-
1
-
-
1842532350
-
The Bayesian revolution in genetics
-
Beaumont MA, Rannala B. The Bayesian revolution in genetics. Nat Rev Genet 2004;5:251-61
-
(2004)
Nat Rev Genet
, vol.5
, pp. 251-261
-
-
Beaumont, M.A.1
Rannala, B.2
-
3
-
-
5744249209
-
Equations of state calculations by fast computing machines
-
Metropolis N, Rosenbluth AW, Rosenbluth MN, et al. Equations of state calculations by fast computing machines. J Chem Phys 1953; 21:1087-92
-
(1953)
J Chem Phys
, vol.21
, pp. 1087-1092
-
-
Metropolis, N.1
Rosenbluth, A.W.2
Rosenbluth, M.N.3
-
5
-
-
0346205399
-
Markov chain Monte Carlo method and its application
-
Brooks SP. Markov chain Monte Carlo method and its application. Statistician 1998;47:69-100
-
(1998)
Statistician
, vol.47
, pp. 69-100
-
-
Brooks, S.P.1
-
6
-
-
0004047518
-
-
Oxford: Oxford Science Publications
-
Lauritzen SL. Graphical Models. Oxford: Oxford Science Publications, 1996
-
(1996)
Graphical Models
-
-
Lauritzen, S.L.1
-
7
-
-
0021518209
-
Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images
-
Geman S, Geman D. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 1984;6:721-41
-
(1984)
IEEE Trans Pattern Anal Mach Intell
, vol.6
, pp. 721-741
-
-
Geman, S.1
Geman, D.2
-
8
-
-
84937730674
-
Explaining the Gibbs sampler
-
Cassella G, George EI. Explaining the Gibbs sampler. Am Stat 1992;46:167-74
-
(1992)
Am Stat
, vol.46
, pp. 167-174
-
-
Cassella, G.1
George, E.I.2
-
9
-
-
77956890234
-
Carlo sampling methods using Markov chains and their applications
-
Hastings WK. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970;57:97-109
-
(1970)
Biometrika
, vol.57
, pp. 97-109
-
-
Monte, H.W.K.1
-
10
-
-
0000576595
-
Markov chains for exploring posterior distributions (with discussion)
-
Tierney L. Markov chains for exploring posterior distributions (with discussion). Ann Statist 1994;21:1701-62
-
(1994)
Ann Statist
, vol.21
, pp. 1701-1762
-
-
Tierney, L.1
-
11
-
-
84972511893
-
Practical Markov chain Monte Carlo
-
Geyer CJ. Practical Markov chain Monte Carlo. Statistical Sci 1992;7:473-511
-
(1992)
Statistical Sci
, vol.7
, pp. 473-511
-
-
Geyer, C.J.1
-
12
-
-
0004012196
-
-
Boca Raton, FL: Chapman & Hall/CRC Press, 2nd edn
-
Gelman A, Carlin JB, Stern HS, Rubin DB. Bayesian Data Analysis. Boca Raton, FL: Chapman & Hall/CRC Press, 2nd edn, 2003
-
(2003)
Bayesian Data Analysis
-
-
Gelman, A.1
Carlin, J.B.2
Stern, H.S.3
Rubin, D.B.4
-
14
-
-
0022474446
-
Maximum likelihood alignment of DNA sequences
-
Bishop MJ, Thompson EA. Maximum likelihood alignment of DNA sequences. J Mol Biol 1986;190:159-65
-
(1986)
J Mol Biol
, vol.190
, pp. 159-165
-
-
Bishop, M.J.1
Thompson, E.A.2
-
15
-
-
0024557590
-
Stochastic models for heterogeneous DNA sequences
-
Churchill GA. Stochastic models for heterogeneous DNA sequences. Bull Math Biol 1989;51:79-94
-
(1989)
Bull Math Biol
, vol.51
, pp. 79-94
-
-
Churchill, G.A.1
-
16
-
-
0033059370
-
Bayesian inference on biopolymer models
-
Liu JS, Lawrence CE. Bayesian inference on biopolymer models. Bioinformatics 1999;15:38-52
-
(1999)
Bioinformatics
, vol.15
, pp. 38-52
-
-
Liu, J.S.1
Lawrence, C.E.2
-
17
-
-
84950424966
-
Bayesian models for multiple local sequence alignment and Gibbs sampling strategies
-
Liu JS, Neuwald AF, Lawrence CE. Bayesian models for multiple local sequence alignment and Gibbs sampling strategies. J Am Stat Assoc 1995;90:1156-70
-
(1995)
J Am Stat Assoc
, vol.90
, pp. 1156-1170
-
-
Liu, J.S.1
Neuwald, A.F.2
Lawrence, C.E.3
-
18
-
-
0442325057
-
Markovian structures in biological sequence alignments
-
Liu J, Neuwald A, Lawrence C. Markovian structures in biological sequence alignments. J Am Stat Assoc 1999; 94:1-15
-
(1999)
J Am Stat Assoc
, vol.94
, pp. 1-15
-
-
Liu, J.1
Neuwald, A.2
Lawrence, C.3
-
19
-
-
2342445980
-
Modelling within-motif dependence for transcription factor binding site predictions
-
Zhou Q, Liu JS. Modelling within-motif dependence for transcription factor binding site predictions. Bioinformatics 2004;20 909-16
-
(2004)
Bioinformatics
, vol.20
, pp. 909-916
-
-
Zhou, Q.1
Liu, J.S.2
-
20
-
-
33747879675
-
Informative priors based on transcription factor structural class improve de novo motif discovery
-
ISMB06
-
Narlikar L, Gordân R, Ohler U, Hartemink AJ. Informative priors based on transcription factor structural class improve de novo motif discovery. Bioinformatics 2006;22:e384-92, ISMB06
-
(2006)
Bioinformatics
, vol.22
-
-
Narlikar, L.1
Gordân, R.2
Ohler, U.3
Hartemink, A.J.4
-
21
-
-
0034047548
-
Bayesian segmentation of protein secondary structure
-
Schmidler SC, Liu JS, Brutlag DL. Bayesian segmentation of protein secondary structure. J Comput Biol 2000;7:233-48
-
(2000)
J Comput Biol
, vol.7
, pp. 233-248
-
-
Schmidler, S.C.1
Liu, J.S.2
Brutlag, D.L.3
-
22
-
-
25444443637
-
Bayesian coestimation of phylogeny and sequence alignment
-
Lunter G, Miklós I, Drummond A, et al. Bayesian coestimation of phylogeny and sequence alignment. BMC Bioinformatics 2005;6 83
-
(2005)
BMC Bioinformatics
, vol.6
, pp. 83
-
-
Lunter, G.1
Miklós, I.2
Drummond, A.3
-
23
-
-
0034360451
-
Detecting homogeneous segments in DNA sequences by using hidden Markov models
-
Boys RJ, Henderson DA, Wilkinson DJ. Detecting homogeneous segments in DNA sequences by using hidden Markov models. J R Stat Soc 2000; C:49:269-85
-
(2000)
J R Stat Soc
, vol.100
, Issue.49
, pp. 269-285
-
-
Boys, R.J.1
Henderson, D.A.2
Wilkinson, D.J.3
-
24
-
-
77956889087
-
Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
-
Green PJ. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 1995;82:711-32
-
(1995)
Biometrika
, vol.82
, pp. 711-732
-
-
Green, P.J.1
-
25
-
-
85153243702
-
-
Boys RJ, Henderson DA. A Bayesian approach to DNA sequence segmentation (with discussion). Biometrics 2004;60:573-88
-
Boys RJ, Henderson DA. A Bayesian approach to DNA sequence segmentation (with discussion). Biometrics 2004;60:573-88
-
-
-
-
26
-
-
34447564679
-
Bayesian methods in biological sequence analysis
-
Balding DJ, Bishop M, Cannings C eds, 2nd edn, Chap. 3, New York: Wiley
-
Liu JS, Logvinenko T. Bayesian methods in biological sequence analysis. In: Balding DJ, Bishop M, Cannings C (eds). Handbook of Statistical Genetics, 2nd edn, Chap. 3, New York: Wiley, 2003
-
(2003)
Handbook of Statistical Genetics
-
-
Liu, J.S.1
Logvinenko, T.2
-
29
-
-
34447534987
-
-
Vanucci M, Do K-A, Müller P eds, New York: Cambridge University Press
-
Vanucci M, Do K-A, Müller P (eds). Bayesian Inference for Gene Expression and Proteomics. New York: Cambridge University Press, 2006
-
(2006)
Bayesian Inference for Gene Expression and Proteomics
-
-
-
30
-
-
18844436999
-
Bayesian normalization an identification for differential gene expression data
-
Zhang D, Wells MT, Smart CD, Fry W. Bayesian normalization an identification for differential gene expression data. J Comput Biol 2005;12:391-406
-
(2005)
J Comput Biol
, vol.12
, pp. 391-406
-
-
Zhang, D.1
Wells, M.T.2
Smart, C.D.3
Fry, W.4
-
32
-
-
27644557097
-
Genome-wide estimation of transcript concentrations from spotted cDNA microarray data
-
Frigessi A, van de Wiel MA, Holden M, et al. Genome-wide estimation of transcript concentrations from spotted cDNA microarray data. Nucleic Acids Res, 2005;17:e143
-
(2005)
Nucleic Acids Res
, vol.17
-
-
Frigessi, A.1
van de Wiel, M.A.2
Holden, M.3
-
33
-
-
34447572413
-
Bayesian process-based modeling of two-channel microarray experiments: Estimating absolute mRNA concentrations
-
Vanucci M, Do K-A, Müller P, eds, Cambridge University Press, New York
-
van de Wiel MA, Holden M, Glad IK, et al. Bayesian process-based modeling of two-channel microarray experiments: Estimating absolute mRNA concentrations. In: Vanucci M, Do K-A, Müller P, (eds). Bayesian Inference for Gene Expression and Proteomics. Cambridge University Press, New York, 2006, 75-96.
-
(2006)
Bayesian Inference for Gene Expression and Proteomics
, pp. 75-96
-
-
van de Wiel, M.A.1
Holden, M.2
Glad, I.K.3
-
34
-
-
33747017793
-
Bayesian models for pooling microarray studies with multiple sources of variation
-
Conlon EM, Song JJ, Liu JS. Bayesian models for pooling microarray studies with multiple sources of variation. BMC Bioinformatics 2006;7:247
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 247
-
-
Conlon, E.M.1
Song, J.J.2
Liu, J.S.3
-
35
-
-
24644473482
-
BGX: A fully Bayesian integrated approach to the analysis of Affymetrix GeneChip data
-
Hein A-MK, Richardson S, Causton HC et al. BGX: A fully Bayesian integrated approach to the analysis of Affymetrix GeneChip data. Biostatistics 2005;6:349-73
-
(2005)
Biostatistics
, vol.6
, pp. 349-373
-
-
Hein, A.-M.K.1
Richardson, S.2
Causton, H.C.3
-
36
-
-
33645059429
-
Bayesian modelling of differential gene expression
-
Lewin A, Richardson S, Marshall C et al. Bayesian modelling of differential gene expression. Biometrics 2006;62:10-8
-
(2006)
Biometrics
, vol.62
, pp. 10-18
-
-
Lewin, A.1
Richardson, S.2
Marshall, C.3
-
37
-
-
0034782618
-
Model-based clustering and data transformations for gene expression data
-
Yeung K, Fraley C, Murua A et al. Model-based clustering and data transformations for gene expression data. Bioinformatics 2001; 17:977-87
-
(2001)
Bioinformatics
, vol.17
, pp. 977-987
-
-
Yeung, K.1
Fraley, C.2
Murua, A.3
-
38
-
-
27744518228
-
Modelling gene expression data over time: Curve clustering with informative prior distributions
-
Bernardo J-M, Bayarri MJ, Berger JO et al, eds, Oxford: Oxford University Press
-
Wakefield JC, Zhou C, Self SG. Modelling gene expression data over time: curve clustering with informative prior distributions. In: Bernardo J-M, Bayarri MJ, Berger JO et al. (eds). Bayesian Statistics 7. Oxford: Oxford University Press, 2003, 721-32
-
(2003)
Bayesian Statistics 7
, pp. 721-732
-
-
Wakefield, J.C.1
Zhou, C.2
Self, S.G.3
-
39
-
-
28044449342
-
Bayesian coclustering of Anopheles gene expression time series: Study of immune defense response to multiple experimental challenges
-
Heard NA, Holmes CC, Stephens DA et al. Bayesian coclustering of Anopheles gene expression time series: Study of immune defense response to multiple experimental challenges. Proceedings of the National Acadamy of Sciences 2005;102:16939-44
-
(2005)
Proceedings of the National Acadamy of Sciences
, vol.102
, pp. 16939-16944
-
-
Heard, N.A.1
Holmes, C.C.2
Stephens, D.A.3
-
40
-
-
29344452713
-
Probabilistic segmentation and intensity estimation for microarray images
-
Gottardo R, Besag J, Stephens M, Murua A. Probabilistic segmentation and intensity estimation for microarray images. Biostatistics 2006; 7:85-99
-
(2006)
Biostatistics
, vol.7
, pp. 85-99
-
-
Gottardo, R.1
Besag, J.2
Stephens, M.3
Murua, A.4
-
41
-
-
0035949684
-
Predicting the clinical status of human breast cancer utilizing gene expression profiles
-
West M, Blanchette C, Dresden H et al. Predicting the clinical status of human breast cancer utilizing gene expression profiles. Proc Natl Acad Sci 2001;98:11462-67
-
(2001)
Proc Natl Acad Sci
, vol.98
, pp. 11462-11467
-
-
West, M.1
Blanchette, C.2
Dresden, H.3
-
42
-
-
0036489048
-
Bayesian models for gene expression with DNA microarray data
-
Ibrahim JG, Chen M-H, Gray RJ. Bayesian models for gene expression with DNA microarray data. J Am Stat Assoc 2002;97:88-99
-
(2002)
J Am Stat Assoc
, vol.97
, pp. 88-99
-
-
Ibrahim, J.G.1
Chen, M.-H.2
Gray, R.J.3
-
44
-
-
33750375366
-
On the application of logistic regression modelling in microarray studies
-
Bernardo J-M, Bayarri MJ, Berger JO et al, eds, Oxford: Oxford University Press
-
Mertens BJA. On the application of logistic regression modelling in microarray studies. In: Bernardo J-M, Bayarri MJ, Berger JO et al. (eds). Bayesian Statistics 7. Oxford: Oxford University Press, 2003, 607-18
-
(2003)
Bayesian Statistics 7
, pp. 607-618
-
-
Mertens, B.J.A.1
-
45
-
-
0242295767
-
Bayesian factor regression models in the 'large p, small n' paradigm
-
Bernardo J-M, Bayarri MJ, Berger JO et al, eds, Oxford: Oxford University Press
-
West M. Bayesian factor regression models in the 'large p, small n' paradigm. In: Bernardo J-M, Bayarri MJ, Berger JO et al. (eds). Bayesian Statistics 7. Oxford: Oxford University Press, 2003, 733-42
-
(2003)
Bayesian Statistics 7
, pp. 733-742
-
-
West, M.1
-
46
-
-
33645086851
-
Bayesian robust inference for differential gene expression in microarrays with multiple samples
-
Gottardo R, Raftery AE, Yeung KY, Bumgarner RE. Bayesian robust inference for differential gene expression in microarrays with multiple samples. Biometrics 2006;62:10-18
-
(2006)
Biometrics
, vol.62
, pp. 10-18
-
-
Gottardo, R.1
Raftery, A.E.2
Yeung, K.Y.3
Bumgarner, R.E.4
-
47
-
-
33745607855
-
Bayesian alignment using hierarchical models with applications in protein bioinformatics
-
Green PJ, Mardia KV. Bayesian alignment using hierarchical models with applications in protein bioinformatics. Biometrika 2006;93 235-54
-
(2006)
Biometrika
, vol.93
, pp. 235-254
-
-
Green, P.J.1
Mardia, K.V.2
-
48
-
-
34447570372
-
Fast Bayesian shape matching using geometric algorithms
-
Bernardo J-M, Bayarri MJ, Berger JO et al, eds, Oxford: Oxford University Press, in press
-
Schmidler SC. Fast Bayesian shape matching using geometric algorithms. In: Bernardo J-M, Bayarri MJ, Berger JO et al. (eds). Bayesian Statistics 8, Oxford: Oxford University Press, 2007, in press
-
(2007)
Bayesian Statistics 8
-
-
Schmidler, S.C.1
-
50
-
-
0142052944
-
Bayesian networks approach for predicting protein-protein interactions from genomic data
-
Jansen R, Yu H, Greenbaum D et al. Bayesian networks approach for predicting protein-protein interactions from genomic data. Science 2003;302:449-53
-
(2003)
Science
, vol.302
, pp. 449-453
-
-
Jansen, R.1
Yu, H.2
Greenbaum, D.3
-
51
-
-
34447562371
-
Analysis of mass spectrometry data using Bayesian wavelet-based functional mixed models
-
Vanucci M, Do K-A, Müller P, eds, Chap 14. New York: Cambridge University Press
-
Morris JS, Brown PJ, Baggerly K, Coombes K. Analysis of mass spectrometry data using Bayesian wavelet-based functional mixed models. In: Vanucci M, Do K-A, Müller P, (eds). Bayesian Inference for Gene Expression and Proteomics, Chap 14. New York: Cambridge University Press, 2006
-
(2006)
Bayesian Inference for Gene Expression and Proteomics
-
-
Morris, J.S.1
Brown, P.J.2
Baggerly, K.3
Coombes, K.4
-
52
-
-
34447568957
-
Nonparametric models for proteomic peak identification and quantification
-
Vanucci M, Do K-A, Müller P eds, Chap 15. New York: Cambridge University Press
-
Clyde M, House L, Wolpert R. Nonparametric models for proteomic peak identification and quantification. In: Vanucci M, Do K-A, Müller P (eds). Bayesian Inference for Gene Expression and Proteomics, Chap 15. New York: Cambridge University Press, 2006
-
(2006)
Bayesian Inference for Gene Expression and Proteomics
-
-
Clyde, M.1
House, L.2
Wolpert, R.3
-
53
-
-
19544367642
-
A novel approach for clustering proteomics data using Bayesian fast Fourier transform
-
Bensmail H, Golek J, Moody MM, et al. A novel approach for clustering proteomics data using Bayesian fast Fourier transform. Bioinformatics 2005;21:2210-24
-
(2005)
Bioinformatics
, vol.21
, pp. 2210-2224
-
-
Bensmail, H.1
Golek, J.2
Moody, M.M.3
-
54
-
-
27744558757
-
Bayesian model selection for mining mass spectrometry data
-
Saksena A, Lucarelli D, Wang I-J. Bayesian model selection for mining mass spectrometry data. Neural Netw 2005;18:843-9
-
(2005)
Neural Netw
, vol.18
, pp. 843-849
-
-
Saksena, A.1
Lucarelli, D.2
Wang, I.-J.3
-
55
-
-
0034213595
-
Profound: An expert system for protein identification using mass spectrometric peptide mapping information
-
Zhang W, Chait BT. Profound: An expert system for protein identification using mass spectrometric peptide mapping information. Ann Chem 2000;72:2482-89
-
(2000)
Ann Chem
, vol.72
, pp. 2482-2489
-
-
Zhang, W.1
Chait, B.T.2
-
56
-
-
29144536205
-
Improving mass and liquid chromatography based identification of proteins using Bayesian scoring
-
Chen SS, Deutsch EW, Yi EC, et al. Improving mass and liquid chromatography based identification of proteins using Bayesian scoring. J Proteome Res 2005;4:2174-84
-
(2005)
J Proteome Res
, vol.4
, pp. 2174-2184
-
-
Chen, S.S.1
Deutsch, E.W.2
Yi, E.C.3
-
57
-
-
0037079054
-
Computational systems biology
-
Kitano H. Computational systems biology. Nature 2002; 420 206-210
-
(2002)
Nature
, vol.420
, pp. 206-210
-
-
Kitano, H.1
-
58
-
-
0033707946
-
-
Friedman N, Linial M, Nachman I, Pe'er D. Using Bayesian networks to analyse expression data. J Comput Biol 2000;7:601-20
-
Friedman N, Linial M, Nachman I, Pe'er D. Using Bayesian networks to analyse expression data. J Comput Biol 2000;7:601-20
-
-
-
-
59
-
-
0842288337
-
Inferring cellular networks using probabilistic graphical models
-
Friedman N. Inferring cellular networks using probabilistic graphical models. Science 2004;303:799-805
-
(2004)
Science
, vol.303
, pp. 799-805
-
-
Friedman, N.1
-
60
-
-
10244230983
-
Reconstruction of gene networks using Bayesian learning and manipulation experiments
-
Pournara I, Wernisch L. Reconstruction of gene networks using Bayesian learning and manipulation experiments. Bioinformatics 2004;20 2934-42
-
(2004)
Bioinformatics
, vol.20
, pp. 2934-2942
-
-
Pournara, I.1
Wernisch, L.2
-
61
-
-
15944364151
-
An empirical Bayes approach to inferring large-scale gene association networks
-
Schäfer J, Strimmer K. An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 2005;21 754-64
-
(2005)
Bioinformatics
, vol.21
, pp. 754-764
-
-
Schäfer, J.1
Strimmer, K.2
-
62
-
-
33749825955
-
Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical Gaussian models and Bayesian networks
-
Werhli AV, Grzegorczyk M, Husmeier D. Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical Gaussian models and Bayesian networks. Bioinformatics 2006;22 2523-31
-
(2006)
Bioinformatics
, vol.22
, pp. 2523-2531
-
-
Werhli, A.V.1
Grzegorczyk, M.2
Husmeier, D.3
-
63
-
-
17644427718
-
Causal protein-signaling networks derived from multiparameter single-cell data
-
Sachs K, Perez O, Pe'er D, et al. Causal protein-signaling networks derived from multiparameter single-cell data. Science 2005;308:523-29
-
(2005)
Science
, vol.308
, pp. 523-529
-
-
Sachs, K.1
Perez, O.2
Pe'er, D.3
-
64
-
-
15944399178
-
Sparse graphical models for exploring gene expression data
-
Dobra A, Hans C, Jones B et al. Sparse graphical models for exploring gene expression data. J Multivariate Anal 2004;90 196-212
-
(2004)
J Multivariate Anal
, vol.90
, pp. 196-212
-
-
Dobra, A.1
Hans, C.2
Jones, B.3
-
65
-
-
20144364427
-
Experiments in stochastic computation for high-dimensional graphical models
-
Jones B, Carvalho C, Dobra A. et al. Experiments in stochastic computation for high-dimensional graphical models. Statist Sci 2005;20:388-400
-
(2005)
Statist Sci
, vol.20
, pp. 388-400
-
-
Jones, B.1
Carvalho, C.2
Dobra, A.3
-
66
-
-
0001099335
-
Decomposable graphical Gaussian model determination
-
Giudici P, Green PJ. Decomposable graphical Gaussian model determination. Biometrika 1999;86:785-801
-
(1999)
Biometrika
, vol.86
, pp. 785-801
-
-
Giudici, P.1
Green, P.J.2
-
67
-
-
0344464762
-
Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
-
Husmeier D. Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 2003; 19:2271-82
-
(2003)
Bioinformatics
, vol.19
, pp. 2271-2282
-
-
Husmeier, D.1
-
68
-
-
12344259602
-
Advances to Bayesian network inference for generating causal networks from observational data
-
Yu J, Smith VA, Wang PP, et al. Advances to Bayesian network inference for generating causal networks from observational data. Bioinformatics 2004;20:3594-603
-
(2004)
Bioinformatics
, vol.20
, pp. 3594-3603
-
-
Yu, J.1
Smith, V.A.2
Wang, P.P.3
-
69
-
-
34249862287
-
-
Opgen-Rhein R, Strimmer K. Learning causal networks from systems biology time course data: An effective model selection procedure for the vector autoregressive process. Bioformatics 2007;8: PMSB06 supplement, in press
-
Opgen-Rhein R, Strimmer K. Learning causal networks from systems biology time course data: An effective model selection procedure for the vector autoregressive process. Bioformatics 2007;8: PMSB06 supplement, in press
-
-
-
-
70
-
-
9444239213
-
A probabilistic functional network of yeast genes
-
Lee I, Date SV, Adai AT, Marcotte EM. A probabilistic functional network of yeast genes. Science 2004;306:1555-58
-
(2004)
Science
, vol.306
, pp. 1555-1558
-
-
Lee, I.1
Date, S.V.2
Adai, A.T.3
Marcotte, E.M.4
-
71
-
-
15944361900
-
Informative structure priors: Joint learning of dynamic regulatory networks from multiple types of data
-
Altman R, Dunker AK, Hunter L, et al, eds, New Jersey: World Scientific
-
Bernard A, Hartemink AJ. Informative structure priors: Joint learning of dynamic regulatory networks from multiple types of data. In: Altman R, Dunker AK, Hunter L, et al. (eds). Pacific Symposium on Biocomputing 2005, New Jersey: World Scientific. 2005, 459-70
-
(2005)
Pacific Symposium on Biocomputing 2005
, pp. 459-470
-
-
Bernard, A.1
Hartemink, A.J.2
-
72
-
-
33745145845
-
Embracing the complexity of genomic data for personalised medicine
-
West M, Ginsburg GS, Huang AT, Nevins JR. Embracing the complexity of genomic data for personalised medicine. Genome Res 2006;16 559-66
-
(2006)
Genome Res
, vol.16
, pp. 559-566
-
-
West, M.1
Ginsburg, G.S.2
Huang, A.T.3
Nevins, J.R.4
-
73
-
-
14844307159
-
Inferring quantitative models of regulatory networks from expression data
-
Nachman I, Regev A, Friedman N. Inferring quantitative models of regulatory networks from expression data. Bioinformatics 2004; 20[supp. 1]:i248-56
-
(2004)
Bioinformatics
, vol.20
, Issue.SUPP. 1
-
-
Nachman, I.1
Regev, A.2
Friedman, N.3
-
74
-
-
0036678794
-
Assigning numbers to the arrows: Parameterising a gene regulation network by using accurate expression kinetics
-
Ronen M, Rosenberg R, Shraiman BI, Alon U. Assigning numbers to the arrows: Parameterising a gene regulation network by using accurate expression kinetics. Proc Nat Acad Sci 2002;99:10555-60
-
(2002)
Proc Nat Acad Sci
, vol.99
, pp. 10555-10560
-
-
Ronen, M.1
Rosenberg, R.2
Shraiman, B.I.3
Alon, U.4
-
75
-
-
0242574982
-
Parameter estimation in biochemical pathways: A comparison of global optimization methods
-
Moles CG, Mendes P, Banga JR. Parameter estimation in biochemical pathways: A comparison of global optimization methods. Genome Res 2003;13:2467-74
-
(2003)
Genome Res
, vol.13
, pp. 2467-2474
-
-
Moles, C.G.1
Mendes, P.2
Banga, J.R.3
-
76
-
-
25444510601
-
Iterative approach to model identification of biological networks
-
Gadkar KG, Gunawan R, Doyle FJ III. Iterative approach to model identification of biological networks. BMC Bioinformatics 2005; 6:155
-
(2005)
BMC Bioinformatics
, vol.6
, pp. 155
-
-
Gadkar, K.G.1
Gunawan, R.2
Doyle III, F.J.3
-
77
-
-
42749109054
-
Statistical mechanical approaches to models with many poorly known parameters
-
Brown KS, Sethna JP. Statistical mechanical approaches to models with many poorly known parameters. Phys Rev E 2003;68:021904
-
(2003)
Phys Rev E
, vol.68
, pp. 021904
-
-
Brown, K.S.1
Sethna, J.P.2
-
78
-
-
33745038921
-
Ranked prediction of p53 targets using hidden variable dynamic modeling
-
Barenco M, Tomescu D, Brewer D, et al. Ranked prediction of p53 targets using hidden variable dynamic modeling. Genome Biol 2006;7:R25
-
(2006)
Genome Biol
, vol.7
-
-
Barenco, M.1
Tomescu, D.2
Brewer, D.3
-
79
-
-
27244440301
-
Biochemical networks with uncertain parameters
-
Liebermeister W, Klipp E. Biochemical networks with uncertain parameters. IEE Syst Biol 2005;152:97-107
-
(2005)
IEE Syst Biol
, vol.152
, pp. 97-107
-
-
Liebermeister, W.1
Klipp, E.2
-
80
-
-
33847770912
-
A probabilistic model for cell cycle distributions in synchrony experiments
-
Orlando D, Lin C, Bernard A, et al. A probabilistic model for cell cycle distributions in synchrony experiments. Cell Cycle 2007;6(4):478-488
-
(2007)
Cell Cycle
, vol.6
, Issue.4
, pp. 478-488
-
-
Orlando, D.1
Lin, C.2
Bernard, A.3
-
81
-
-
33745375673
-
Single cell resolution in regulation of gene xpression
-
doi:10.1038/msb4100020
-
Bahcall OG. Single cell resolution in regulation of gene xpression. Mol Syst Biol, 2005;1, doi:10.1038/msb4100020
-
(2005)
Mol Syst Biol
, pp. 1
-
-
Bahcall, O.G.1
-
82
-
-
0031029852
-
Stochastic mechanisms in gene expression
-
McAdams HH, Arkin A. Stochastic mechanisms in gene expression. Proc Nat Acad Sci USA 1997;94:814-9
-
(1997)
Proc Nat Acad Sci USA
, vol.94
, pp. 814-819
-
-
McAdams, H.H.1
Arkin, A.2
-
83
-
-
0031879114
-
Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells
-
Arkin A, Ross J, McAdams HH. Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells. Genetics 1998;149:1633-48
-
(1998)
Genetics
, vol.149
, pp. 1633-1648
-
-
Arkin, A.1
Ross, J.2
McAdams, H.H.3
-
84
-
-
0033083733
-
It's a noisy business: Genetic regulation at the nanomolecular scale
-
McAdams HH, Arkin A. It's a noisy business: Genetic regulation at the nanomolecular scale. Trends Genet 1999; 15:65-9
-
(1999)
Trends Genet
, vol.15
, pp. 65-69
-
-
McAdams, H.H.1
Arkin, A.2
-
86
-
-
33747624926
-
High-throughput fluorescence microscopy for systems biology
-
Pepperkok R, Ellenberg J. High-throughput fluorescence microscopy for systems biology. Nat Rev Mol Cell Biol 2006;7:690-6
-
(2006)
Nat Rev Mol Cell Biol
, vol.7
, pp. 690-696
-
-
Pepperkok, R.1
Ellenberg, J.2
-
87
-
-
33845446475
-
Automated tracking of gene expression profiles in individual cells and cell compartments
-
Shen H, Nelson G, Nelson DE, et al. Automated tracking of gene expression profiles in individual cells and cell compartments. J R Soc Interface 2006;3:787-794
-
(2006)
J R Soc Interface
, vol.3
, pp. 787-794
-
-
Shen, H.1
Nelson, G.2
Nelson, D.E.3
-
88
-
-
33746582040
-
Parameter estimation in stochastic biochemical reactions
-
Reinker S, Altman RM, Timmer J. Parameter estimation in stochastic biochemical reactions. IEE Syst Biol 2006; 153:168-78
-
(2006)
IEE Syst Biol
, vol.153
, pp. 168-178
-
-
Reinker, S.1
Altman, R.M.2
Timmer, J.3
-
89
-
-
29144504836
-
Bayesian inference for a discretely observed stochastic kinetic model
-
in press
-
Boys RJ, Wilkinson DJ, Kirkwood TBL. Bayesian inference for a discretely observed stochastic kinetic model, in press
-
-
-
Boys, R.J.1
Wilkinson, D.J.2
Kirkwood, T.B.L.3
-
90
-
-
33746907501
-
A stochastic model of gene transcription: An application to L1 retrotransposition events
-
Rempala GA, Ramos KS, Kalbfleisch T. A stochastic model of gene transcription: An application to L1 retrotransposition events. J Theor Biol 2006;242:101-16
-
(2006)
J Theor Biol
, vol.242
, pp. 101-116
-
-
Rempala, G.A.1
Ramos, K.S.2
Kalbfleisch, T.3
-
91
-
-
0034225547
-
The chemical Langevin equation
-
Gillespie DT. The chemical Langevin equation. J Chem Phys 2000; 113:297-306
-
(2000)
J Chem Phys
, vol.113
, pp. 297-306
-
-
Gillespie, D.T.1
-
92
-
-
27744503232
-
Bayesian inference for stochastic kinetic models using a diffusion approximation
-
Golightly A, Wilkinson DJ. Bayesian inference for stochastic kinetic models using a diffusion approximation. Biometrics 2005;61 781-88
-
(2005)
Biometrics
, vol.61
, pp. 781-788
-
-
Golightly, A.1
Wilkinson, D.J.2
-
93
-
-
0003665481
-
-
Doucet A, de Freitas N, Gordon N eds, New York: Springer
-
Doucet A, de Freitas N, Gordon N (eds). Sequential Monte Carlo Methods in Practice. New York: Springer, 2001
-
(2001)
Sequential Monte Carlo Methods in Practice
-
-
-
94
-
-
33750049940
-
Bayesian sequential inference for nonlinear multivariate diffusions
-
Golightly A, Wilkinson DJ. Bayesian sequential inference for nonlinear multivariate diffusions. Statist Comput 2006; 16:323-38
-
(2006)
Statist Comput
, vol.16
, pp. 323-338
-
-
Golightly, A.1
Wilkinson, D.J.2
-
95
-
-
33744475347
-
Bayesian sequential inference for stochastic kinetic biochemical network models
-
Golightly A, Wilkinson DJ. Bayesian sequential inference for stochastic kinetic biochemical network models. J Comput Biol 2006;13 838-51
-
(2006)
J Comput Biol
, vol.13
, pp. 838-851
-
-
Golightly, A.1
Wilkinson, D.J.2
-
96
-
-
34447556457
-
Bayesian inference for nonlinear multivariate diffusion models observed with error
-
in press
-
Golightly A, Wilkinson DJ. Bayesian inference for nonlinear multivariate diffusion models observed with error, in press
-
-
-
Golightly, A.1
Wilkinson, D.J.2
-
97
-
-
33750374139
-
Linking data to models: Data regression
-
Jaqaman K, Danuser G. Linking data to models: Data regression. Nat Rev Mol Cell Biol 2006;7:813-19
-
(2006)
Nat Rev Mol Cell Biol
, vol.7
, pp. 813-819
-
-
Jaqaman, K.1
Danuser, G.2
-
98
-
-
33745699573
-
Bayesian analysis of computer code outputs: A tutorial
-
O'Hagan A. Bayesian analysis of computer code outputs: A tutorial. Reliab Eng Sys Safe 2006;91:1290-300
-
(2006)
Reliab Eng Sys Safe
, vol.91
, pp. 1290-1300
-
-
O'Hagan, A.1
-
99
-
-
0035648165
-
Bayesian calibration of computer models (with discussion)
-
Kennedy MC, O'Hagan A. Bayesian calibration of computer models (with discussion). J R Stat Soc, Series B 2001;63:425-64
-
(2001)
J R Stat Soc, Series B
, vol.63
, pp. 425-464
-
-
Kennedy, M.C.1
O'Hagan, A.2
-
100
-
-
33748848850
-
Bayes linear calibrated prediction for complex systems
-
Goldstein M, Rougier J. Bayes linear calibrated prediction for complex systems. J Am Stat Assoc 2006; 101:1132-43
-
(2006)
J Am Stat Assoc
, vol.101
, pp. 1132-1143
-
-
Goldstein, M.1
Rougier, J.2
-
101
-
-
33846929503
-
Towards the probability of rapid climate change
-
Schellnhuber HJ, Cramer W, Nakicenovic N, et al, eds, Cambridge: Cambridge University Press
-
Challenor PG, Hankin RKS, Marsh R. Towards the probability of rapid climate change. In: Schellnhuber HJ, Cramer W, Nakicenovic N, et al. (eds). Avoiding Dangerous Climate Change. Cambridge: Cambridge University Press, 2006, 53-63
-
(2006)
Avoiding Dangerous Climate Change
, pp. 53-63
-
-
Challenor, P.G.1
Hankin, R.K.S.2
Marsh, R.3
-
102
-
-
85026233840
-
Parallel Bayesian computation
-
Kontoghiorghes EJ, ed, New York: Marcel Dekker/CRC Press
-
Wilkinson DJ. Parallel Bayesian computation. In: Kontoghiorghes EJ, (ed), Handbook of Parallel Computing and Statistics. New York: Marcel Dekker/CRC Press, 2005, 481-512
-
(2005)
Handbook of Parallel Computing and Statistics
, pp. 481-512
-
-
Wilkinson, D.J.1
|