    • 0034047548 scopus 로고    scopus 로고
    • Bayesian segmentation of protein secondary structure
    • Schmidler SC, Liu JS, Brutlag DL. Bayesian segmentation of protein secondary structure. J Comput Biol 2000;7:233-48
    • (2000) J Comput Biol , vol.7 , pp. 233-248
    • Schmidler, S.C.1    Liu, J.S.2    Brutlag, D.L.3
  • 22
    • 25444443637 scopus 로고    scopus 로고
    • Bayesian coestimation of phylogeny and sequence alignment
    • Lunter G, Miklós I, Drummond A, et al. Bayesian coestimation of phylogeny and sequence alignment. BMC Bioinformatics 2005;6 83
    • (2005) BMC Bioinformatics , vol.6 , pp. 83
    • Lunter, G.1    Miklós, I.2    Drummond, A.3
  • 23
    • 0034360451 scopus 로고    scopus 로고
    • Detecting homogeneous segments in DNA sequences by using hidden Markov models
    • Boys RJ, Henderson DA, Wilkinson DJ. Detecting homogeneous segments in DNA sequences by using hidden Markov models. J R Stat Soc 2000; C:49:269-85
    • (2000) J R Stat Soc , vol.100 , Issue.49 , pp. 269-285
    • Boys, R.J.1    Henderson, D.A.2    Wilkinson, D.J.3
  • 24
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • Green PJ. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 1995;82:711-32
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.J.1
  • 25
    • 85153243702 scopus 로고    scopus 로고
    • Boys RJ, Henderson DA. A Bayesian approach to DNA sequence segmentation (with discussion). Biometrics 2004;60:573-88
    • Boys RJ, Henderson DA. A Bayesian approach to DNA sequence segmentation (with discussion). Biometrics 2004;60:573-88
  • 26
    • 34447564679 scopus 로고    scopus 로고
    • Bayesian methods in biological sequence analysis
    • Balding DJ, Bishop M, Cannings C eds, 2nd edn, Chap. 3, New York: Wiley
    • Liu JS, Logvinenko T. Bayesian methods in biological sequence analysis. In: Balding DJ, Bishop M, Cannings C (eds). Handbook of Statistical Genetics, 2nd edn, Chap. 3, New York: Wiley, 2003
    • (2003) Handbook of Statistical Genetics
    • Liu, J.S.1    Logvinenko, T.2
  • 29
    • 34447534987 scopus 로고    scopus 로고
    • Vanucci M, Do K-A, Müller P eds, New York: Cambridge University Press
    • Vanucci M, Do K-A, Müller P (eds). Bayesian Inference for Gene Expression and Proteomics. New York: Cambridge University Press, 2006
    • (2006) Bayesian Inference for Gene Expression and Proteomics
  • 30
    • 18844436999 scopus 로고    scopus 로고
    • Bayesian normalization an identification for differential gene expression data
    • Zhang D, Wells MT, Smart CD, Fry W. Bayesian normalization an identification for differential gene expression data. J Comput Biol 2005;12:391-406
    • (2005) J Comput Biol , vol.12 , pp. 391-406
    • Zhang, D.1    Wells, M.T.2    Smart, C.D.3    Fry, W.4
  • 32
    • 27644557097 scopus 로고    scopus 로고
    • Genome-wide estimation of transcript concentrations from spotted cDNA microarray data
    • Frigessi A, van de Wiel MA, Holden M, et al. Genome-wide estimation of transcript concentrations from spotted cDNA microarray data. Nucleic Acids Res, 2005;17:e143
    • (2005) Nucleic Acids Res , vol.17
    • Frigessi, A.1    van de Wiel, M.A.2    Holden, M.3
  • 33
    • 34447572413 scopus 로고    scopus 로고
    • Bayesian process-based modeling of two-channel microarray experiments: Estimating absolute mRNA concentrations
    • Vanucci M, Do K-A, Müller P, eds, Cambridge University Press, New York
    • van de Wiel MA, Holden M, Glad IK, et al. Bayesian process-based modeling of two-channel microarray experiments: Estimating absolute mRNA concentrations. In: Vanucci M, Do K-A, Müller P, (eds). Bayesian Inference for Gene Expression and Proteomics. Cambridge University Press, New York, 2006, 75-96.
    • (2006) Bayesian Inference for Gene Expression and Proteomics , pp. 75-96
    • van de Wiel, M.A.1    Holden, M.2    Glad, I.K.3
  • 34
    • 33747017793 scopus 로고    scopus 로고
    • Bayesian models for pooling microarray studies with multiple sources of variation
    • Conlon EM, Song JJ, Liu JS. Bayesian models for pooling microarray studies with multiple sources of variation. BMC Bioinformatics 2006;7:247
    • (2006) BMC Bioinformatics , vol.7 , pp. 247
    • Conlon, E.M.1    Song, J.J.2    Liu, J.S.3
  • 35
    • 24644473482 scopus 로고    scopus 로고
    • BGX: A fully Bayesian integrated approach to the analysis of Affymetrix GeneChip data
    • Hein A-MK, Richardson S, Causton HC et al. BGX: A fully Bayesian integrated approach to the analysis of Affymetrix GeneChip data. Biostatistics 2005;6:349-73
    • (2005) Biostatistics , vol.6 , pp. 349-373
    • Hein, A.-M.K.1    Richardson, S.2    Causton, H.C.3
  • 36
    • 33645059429 scopus 로고    scopus 로고
    • Bayesian modelling of differential gene expression
    • Lewin A, Richardson S, Marshall C et al. Bayesian modelling of differential gene expression. Biometrics 2006;62:10-8
    • (2006) Biometrics , vol.62 , pp. 10-18
    • Lewin, A.1    Richardson, S.2    Marshall, C.3
  • 37
    • 0034782618 scopus 로고    scopus 로고
    • Model-based clustering and data transformations for gene expression data
    • Yeung K, Fraley C, Murua A et al. Model-based clustering and data transformations for gene expression data. Bioinformatics 2001; 17:977-87
    • (2001) Bioinformatics , vol.17 , pp. 977-987
    • Yeung, K.1    Fraley, C.2    Murua, A.3
  • 38
    • 27744518228 scopus 로고    scopus 로고
    • Modelling gene expression data over time: Curve clustering with informative prior distributions
    • Bernardo J-M, Bayarri MJ, Berger JO et al, eds, Oxford: Oxford University Press
    • Wakefield JC, Zhou C, Self SG. Modelling gene expression data over time: curve clustering with informative prior distributions. In: Bernardo J-M, Bayarri MJ, Berger JO et al. (eds). Bayesian Statistics 7. Oxford: Oxford University Press, 2003, 721-32
    • (2003) Bayesian Statistics 7 , pp. 721-732
    • Wakefield, J.C.1    Zhou, C.2    Self, S.G.3
  • 39
    • 28044449342 scopus 로고    scopus 로고
    • Bayesian coclustering of Anopheles gene expression time series: Study of immune defense response to multiple experimental challenges
    • Heard NA, Holmes CC, Stephens DA et al. Bayesian coclustering of Anopheles gene expression time series: Study of immune defense response to multiple experimental challenges. Proceedings of the National Acadamy of Sciences 2005;102:16939-44
    • (2005) Proceedings of the National Acadamy of Sciences , vol.102 , pp. 16939-16944
    • Heard, N.A.1    Holmes, C.C.2    Stephens, D.A.3
  • 40
    • 29344452713 scopus 로고    scopus 로고
    • Probabilistic segmentation and intensity estimation for microarray images
    • Gottardo R, Besag J, Stephens M, Murua A. Probabilistic segmentation and intensity estimation for microarray images. Biostatistics 2006; 7:85-99
    • (2006) Biostatistics , vol.7 , pp. 85-99
    • Gottardo, R.1    Besag, J.2    Stephens, M.3    Murua, A.4
  • 41
    • 0035949684 scopus 로고    scopus 로고
    • Predicting the clinical status of human breast cancer utilizing gene expression profiles
    • West M, Blanchette C, Dresden H et al. Predicting the clinical status of human breast cancer utilizing gene expression profiles. Proc Natl Acad Sci 2001;98:11462-67
    • (2001) Proc Natl Acad Sci , vol.98 , pp. 11462-11467
    • West, M.1    Blanchette, C.2    Dresden, H.3
  • 42
    • 0036489048 scopus 로고    scopus 로고
    • Bayesian models for gene expression with DNA microarray data
    • Ibrahim JG, Chen M-H, Gray RJ. Bayesian models for gene expression with DNA microarray data. J Am Stat Assoc 2002;97:88-99
    • (2002) J Am Stat Assoc , vol.97 , pp. 88-99
    • Ibrahim, J.G.1    Chen, M.-H.2    Gray, R.J.3
  • 44
    • 33750375366 scopus 로고    scopus 로고
    • On the application of logistic regression modelling in microarray studies
    • Bernardo J-M, Bayarri MJ, Berger JO et al, eds, Oxford: Oxford University Press
    • Mertens BJA. On the application of logistic regression modelling in microarray studies. In: Bernardo J-M, Bayarri MJ, Berger JO et al. (eds). Bayesian Statistics 7. Oxford: Oxford University Press, 2003, 607-18
    • (2003) Bayesian Statistics 7 , pp. 607-618
    • Mertens, B.J.A.1
  • 45
    • 0242295767 scopus 로고    scopus 로고
    • Bayesian factor regression models in the 'large p, small n' paradigm
    • Bernardo J-M, Bayarri MJ, Berger JO et al, eds, Oxford: Oxford University Press
    • West M. Bayesian factor regression models in the 'large p, small n' paradigm. In: Bernardo J-M, Bayarri MJ, Berger JO et al. (eds). Bayesian Statistics 7. Oxford: Oxford University Press, 2003, 733-42
    • (2003) Bayesian Statistics 7 , pp. 733-742
    • West, M.1
  • 46
    • 33645086851 scopus 로고    scopus 로고
    • Bayesian robust inference for differential gene expression in microarrays with multiple samples
    • Gottardo R, Raftery AE, Yeung KY, Bumgarner RE. Bayesian robust inference for differential gene expression in microarrays with multiple samples. Biometrics 2006;62:10-18
    • (2006) Biometrics , vol.62 , pp. 10-18
    • Gottardo, R.1    Raftery, A.E.2    Yeung, K.Y.3    Bumgarner, R.E.4
  • 47
    • 33745607855 scopus 로고    scopus 로고
    • Bayesian alignment using hierarchical models with applications in protein bioinformatics
    • Green PJ, Mardia KV. Bayesian alignment using hierarchical models with applications in protein bioinformatics. Biometrika 2006;93 235-54
    • (2006) Biometrika , vol.93 , pp. 235-254
    • Green, P.J.1    Mardia, K.V.2
  • 48
    • 34447570372 scopus 로고    scopus 로고
    • Fast Bayesian shape matching using geometric algorithms
    • Bernardo J-M, Bayarri MJ, Berger JO et al, eds, Oxford: Oxford University Press, in press
    • Schmidler SC. Fast Bayesian shape matching using geometric algorithms. In: Bernardo J-M, Bayarri MJ, Berger JO et al. (eds). Bayesian Statistics 8, Oxford: Oxford University Press, 2007, in press
    • (2007) Bayesian Statistics 8
    • Schmidler, S.C.1
  • 50
    • 0142052944 scopus 로고    scopus 로고
    • Bayesian networks approach for predicting protein-protein interactions from genomic data
    • Jansen R, Yu H, Greenbaum D et al. Bayesian networks approach for predicting protein-protein interactions from genomic data. Science 2003;302:449-53
    • (2003) Science , vol.302 , pp. 449-453
    • Jansen, R.1    Yu, H.2    Greenbaum, D.3
  • 51
    • 34447562371 scopus 로고    scopus 로고
    • Analysis of mass spectrometry data using Bayesian wavelet-based functional mixed models
    • Vanucci M, Do K-A, Müller P, eds, Chap 14. New York: Cambridge University Press
    • Morris JS, Brown PJ, Baggerly K, Coombes K. Analysis of mass spectrometry data using Bayesian wavelet-based functional mixed models. In: Vanucci M, Do K-A, Müller P, (eds). Bayesian Inference for Gene Expression and Proteomics, Chap 14. New York: Cambridge University Press, 2006
    • (2006) Bayesian Inference for Gene Expression and Proteomics
    • Morris, J.S.1    Brown, P.J.2    Baggerly, K.3    Coombes, K.4
  • 52
    • 34447568957 scopus 로고    scopus 로고
    • Nonparametric models for proteomic peak identification and quantification
    • Vanucci M, Do K-A, Müller P eds, Chap 15. New York: Cambridge University Press
    • Clyde M, House L, Wolpert R. Nonparametric models for proteomic peak identification and quantification. In: Vanucci M, Do K-A, Müller P (eds). Bayesian Inference for Gene Expression and Proteomics, Chap 15. New York: Cambridge University Press, 2006
    • (2006) Bayesian Inference for Gene Expression and Proteomics
    • Clyde, M.1    House, L.2    Wolpert, R.3
  • 53
    • 19544367642 scopus 로고    scopus 로고
    • A novel approach for clustering proteomics data using Bayesian fast Fourier transform
    • Bensmail H, Golek J, Moody MM, et al. A novel approach for clustering proteomics data using Bayesian fast Fourier transform. Bioinformatics 2005;21:2210-24
    • (2005) Bioinformatics , vol.21 , pp. 2210-2224
    • Bensmail, H.1    Golek, J.2    Moody, M.M.3
  • 54
    • 27744558757 scopus 로고    scopus 로고
    • Bayesian model selection for mining mass spectrometry data
    • Saksena A, Lucarelli D, Wang I-J. Bayesian model selection for mining mass spectrometry data. Neural Netw 2005;18:843-9
    • (2005) Neural Netw , vol.18 , pp. 843-849
    • Saksena, A.1    Lucarelli, D.2    Wang, I.-J.3
  • 55
    • 0034213595 scopus 로고    scopus 로고
    • Profound: An expert system for protein identification using mass spectrometric peptide mapping information
    • Zhang W, Chait BT. Profound: An expert system for protein identification using mass spectrometric peptide mapping information. Ann Chem 2000;72:2482-89
    • (2000) Ann Chem , vol.72 , pp. 2482-2489
    • Zhang, W.1    Chait, B.T.2
  • 56
    • 29144536205 scopus 로고    scopus 로고
    • Improving mass and liquid chromatography based identification of proteins using Bayesian scoring
    • Chen SS, Deutsch EW, Yi EC, et al. Improving mass and liquid chromatography based identification of proteins using Bayesian scoring. J Proteome Res 2005;4:2174-84
    • (2005) J Proteome Res , vol.4 , pp. 2174-2184
    • Chen, S.S.1    Deutsch, E.W.2    Yi, E.C.3
  • 57
    • 0037079054 scopus 로고    scopus 로고
    • Computational systems biology
    • Kitano H. Computational systems biology. Nature 2002; 420 206-210
    • (2002) Nature , vol.420 , pp. 206-210
    • Kitano, H.1
  • 58
    • 0033707946 scopus 로고    scopus 로고
    • Friedman N, Linial M, Nachman I, Pe'er D. Using Bayesian networks to analyse expression data. J Comput Biol 2000;7:601-20
    • Friedman N, Linial M, Nachman I, Pe'er D. Using Bayesian networks to analyse expression data. J Comput Biol 2000;7:601-20
  • 59
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • Friedman N. Inferring cellular networks using probabilistic graphical models. Science 2004;303:799-805
    • (2004) Science , vol.303 , pp. 799-805
    • Friedman, N.1
  • 60
    • 10244230983 scopus 로고    scopus 로고
    • Reconstruction of gene networks using Bayesian learning and manipulation experiments
    • Pournara I, Wernisch L. Reconstruction of gene networks using Bayesian learning and manipulation experiments. Bioinformatics 2004;20 2934-42
    • (2004) Bioinformatics , vol.20 , pp. 2934-2942
    • Pournara, I.1    Wernisch, L.2
  • 61
    • 15944364151 scopus 로고    scopus 로고
    • An empirical Bayes approach to inferring large-scale gene association networks
    • Schäfer J, Strimmer K. An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 2005;21 754-64
    • (2005) Bioinformatics , vol.21 , pp. 754-764
    • Schäfer, J.1    Strimmer, K.2
  • 62
    • 33749825955 scopus 로고    scopus 로고
    • Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical Gaussian models and Bayesian networks
    • Werhli AV, Grzegorczyk M, Husmeier D. Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical Gaussian models and Bayesian networks. Bioinformatics 2006;22 2523-31
    • (2006) Bioinformatics , vol.22 , pp. 2523-2531
    • Werhli, A.V.1    Grzegorczyk, M.2    Husmeier, D.3
  • 63
    • 17644427718 scopus 로고    scopus 로고
    • Causal protein-signaling networks derived from multiparameter single-cell data
    • Sachs K, Perez O, Pe'er D, et al. Causal protein-signaling networks derived from multiparameter single-cell data. Science 2005;308:523-29
    • (2005) Science , vol.308 , pp. 523-529
    • Sachs, K.1    Perez, O.2    Pe'er, D.3
  • 64
    • 15944399178 scopus 로고    scopus 로고
    • Sparse graphical models for exploring gene expression data
    • Dobra A, Hans C, Jones B et al. Sparse graphical models for exploring gene expression data. J Multivariate Anal 2004;90 196-212
    • (2004) J Multivariate Anal , vol.90 , pp. 196-212
    • Dobra, A.1    Hans, C.2    Jones, B.3
  • 65
    • 20144364427 scopus 로고    scopus 로고
    • Experiments in stochastic computation for high-dimensional graphical models
    • Jones B, Carvalho C, Dobra A. et al. Experiments in stochastic computation for high-dimensional graphical models. Statist Sci 2005;20:388-400
    • (2005) Statist Sci , vol.20 , pp. 388-400
    • Jones, B.1    Carvalho, C.2    Dobra, A.3
  • 66
    • 0001099335 scopus 로고    scopus 로고
    • Decomposable graphical Gaussian model determination
    • Giudici P, Green PJ. Decomposable graphical Gaussian model determination. Biometrika 1999;86:785-801
    • (1999) Biometrika , vol.86 , pp. 785-801
    • Giudici, P.1    Green, P.J.2
  • 67
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
    • Husmeier D. Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 2003; 19:2271-82
    • (2003) Bioinformatics , vol.19 , pp. 2271-2282
    • Husmeier, D.1
  • 68
    • 12344259602 scopus 로고    scopus 로고
    • Advances to Bayesian network inference for generating causal networks from observational data
    • Yu J, Smith VA, Wang PP, et al. Advances to Bayesian network inference for generating causal networks from observational data. Bioinformatics 2004;20:3594-603
    • (2004) Bioinformatics , vol.20 , pp. 3594-3603
    • Yu, J.1    Smith, V.A.2    Wang, P.P.3
  • 69
    • 34249862287 scopus 로고    scopus 로고
    • Opgen-Rhein R, Strimmer K. Learning causal networks from systems biology time course data: An effective model selection procedure for the vector autoregressive process. Bioformatics 2007;8: PMSB06 supplement, in press
    • Opgen-Rhein R, Strimmer K. Learning causal networks from systems biology time course data: An effective model selection procedure for the vector autoregressive process. Bioformatics 2007;8: PMSB06 supplement, in press
  • 70
    • 9444239213 scopus 로고    scopus 로고
    • A probabilistic functional network of yeast genes
    • Lee I, Date SV, Adai AT, Marcotte EM. A probabilistic functional network of yeast genes. Science 2004;306:1555-58
    • (2004) Science , vol.306 , pp. 1555-1558
    • Lee, I.1    Date, S.V.2    Adai, A.T.3    Marcotte, E.M.4
  • 71
    • 15944361900 scopus 로고    scopus 로고
    • Informative structure priors: Joint learning of dynamic regulatory networks from multiple types of data
    • Altman R, Dunker AK, Hunter L, et al, eds, New Jersey: World Scientific
    • Bernard A, Hartemink AJ. Informative structure priors: Joint learning of dynamic regulatory networks from multiple types of data. In: Altman R, Dunker AK, Hunter L, et al. (eds). Pacific Symposium on Biocomputing 2005, New Jersey: World Scientific. 2005, 459-70
    • (2005) Pacific Symposium on Biocomputing 2005 , pp. 459-470
    • Bernard, A.1    Hartemink, A.J.2
  • 72
    • 33745145845 scopus 로고    scopus 로고
    • Embracing the complexity of genomic data for personalised medicine
    • West M, Ginsburg GS, Huang AT, Nevins JR. Embracing the complexity of genomic data for personalised medicine. Genome Res 2006;16 559-66
    • (2006) Genome Res , vol.16 , pp. 559-566
    • West, M.1    Ginsburg, G.S.2    Huang, A.T.3    Nevins, J.R.4
  • 73
    • 14844307159 scopus 로고    scopus 로고
    • Inferring quantitative models of regulatory networks from expression data
    • Nachman I, Regev A, Friedman N. Inferring quantitative models of regulatory networks from expression data. Bioinformatics 2004; 20[supp. 1]:i248-56
    • (2004) Bioinformatics , vol.20 , Issue.SUPP. 1
    • Nachman, I.1    Regev, A.2    Friedman, N.3
  • 74
    • 0036678794 scopus 로고    scopus 로고
    • Assigning numbers to the arrows: Parameterising a gene regulation network by using accurate expression kinetics
    • Ronen M, Rosenberg R, Shraiman BI, Alon U. Assigning numbers to the arrows: Parameterising a gene regulation network by using accurate expression kinetics. Proc Nat Acad Sci 2002;99:10555-60
    • (2002) Proc Nat Acad Sci , vol.99 , pp. 10555-10560
    • Ronen, M.1    Rosenberg, R.2    Shraiman, B.I.3    Alon, U.4
  • 75
    • 0242574982 scopus 로고    scopus 로고
    • Parameter estimation in biochemical pathways: A comparison of global optimization methods
    • Moles CG, Mendes P, Banga JR. Parameter estimation in biochemical pathways: A comparison of global optimization methods. Genome Res 2003;13:2467-74
    • (2003) Genome Res , vol.13 , pp. 2467-2474
    • Moles, C.G.1    Mendes, P.2    Banga, J.R.3
  • 76
    • 25444510601 scopus 로고    scopus 로고
    • Iterative approach to model identification of biological networks
    • Gadkar KG, Gunawan R, Doyle FJ III. Iterative approach to model identification of biological networks. BMC Bioinformatics 2005; 6:155
    • (2005) BMC Bioinformatics , vol.6 , pp. 155
    • Gadkar, K.G.1    Gunawan, R.2    Doyle III, F.J.3
  • 77
    • 42749109054 scopus 로고    scopus 로고
    • Statistical mechanical approaches to models with many poorly known parameters
    • Brown KS, Sethna JP. Statistical mechanical approaches to models with many poorly known parameters. Phys Rev E 2003;68:021904
    • (2003) Phys Rev E , vol.68 , pp. 021904
    • Brown, K.S.1    Sethna, J.P.2
  • 78
    • 33745038921 scopus 로고    scopus 로고
    • Ranked prediction of p53 targets using hidden variable dynamic modeling
    • Barenco M, Tomescu D, Brewer D, et al. Ranked prediction of p53 targets using hidden variable dynamic modeling. Genome Biol 2006;7:R25
    • (2006) Genome Biol , vol.7
    • Barenco, M.1    Tomescu, D.2    Brewer, D.3
  • 79
    • 27244440301 scopus 로고    scopus 로고
    • Biochemical networks with uncertain parameters
    • Liebermeister W, Klipp E. Biochemical networks with uncertain parameters. IEE Syst Biol 2005;152:97-107
    • (2005) IEE Syst Biol , vol.152 , pp. 97-107
    • Liebermeister, W.1    Klipp, E.2
  • 80
    • 33847770912 scopus 로고    scopus 로고
    • A probabilistic model for cell cycle distributions in synchrony experiments
    • Orlando D, Lin C, Bernard A, et al. A probabilistic model for cell cycle distributions in synchrony experiments. Cell Cycle 2007;6(4):478-488
    • (2007) Cell Cycle , vol.6 , Issue.4 , pp. 478-488
    • Orlando, D.1    Lin, C.2    Bernard, A.3
  • 81
    • 33745375673 scopus 로고    scopus 로고
    • Single cell resolution in regulation of gene xpression
    • doi:10.1038/msb4100020
    • Bahcall OG. Single cell resolution in regulation of gene xpression. Mol Syst Biol, 2005;1, doi:10.1038/msb4100020
    • (2005) Mol Syst Biol , pp. 1
    • Bahcall, O.G.1
  • 82
    • 0031029852 scopus 로고    scopus 로고
    • Stochastic mechanisms in gene expression
    • McAdams HH, Arkin A. Stochastic mechanisms in gene expression. Proc Nat Acad Sci USA 1997;94:814-9
    • (1997) Proc Nat Acad Sci USA , vol.94 , pp. 814-819
    • McAdams, H.H.1    Arkin, A.2
  • 83
    • 0031879114 scopus 로고    scopus 로고
    • Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells
    • Arkin A, Ross J, McAdams HH. Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells. Genetics 1998;149:1633-48
    • (1998) Genetics , vol.149 , pp. 1633-1648
    • Arkin, A.1    Ross, J.2    McAdams, H.H.3
  • 84
    • 0033083733 scopus 로고    scopus 로고
    • It's a noisy business: Genetic regulation at the nanomolecular scale
    • McAdams HH, Arkin A. It's a noisy business: Genetic regulation at the nanomolecular scale. Trends Genet 1999; 15:65-9
    • (1999) Trends Genet , vol.15 , pp. 65-69
    • McAdams, H.H.1    Arkin, A.2
  • 86
    • 33747624926 scopus 로고    scopus 로고
    • High-throughput fluorescence microscopy for systems biology
    • Pepperkok R, Ellenberg J. High-throughput fluorescence microscopy for systems biology. Nat Rev Mol Cell Biol 2006;7:690-6
    • (2006) Nat Rev Mol Cell Biol , vol.7 , pp. 690-696
    • Pepperkok, R.1    Ellenberg, J.2
  • 87
    • 33845446475 scopus 로고    scopus 로고
    • Automated tracking of gene expression profiles in individual cells and cell compartments
    • Shen H, Nelson G, Nelson DE, et al. Automated tracking of gene expression profiles in individual cells and cell compartments. J R Soc Interface 2006;3:787-794
    • (2006) J R Soc Interface , vol.3 , pp. 787-794
    • Shen, H.1    Nelson, G.2    Nelson, D.E.3
  • 88
    • 33746582040 scopus 로고    scopus 로고
    • Parameter estimation in stochastic biochemical reactions
    • Reinker S, Altman RM, Timmer J. Parameter estimation in stochastic biochemical reactions. IEE Syst Biol 2006; 153:168-78
    • (2006) IEE Syst Biol , vol.153 , pp. 168-178
    • Reinker, S.1    Altman, R.M.2    Timmer, J.3
  • 89
    • 29144504836 scopus 로고    scopus 로고
    • Bayesian inference for a discretely observed stochastic kinetic model
    • in press
    • Boys RJ, Wilkinson DJ, Kirkwood TBL. Bayesian inference for a discretely observed stochastic kinetic model, in press
    • Boys, R.J.1    Wilkinson, D.J.2    Kirkwood, T.B.L.3
  • 90
    • 33746907501 scopus 로고    scopus 로고
    • A stochastic model of gene transcription: An application to L1 retrotransposition events
    • Rempala GA, Ramos KS, Kalbfleisch T. A stochastic model of gene transcription: An application to L1 retrotransposition events. J Theor Biol 2006;242:101-16
    • (2006) J Theor Biol , vol.242 , pp. 101-116
    • Rempala, G.A.1    Ramos, K.S.2    Kalbfleisch, T.3
  • 91
    • 0034225547 scopus 로고    scopus 로고
    • The chemical Langevin equation
    • Gillespie DT. The chemical Langevin equation. J Chem Phys 2000; 113:297-306
    • (2000) J Chem Phys , vol.113 , pp. 297-306
    • Gillespie, D.T.1
  • 92
    • 27744503232 scopus 로고    scopus 로고
    • Bayesian inference for stochastic kinetic models using a diffusion approximation
    • Golightly A, Wilkinson DJ. Bayesian inference for stochastic kinetic models using a diffusion approximation. Biometrics 2005;61 781-88
    • (2005) Biometrics , vol.61 , pp. 781-788
    • Golightly, A.1    Wilkinson, D.J.2
  • 93
    • 0003665481 scopus 로고    scopus 로고
    • Doucet A, de Freitas N, Gordon N eds, New York: Springer
    • Doucet A, de Freitas N, Gordon N (eds). Sequential Monte Carlo Methods in Practice. New York: Springer, 2001
    • (2001) Sequential Monte Carlo Methods in Practice
  • 94
    • 33750049940 scopus 로고    scopus 로고
    • Bayesian sequential inference for nonlinear multivariate diffusions
    • Golightly A, Wilkinson DJ. Bayesian sequential inference for nonlinear multivariate diffusions. Statist Comput 2006; 16:323-38
    • (2006) Statist Comput , vol.16 , pp. 323-338
    • Golightly, A.1    Wilkinson, D.J.2
  • 95
    • 33744475347 scopus 로고    scopus 로고
    • Bayesian sequential inference for stochastic kinetic biochemical network models
    • Golightly A, Wilkinson DJ. Bayesian sequential inference for stochastic kinetic biochemical network models. J Comput Biol 2006;13 838-51
    • (2006) J Comput Biol , vol.13 , pp. 838-851
    • Golightly, A.1    Wilkinson, D.J.2
  • 96
    • 34447556457 scopus 로고    scopus 로고
    • Bayesian inference for nonlinear multivariate diffusion models observed with error
    • in press
    • Golightly A, Wilkinson DJ. Bayesian inference for nonlinear multivariate diffusion models observed with error, in press
    • Golightly, A.1    Wilkinson, D.J.2
  • 97
    • 33750374139 scopus 로고    scopus 로고
    • Linking data to models: Data regression
    • Jaqaman K, Danuser G. Linking data to models: Data regression. Nat Rev Mol Cell Biol 2006;7:813-19
    • (2006) Nat Rev Mol Cell Biol , vol.7 , pp. 813-819
    • Jaqaman, K.1    Danuser, G.2
  • 98
    • 33745699573 scopus 로고    scopus 로고
    • Bayesian analysis of computer code outputs: A tutorial
    • O'Hagan A. Bayesian analysis of computer code outputs: A tutorial. Reliab Eng Sys Safe 2006;91:1290-300
    • (2006) Reliab Eng Sys Safe , vol.91 , pp. 1290-1300
    • O'Hagan, A.1
  • 99
    • 0035648165 scopus 로고    scopus 로고
    • Bayesian calibration of computer models (with discussion)
    • Kennedy MC, O'Hagan A. Bayesian calibration of computer models (with discussion). J R Stat Soc, Series B 2001;63:425-64
    • (2001) J R Stat Soc, Series B , vol.63 , pp. 425-464
    • Kennedy, M.C.1    O'Hagan, A.2
  • 100
    • 33748848850 scopus 로고    scopus 로고
    • Bayes linear calibrated prediction for complex systems
    • Goldstein M, Rougier J. Bayes linear calibrated prediction for complex systems. J Am Stat Assoc 2006; 101:1132-43
    • (2006) J Am Stat Assoc , vol.101 , pp. 1132-1143
    • Goldstein, M.1    Rougier, J.2
  • 101
    • 33846929503 scopus 로고    scopus 로고
    • Towards the probability of rapid climate change
    • Schellnhuber HJ, Cramer W, Nakicenovic N, et al, eds, Cambridge: Cambridge University Press
    • Challenor PG, Hankin RKS, Marsh R. Towards the probability of rapid climate change. In: Schellnhuber HJ, Cramer W, Nakicenovic N, et al. (eds). Avoiding Dangerous Climate Change. Cambridge: Cambridge University Press, 2006, 53-63
    • (2006) Avoiding Dangerous Climate Change , pp. 53-63
    • Challenor, P.G.1    Hankin, R.K.S.2    Marsh, R.3
  • 102
    • 85026233840 scopus 로고    scopus 로고
    • Parallel Bayesian computation
    • Kontoghiorghes EJ, ed, New York: Marcel Dekker/CRC Press
    • Wilkinson DJ. Parallel Bayesian computation. In: Kontoghiorghes EJ, (ed), Handbook of Parallel Computing and Statistics. New York: Marcel Dekker/CRC Press, 2005, 481-512
    • (2005) Handbook of Parallel Computing and Statistics , pp. 481-512
    • Wilkinson, D.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.