-
1
-
-
79957808242
-
Open sesame: Activating dormant replication origins in the mouse immunoglobulin heavy chain (IgH) locus
-
Borowiec J. A., Schildkraut C. L. 2011. Open sesame: Activating dormant replication origins in the mouse immunoglobulin heavy chain (IgH) locus. Curr. Opin. Cell. Biol. 23, 284-292.
-
(2011)
Curr. Opin. Cell. Biol.
, vol.23
, pp. 284-292
-
-
Borowiec, J.A.1
Schildkraut, C.L.2
-
2
-
-
0038512143
-
The 'ORC cycle': A novel pathway for regulating eukaryotic DNA replication
-
DePamphilis M. L. 2003. The 'ORC cycle': A novel pathway for regulating eukaryotic DNA replication. Gene. 310, 1-15.
-
(2003)
Gene.
, vol.310
, pp. 1-15
-
-
DePamphilis, M.L.1
-
3
-
-
0036500535
-
The chromosome replication cycle
-
Diffley J. F., Labib K. 2002. The chromosome replication cycle. J. Cell Sci. 115, 869-872.
-
(2002)
J. Cell Sci.
, vol.115
, pp. 869-872
-
-
Diffley, J.F.1
Labib, K.2
-
4
-
-
0033369515
-
The spatial position and replication timing of chromosomal domains are both established in early G1 phase
-
Dimitrova D. S., Gilbert D. M. 1999. The spatial position and replication timing of chromosomal domains are both established in early G1 phase. Mol. Cell. 4, 983-993.
-
(1999)
Mol. Cell.
, vol.4
, pp. 983-993
-
-
Dimitrova, D.S.1
Gilbert, D.M.2
-
5
-
-
74749095240
-
Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins
-
Ilves I., Petojevic T., Pesavento J. J., Botchan M. R. 2010. Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol. Cell. 37, 247-258.
-
(2010)
Mol. Cell.
, vol.37
, pp. 247-258
-
-
Ilves, I.1
Petojevic, T.2
Pesavento, J.J.3
Botchan, M.R.4
-
6
-
-
15444363490
-
Chromatin decondensation in S-phase involves recruitment of Cdk2 by Cdc45 and histone H1 phosphorylation
-
Alexandrow M. G., Hamlin J. L. 2005. Chromatin decondensation in S-phase involves recruitment of Cdk2 by Cdc45 and histone H1 phosphorylation. J. Cell Biol. 168, 875-886.
-
(2005)
J. Cell Biol.
, vol.168
, pp. 875-886
-
-
Alexandrow, M.G.1
Hamlin, J.L.2
-
7
-
-
33947127410
-
Strength in numbers: Preventing rereplication via multiple mechanisms in eukaryotic cells
-
Arias E. E., Walter J. C. 2007. Strength in numbers: Preventing rereplication via multiple mechanisms in eukaryotic cells. Genes Dev. 21, 497-518.
-
(2007)
Genes Dev.
, vol.21
, pp. 497-518
-
-
Arias, E.E.1
Walter, J.C.2
-
9
-
-
33750438774
-
Genome-wide characterization of fission yeast DNA replication origins
-
Heichinger C., Penkett C. J., Bahler J., Nurse P. 2006. Genome-wide characterization of fission yeast DNA replication origins. EMBO J. 25, 5171-5179.
-
(2006)
EMBO J.
, vol.25
, pp. 5171-5179
-
-
Heichinger, C.1
Penkett, C.J.2
Bahler, J.3
Nurse, P.4
-
10
-
-
33845405316
-
DNA replication origin interference increases the spacing between initiation events in human cells
-
Lebofsky R., Heilig R., Sonnleitner M., et al. 2006. DNA replication origin interference increases the spacing between initiation events in human cells. Mol. Biol. Cell. 17, 5337-5345.
-
(2006)
Mol. Biol. Cell.
, vol.17
, pp. 5337-5345
-
-
Lebofsky, R.1
Heilig, R.2
Sonnleitner, M.3
-
11
-
-
54849417379
-
A revisionist replicon model for higher eukaryotic genomes
-
Hamlin J. L., Mesner L. D., Lar O., et al. 2008. A revisionist replicon model for higher eukaryotic genomes. J. Cell. Biochem. 105, 321-329.
-
(2008)
J. Cell. Biochem.
, vol.105
, pp. 321-329
-
-
Hamlin, J.L.1
Mesner, L.D.2
Lar, O.3
-
12
-
-
79952270733
-
Bubble-chip analysis of human origin distributions demonstrates on a genomic scale significant clustering into zones and significant association with transcription
-
Mesner L. D., Valsakumar V., Karnani N., et al. 2011. Bubble-chip analysis of human origin distributions demonstrates on a genomic scale significant clustering into zones and significant association with transcription. Genome Res. 21, 377-389.
-
(2011)
Genome Res.
, vol.21
, pp. 377-389
-
-
Mesner, L.D.1
Valsakumar, V.2
Karnani, N.3
-
13
-
-
79952303535
-
Cdc45 limits replicon usage from a low density of preRCs in mammalian cells
-
Wong P. G., Winter S. L., Zaika E., et al. 2011. Cdc45 limits replicon usage from a low density of preRCs in mammalian cells. PLoS ONE. 6, e17533.
-
(2011)
PLoS ONE.
, vol.6
-
-
Wong, P.G.1
Winter, S.L.2
Zaika, E.3
-
14
-
-
0026890665
-
Chromosome bands, their chromatin flavors, and their functional features
-
Holmquist G. P. 1992. Chromosome bands, their chromatin flavors, and their functional features. Am. J. Hum. Genet. 51, 17-37.
-
(1992)
Am. J. Hum. Genet.
, vol.51
, pp. 17-37
-
-
Holmquist, G.P.1
-
15
-
-
42149091628
-
Replication timing, chromosomal bands, and isochores
-
Costantini M., Bernardi G. 2008. Replication timing, chromosomal bands, and isochores. Proc. Natl. Acad. Sci. U. S. A. 105, 3433-3437.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 3433-3437
-
-
Costantini, M.1
Bernardi, G.2
-
16
-
-
0034008103
-
Heterogeneity of eukaryotic replicons, replicon clusters, and replication foci
-
Berezney R., Dubey D. D., Huberman J. A. 2000. Heterogeneity of eukaryotic replicons, replicon clusters, and replication foci. Chromosoma. 108, 471-484.
-
(2000)
Chromosoma.
, vol.108
, pp. 471-484
-
-
Berezney, R.1
Dubey, D.D.2
Huberman, J.A.3
-
17
-
-
9444269829
-
Stable chromosomal units determine the spatial and temporal organization of DNA replication
-
Sadoni N., Cardoso M. C., Stelzer E. H., et al. 2004. Stable chromosomal units determine the spatial and temporal organization of DNA replication. J. Cell. Sci. 117, 5353-5365.
-
(2004)
J. Cell. Sci.
, vol.117
, pp. 5353-5365
-
-
Sadoni, N.1
Cardoso, M.C.2
Stelzer, E.H.3
-
19
-
-
0032559794
-
Replicon clusters are stable units of chromosome structure: Evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells
-
Jackson D. A., Pombo A. 1998. Replicon clusters are stable units of chromosome structure: Evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J. Cell. Biol. 140, 1285-1295.
-
(1998)
J. Cell. Biol.
, vol.140
, pp. 1285-1295
-
-
Jackson, D.A.1
Pombo, A.2
-
20
-
-
34547814092
-
Replication fork velocities at adjacent replication origins are coordinately modified during DNA replication in human cells
-
Conti C., Sacca B., Herrick J., et al. 2007. Replication fork velocities at adjacent replication origins are coordinately modified during DNA replication in human cells. Mol. Biol. Cell. 18, 3059-3067.
-
(2007)
Mol. Biol. Cell.
, vol.18
, pp. 3059-3067
-
-
Conti, C.1
Sacca, B.2
Herrick, J.3
-
21
-
-
0036929125
-
DNA polymerase clamp shows little turnover at established replication sites but sequential de novo assembly at adjacent origin clusters
-
Sporbert A., Gahl A., Ankerhold R., et al. 2002. DNA polymerase clamp shows little turnover at established replication sites but sequential de novo assembly at adjacent origin clusters. Mol. Cell. 10, 1355-1365.
-
(2002)
Mol. Cell.
, vol.10
, pp. 1355-1365
-
-
Sporbert, A.1
Gahl, A.2
Ankerhold, R.3
-
22
-
-
77952343862
-
S phase progression in human cells is dictated by the genetic continuity of DNA foci
-
Maya-Mendoza A., Olivares-Chauvet P., Shaw A., Jackson D. A. 2010. S phase progression in human cells is dictated by the genetic continuity of DNA foci. PLoS Genet. 6, e1000900.
-
(2010)
PLoS Genet.
, vol.6
-
-
Maya-Mendoza, A.1
Olivares-Chauvet, P.2
Shaw, A.3
Jackson, D.A.4
-
23
-
-
0033104977
-
Evidence that a single replication fork proceeds from early to late replicating domains in the IgH locus in a non-B cell line
-
Ermakova O. V., Nguyen L. H., Little R. D., et al. 1999. Evidence that a single replication fork proceeds from early to late replicating domains in the IgH locus in a non-B cell line. Mol. Cell. 3, 321-330.
-
(1999)
Mol. Cell.
, vol.3
, pp. 321-330
-
-
Ermakova, O.V.1
Nguyen, L.H.2
Little, R.D.3
-
24
-
-
0031261584
-
The efficiency and timing of initiation of replication of multiple replicons of Saccharomyces cerevisiae chromosome VI
-
Yamashita M., Hori Y., Shinomiya T., et al. 1997. The efficiency and timing of initiation of replication of multiple replicons of Saccharomyces cerevisiae chromosome VI. Genes Cells. 2, 655-665.
-
(1997)
Genes Cells.
, vol.2
, pp. 655-665
-
-
Yamashita, M.1
Hori, Y.2
Shinomiya, T.3
-
25
-
-
34447565003
-
Replication in context: Dynamic regulation of DNA replication patterns in metazoans
-
Aladjem M. I. 2007. Replication in context: Dynamic regulation of DNA replication patterns in metazoans. Nature Rev. Genet. 8, 588-600.
-
(2007)
Nature Rev. Genet.
, vol.8
, pp. 588-600
-
-
Aladjem, M.I.1
-
27
-
-
57349149434
-
Genome-wide studies highlight indirect links between human replication origins and gene regulation
-
Cadoret J. C., Meisch F., Hassan-Zadeh V., et al. 2008. Genome-wide studies highlight indirect links between human replication origins and gene regulation. Proc. Natl. Acad. Sci. U. S. A. 105, 15837-15842.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 15837-15842
-
-
Cadoret, J.C.1
Meisch, F.2
Hassan-Zadeh, V.3
-
28
-
-
66149138883
-
Transcription initiation activity sets replication origin efficiency in mammalian cells
-
Sequeira-Mendes J., Diaz-Uriarte R., Apedaile A., et al. 2009. Transcription initiation activity sets replication origin efficiency in mammalian cells. PLoS Genet. 5, e1000446.
-
(2009)
PLoS Genet.
, vol.5
-
-
Sequeira-Mendes, J.1
Diaz-Uriarte, R.2
Apedaile, A.3
-
29
-
-
76049105950
-
Genomic study of replication initiation in human chromosomes reveals the influence of transcription regulation and chromatin structure on origin selection
-
Karnani N., Taylor C. M., Malhotra A., Dutta A. 2010. Genomic study of replication initiation in human chromosomes reveals the influence of transcription regulation and chromatin structure on origin selection. Mol. Biol. Cell. 21, 393-404.
-
(2010)
Mol. Biol. Cell.
, vol.21
, pp. 393-404
-
-
Karnani, N.1
Taylor, C.M.2
Malhotra, A.3
Dutta, A.4
-
30
-
-
75649109712
-
Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading
-
MacAlpine H. K., Gordan R., Powell S. K., et al. 2010. Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading. Genome Res. 20, 201-211.
-
(2010)
Genome Res.
, vol.20
, pp. 201-211
-
-
MacAlpine, H.K.1
Gordan, R.2
Powell, S.K.3
-
31
-
-
84855336201
-
Developmental control of gene copy number by repression of replication initiation and fork progression
-
Sher N., Bell G. W., Li S., et al. 2012. Developmental control of gene copy number by repression of replication initiation and fork progression. Genome Res. 22, 64-75.
-
(2012)
Genome Res.
, vol.22
, pp. 64-75
-
-
Sher, N.1
Bell, G.W.2
Li, S.3
-
32
-
-
80052523848
-
Genome-scale analysis of metazoan replication origins reveals their organization in specific but flexible sites defined by conserved features
-
Cayrou C., Coulombe P., Vigneron A., et al. 2011. Genome-scale analysis of metazoan replication origins reveals their organization in specific but flexible sites defined by conserved features. Genome Res. 21, 1438-1449.
-
(2011)
Genome Res.
, vol.21
, pp. 1438-1449
-
-
Cayrou, C.1
Coulombe, P.2
Vigneron, A.3
-
33
-
-
79952359976
-
Genome-wide mapping of Arabidopsis thaliana origins of DNA replication and their associated epigenetic marks
-
Costas C., de la Paz Sanchez M., Stroud H., et al. 2011. Genome-wide mapping of Arabidopsis thaliana origins of DNA replication and their associated epigenetic marks. Nature Struct. Mol. Biol. 18, 395-400.
-
(2011)
Nature Struct. Mol. Biol.
, vol.18
, pp. 395-400
-
-
Costas, C.1
de la Paz Sanchez, M.2
Stroud, H.3
-
34
-
-
79551581102
-
Chromatin signatures of the Drosophila replication program
-
Eaton M. L., Prinz J. A., MacAlpine H. K., et al. 2011. Chromatin signatures of the Drosophila replication program. Genome Res. 21, 164-174.
-
(2011)
Genome Res.
, vol.21
, pp. 164-174
-
-
Eaton, M.L.1
Prinz, J.A.2
MacAlpine, H.K.3
-
35
-
-
77956879643
-
Evaluating genome-scale approaches to eukaryotic DNA replication
-
Gilbert D. M. 2010. Evaluating genome-scale approaches to eukaryotic DNA replication. Nature Rev. Genet. 11, 673-684.
-
(2010)
Nature Rev. Genet.
, vol.11
, pp. 673-684
-
-
Gilbert, D.M.1
-
36
-
-
73249147619
-
Predictable dynamic program of timing of DNA replication in human cells
-
Desprat R., Thierry-Mieg D., Lailler N., et al. 2009. Predictable dynamic program of timing of DNA replication in human cells. Genome Res. 19, 2288-2299.
-
(2009)
Genome Res.
, vol.19
, pp. 2288-2299
-
-
Desprat, R.1
Thierry-Mieg, D.2
Lailler, N.3
-
37
-
-
0042125189
-
Sequenceindependent DNA binding and replication initiation by the human origin recognition complex
-
Vashee S., Cvetic C., Lu W., et al. 2003. Sequenceindependent DNA binding and replication initiation by the human origin recognition complex. Genes Dev. 17, 1894-1908.
-
(2003)
Genes Dev.
, vol.17
, pp. 1894-1908
-
-
Vashee, S.1
Cvetic, C.2
Lu, W.3
-
38
-
-
1842509904
-
DNA topology, not DNA sequence, is a critical determinant for Drosophila ORC-DNA binding
-
Remus D., Beall E. L., Botchan M. R. 2004. DNA topology, not DNA sequence, is a critical determinant for Drosophila ORC-DNA binding. EMBO J. 23, 897-907.
-
(2004)
EMBO J
, vol.23
, pp. 897-907
-
-
Remus, D.1
Beall, E.L.2
Botchan, M.R.3
-
39
-
-
0025067370
-
Nucleosome positioning can affect the function of a cis-acting DNA element in vivo
-
Simpson R. T. 1990. Nucleosome positioning can affect the function of a cis-acting DNA element in vivo. Nature. 343, 387-389.
-
(1990)
Nature.
, vol.343
, pp. 387-389
-
-
Simpson, R.T.1
-
40
-
-
43049124410
-
An ARS element inhibits DNA replication through a SIR2-dependent mechanism
-
Crampton A., Chang F., Pappas D. L. Jr., et al. 2008. An ARS element inhibits DNA replication through a SIR2-dependent mechanism. Mol. Cell. 30, 156-166.
-
(2008)
Mol. Cell.
, vol.30
, pp. 156-166
-
-
Crampton, A.1
Chang, F.2
Pappas Jr., D.L.3
-
41
-
-
57149119464
-
Distinct modes of regulation by chromatin encoded through nucleosome positioning signals
-
Field Y., Kaplan N., Fondufe-Mittendorf Y., et al. 2008. Distinct modes of regulation by chromatin encoded through nucleosome positioning signals. PLoS Comput. Biol. 4, e1000216.
-
(2008)
PLoS Comput. Biol.
, vol.4
-
-
Field, Y.1
Kaplan, N.2
Fondufe-Mittendorf, Y.3
-
42
-
-
78650331647
-
Identification of functional elements and regulatory circuits by Drosophila modENCODE
-
Roy S., Ernst J., Kharchenko P. V., Kheradpour P., et al. 2010. Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science. 330, 1787-1797.
-
(2010)
Science.
, vol.330
, pp. 1787-1797
-
-
Roy, S.1
Ernst, J.2
Kharchenko, P.V.3
Kheradpour, P.4
-
43
-
-
78049415820
-
Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure
-
Berbenetz N. M., Nislow C., Brown G. W. 2010. Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure. PLoS Genet. 6, e1001092.
-
(2010)
PLoS Genet.
, vol.6
-
-
Berbenetz, N.M.1
Nislow, C.2
Brown, G.W.3
-
44
-
-
77952996319
-
Genomewide kinetics of nucleosome turnover determined by metabolic labeling of histones
-
Deal R. B., Henikoff J. G., Henikoff S. 2010. Genomewide kinetics of nucleosome turnover determined by metabolic labeling of histones. Science. 328, 1161-1164.
-
(2010)
Science
, vol.328
, pp. 1161-1164
-
-
Deal, R.B.1
Henikoff, J.G.2
Henikoff, S.3
-
45
-
-
77950962157
-
Conserved nucleosome positioning defines replication origins
-
Eaton M. L., Galani K., Kang S., et al. 2010. Conserved nucleosome positioning defines replication origins. Genes Dev. 24, 748-753.
-
(2010)
Genes Dev.
, vol.24
, pp. 748-753
-
-
Eaton, M.L.1
Galani, K.2
Kang, S.3
-
46
-
-
77649235074
-
Programming DNA replication origins and chromosome organization
-
Cayrou C., Coulombe P., Mechali M. 2010. Programming DNA replication origins and chromosome organization. Chromosome Res. 18, 137-145.
-
(2010)
Chromosome Res.
, vol.18
, pp. 137-145
-
-
Cayrou, C.1
Coulombe, P.2
Mechali, M.3
-
47
-
-
0035104474
-
Nucleosomes positioned by ORC facilitate the initiation of DNA replication
-
Lipford J. R., Bell S. P. 2001. Nucleosomes positioned by ORC facilitate the initiation of DNA replication. Mol. Cell. 7, 21-30.
-
(2001)
Mol. Cell.
, vol.7
, pp. 21-30
-
-
Lipford, J.R.1
Bell, S.P.2
-
48
-
-
33745807643
-
Differential binding of replication proteins across the human c-myc replicator
-
Ghosh M., Kemp M., Liu G., et al. 2006. Differential binding of replication proteins across the human c-myc replicator. Mol. Cell. Biol. 26, 5270-5283.
-
(2006)
Mol. Cell. Biol.
, vol.26
, pp. 5270-5283
-
-
Ghosh, M.1
Kemp, M.2
Liu, G.3
-
49
-
-
34748826166
-
A high-resolution atlas of nucleosome occupancy in yeast
-
Lee W., Tillo D., Bray N., et al. 2007. A high-resolution atlas of nucleosome occupancy in yeast. Nature Genet. 39, 1235-1244.
-
(2007)
Nature Genet.
, vol.39
, pp. 1235-1244
-
-
Lee, W.1
Tillo, D.2
Bray, N.3
-
50
-
-
0024977788
-
Similarity between the transcriptional silencer binding proteins ABF1 and RAP1
-
Diffley J. F., Stillman B. 1989. Similarity between the transcriptional silencer binding proteins ABF1 and RAP1. Science. 246, 1034-1038.
-
(1989)
Science.
, vol.246
, pp. 1034-1038
-
-
Diffley, J.F.1
Stillman, B.2
-
51
-
-
12244265093
-
DNA replication origins in the Schizosaccharomyces pombe genome
-
Dai J., Chuang R. Y., Kelly T. J. 2005. DNA replication origins in the Schizosaccharomyces pombe genome. Proc. Natl. Acad. Sci. U. S. A. 102, 337-342.
-
(2005)
Proc. Natl. Acad. Sci. U. S. A.
, vol.102
, pp. 337-342
-
-
Dai, J.1
Chuang, R.Y.2
Kelly, T.J.3
-
52
-
-
77957168933
-
Eukaryotic DNA replication origins: Many choices for appropriate answers
-
Mechali M. 2010. Eukaryotic DNA replication origins: Many choices for appropriate answers. Nature Rev. Mol. Cell Biol. 11, 728-738.
-
(2010)
Nature Rev. Mol. Cell Biol.
, vol.11
, pp. 728-738
-
-
Mechali, M.1
-
53
-
-
0029670538
-
A distinct G1 step required to specify the Chinese hamster DHFR replication origin
-
Wu J. R., Gilbert D. M. 1996. A distinct G1 step required to specify the Chinese hamster DHFR replication origin. Science. 271, 1270-1272.
-
(1996)
Science.
, vol.271
, pp. 1270-1272
-
-
Wu, J.R.1
Gilbert, D.M.2
-
54
-
-
80054821878
-
Synergic reprogramming of mammalian cells by combined exposure to mitotic Xenopus egg extracts and transcription factors
-
Ganier O., Bocquet S., Peiffer I., et al. 2011. Synergic reprogramming of mammalian cells by combined exposure to mitotic Xenopus egg extracts and transcription factors. Proc. Natl. Acad. Sci. U. S. A. 108, 17331-17336.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, pp. 17331-17336
-
-
Ganier, O.1
Bocquet, S.2
Peiffer, I.3
-
55
-
-
33847221417
-
Functional interactions of DNA topoisomerases with a human replication origin
-
Abdurashidova G., Radulescu S., Sandoval O., et al. 2007. Functional interactions of DNA topoisomerases with a human replication origin. EMBO J. 26, 998-1009.
-
(2007)
EMBO J
, vol.26
, pp. 998-1009
-
-
Abdurashidova, G.1
Radulescu, S.2
Sandoval, O.3
-
56
-
-
34249890186
-
Developmental reprogramming after chromosome transfer into mitotic mouse zygotes
-
Egli D., Rosains J., Birkhoff G., Eggan K. 2007. Developmental reprogramming after chromosome transfer into mitotic mouse zygotes. Nature. 447, 679-685.
-
(2007)
Nature
, vol.447
, pp. 679-685
-
-
Egli, D.1
Rosains, J.2
Birkhoff, G.3
Eggan, K.4
-
57
-
-
28344440877
-
Mitotic remodeling of the replicon and chromosome structure
-
Lemaitre J. M., Danis E., Pasero P., et al. 2005. Mitotic remodeling of the replicon and chromosome structure. Cell. 123, 787-801.
-
(2005)
Cell.
, vol.123
, pp. 787-801
-
-
Lemaitre, J.M.1
Danis, E.2
Pasero, P.3
-
58
-
-
54949085778
-
Global reorganization of replication domains during embryonic stem cell differentiation
-
Hiratani I., Ryba T., Itoh M., et al. 2008. Global reorganization of replication domains during embryonic stem cell differentiation. PLoS Biol. 6, e245.
-
(2008)
PLoS Biol.
, vol.6
-
-
Hiratani, I.1
Ryba, T.2
Itoh, M.3
-
59
-
-
61849177618
-
Chromatin state marks cell-type- and gender-specific replication of the Drosophila genome
-
Schwaiger M., Stadler M. B., Bell O., et al. 2009. Chromatin state marks cell-type- and gender-specific replication of the Drosophila genome. Genes Dev. 23, 589-601.
-
(2009)
Genes Dev.
, vol.23
, pp. 589-601
-
-
Schwaiger, M.1
Stadler, M.B.2
Bell, O.3
-
60
-
-
77956225395
-
Nucleotide supply, not local histone acetylation, sets replication origin usage in transcribed regions
-
Gay S., Lachages A. M., Millot G. A., et al. 2010. Nucleotide supply, not local histone acetylation, sets replication origin usage in transcribed regions. EMBO Rep. 11, 698-704.
-
(2010)
EMBO Rep.
, vol.11
, pp. 698-704
-
-
Gay, S.1
Lachages, A.M.2
Millot, G.A.3
-
61
-
-
77953569966
-
G2 phase chromatin lacks determinants of replication timing
-
Lu J., Li F., Murphy C. S., et al. 2010. G2 phase chromatin lacks determinants of replication timing. J. Cell. Biol. 189, 967-980.
-
(2010)
J. Cell. Biol.
, vol.189
, pp. 967-980
-
-
Lu, J.1
Li, F.2
Murphy, C.S.3
-
62
-
-
61349201535
-
Establishing the program of origin firing during S phase in fission yeast
-
Wu P. Y., Nurse P. 2009. Establishing the program of origin firing during S phase in fission yeast. Cell. 136, 852-864.
-
(2009)
Cell.
, vol.136
, pp. 852-864
-
-
Wu, P.Y.1
Nurse, P.2
-
63
-
-
33747432986
-
Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress
-
Woodward A. M., Gohler T., Luciani M. G., et al. 2006. Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress. J. Cell. Biol. 173, 673-683.
-
(2006)
J. Cell. Biol.
, vol.173
, pp. 673-683
-
-
Woodward, A.M.1
Gohler, T.2
Luciani, M.G.3
-
64
-
-
48249084972
-
Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication
-
Ibarra A., Schwob E., Mendez J. 2008. Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication. Proc. Natl. Acad. Sci. U. S. A. 105, 8956-8961.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 8956-8961
-
-
Ibarra, A.1
Schwob, E.2
Mendez, J.3
-
65
-
-
59449092118
-
The Hsk1(Cdc7) replication kinase regulates origin efficiency
-
Patel P. K., Kommajosyula N., Rosebrock A., et al. 2008. The Hsk1(Cdc7) replication kinase regulates origin efficiency. Mol. Biol. Cell. 19, 5550-5558.
-
(2008)
Mol. Biol. Cell.
, vol.19
, pp. 5550-5558
-
-
Patel, P.K.1
Kommajosyula, N.2
Rosebrock, A.3
-
66
-
-
62549132126
-
Cyclin A-Cdk1 regulates the origin firing program in mammalian cells
-
Katsuno Y., Suzuki A., Sugimura K., et al. 2009. Cyclin A-Cdk1 regulates the origin firing program in mammalian cells. Proc. Natl. Acad. Sci. U. S. A. 106, 3184-3189.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 3184-3189
-
-
Katsuno, Y.1
Suzuki, A.2
Sugimura, K.3
-
67
-
-
40949152974
-
Cdk1 and Cdk2 activity levels determine the efficiency of replication origin firing in Xenopus
-
Krasinska L., Besnard E., Cot E., et al. 2008. Cdk1 and Cdk2 activity levels determine the efficiency of replication origin firing in Xenopus. EMBO J. 27, 758-769.
-
(2008)
EMBO J.
, vol.27
, pp. 758-769
-
-
Krasinska, L.1
Besnard, E.2
Cot, E.3
-
68
-
-
61849083545
-
The temporal program of chromosome replication: Genomewide replication in clb5{Delta} Saccharomyces cerevisiae
-
McCune H. J., Danielson L. S., Alvino G. M., et al. 2008. The temporal program of chromosome replication: Genomewide replication in clb5{Delta} Saccharomyces cerevisiae. Genetics. 180, 1833-1847.
-
(2008)
Genetics.
, vol.180
, pp. 1833-1847
-
-
McCune, H.J.1
Danielson, L.S.2
Alvino, G.M.3
-
69
-
-
0019998194
-
A relationship between replicon size and supercoiled loop domains in the eukaryotic genome
-
Buongiorno-Nardelli M., Micheli G., Carri M. T., Marilley M. 1982. A relationship between replicon size and supercoiled loop domains in the eukaryotic genome. Nature. 298, 100-102.
-
(1982)
Nature.
, vol.298
, pp. 100-102
-
-
Buongiorno-Nardelli, M.1
Micheli, G.2
Carri, M.T.3
Marilley, M.4
-
70
-
-
52949092763
-
Replication fork movement sets chromatin loop size and origin choice in mammalian cells
-
Courbet S., Gay S., Arnoult N., et al. 2008. Replication fork movement sets chromatin loop size and origin choice in mammalian cells. Nature. 455, 557-560.
-
(2008)
Nature.
, vol.455
, pp. 557-560
-
-
Courbet, S.1
Gay, S.2
Arnoult, N.3
-
71
-
-
0028556685
-
Replication initiation sites are distributed widely in the amplified CHO dihydrofolate reductase domain
-
Dijkwel P. A., Vaughn J. P., Hamlin J. L. 1994. Replication initiation sites are distributed widely in the amplified CHO dihydrofolate reductase domain. Nucleic Acids Res. 22, 4989-4996.
-
(1994)
Nucleic Acids Res.
, vol.22
, pp. 4989-4996
-
-
Dijkwel, P.A.1
Vaughn, J.P.2
Hamlin, J.L.3
-
72
-
-
0032437465
-
Attachment to the nuclear matrix mediates specific alterations in chromatin structure
-
Pemov A., Bavykin S., Hamlin J. L. 1998. Attachment to the nuclear matrix mediates specific alterations in chromatin structure. Proc. Natl. Acad. Sci. U. S. A. 95, 14757-14762.
-
(1998)
Proc. Natl. Acad. Sci. U. S. A.
, vol.95
, pp. 14757-14762
-
-
Pemov, A.1
Bavykin, S.2
Hamlin, J.L.3
-
75
-
-
0021966486
-
Localization of topoisomerase II in mitotic chromosomes
-
Earnshaw W. C., Heck M. M. 1985. Localization of topoisomerase II in mitotic chromosomes. J. Cell. Biol. 100, 1716-1725.
-
(1985)
J. Cell. Biol.
, vol.100
, pp. 1716-1725
-
-
Earnshaw, W.C.1
Heck, M.M.2
-
76
-
-
60349099608
-
Interaction in vivo between the two matrix attachment regions flanking a single chromatin loop
-
Eivazova E. R., Gavrilov A., Pirozhkova I., et al. 2009. Interaction in vivo between the two matrix attachment regions flanking a single chromatin loop. J. Mol. Biol. 386, 929-937.
-
(2009)
J. Mol. Biol.
, vol.386
, pp. 929-937
-
-
Eivazova, E.R.1
Gavrilov, A.2
Pirozhkova, I.3
-
77
-
-
0036791653
-
Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus
-
Pasero P., Bensimon A., Schwob E. 2002. Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus. Genes Dev. 16, 2479-2484.
-
(2002)
Genes Dev.
, vol.16
, pp. 2479-2484
-
-
Pasero, P.1
Bensimon, A.2
Schwob, E.3
-
78
-
-
44149084708
-
DNA replication timing of the human beta-globin domain is controlled by histone modification at the origin
-
Goren A., Tabib A., Hecht M., Cedar H. 2008. DNA replication timing of the human beta-globin domain is controlled by histone modification at the origin. Genes Dev. 22, 1319-1324.
-
(2008)
Genes Dev.
, vol.22
, pp. 1319-1324
-
-
Goren, A.1
Tabib, A.2
Hecht, M.3
Cedar, H.4
-
79
-
-
3142768347
-
Chromatin regulates origin activity in Drosophila follicle cells
-
Aggarwal B. D., Calvi B. R. 2004. Chromatin regulates origin activity in Drosophila follicle cells. Nature. 430, 372-376.
-
(2004)
Nature.
, vol.430
, pp. 372-376
-
-
Aggarwal, B.D.1
Calvi, B.R.2
-
80
-
-
53549122748
-
HBO1 histone acetylase is a coactivator of the replication licensing factor Cdt1
-
Miotto B., Struhl K. 2008. HBO1 histone acetylase is a coactivator of the replication licensing factor Cdt1. Genes Dev. 22, 2633-2638.
-
(2008)
Genes Dev.
, vol.22
, pp. 2633-2638
-
-
Miotto, B.1
Struhl, K.2
-
81
-
-
62549137804
-
Histone acetyltransferase Hbo1: Catalytic activity, cellular abundance, and links to primary cancers
-
Iizuka M., Takahashi Y., Mizzen C. A., et al. 2009. Histone acetyltransferase Hbo1: Catalytic activity, cellular abundance, and links to primary cancers. Gene. 436, 108-114.
-
(2009)
Gene.
, vol.436
, pp. 108-114
-
-
Iizuka, M.1
Takahashi, Y.2
Mizzen, C.A.3
-
82
-
-
61849184077
-
The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-type locus
-
Hayashi M. T., Takahashi T. S., Nakagawa T., et al. 2009. The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-type locus. Nature Cell. Biol. 11, 357-362.
-
(2009)
Nature Cell. Biol.
, vol.11
, pp. 357-362
-
-
Hayashi, M.T.1
Takahashi, T.S.2
Nakagawa, T.3
-
83
-
-
0030722744
-
Association of the origin recognition complex with heterochromatin and HP1 in higher eukaryotes
-
Pak D. T., Pflumm M., Chesnokov I., et al. 1997. Association of the origin recognition complex with heterochromatin and HP1 in higher eukaryotes. Cell. 91, 311-323.
-
(1997)
Cell.
, vol.91
, pp. 311-323
-
-
Pak, D.T.1
Pflumm, M.2
Chesnokov, I.3
-
84
-
-
0032497548
-
Regulation of DNA-replication origins during cell-cycle progression
-
Shirahige K., Hori Y., Shiraishi K., et al. 1998. Regulation of DNA-replication origins during cell-cycle progression. Nature. 395, 618-621.
-
(1998)
Nature.
, vol.395
, pp. 618-621
-
-
Shirahige, K.1
Hori, Y.2
Shiraishi, K.3
-
85
-
-
68249142957
-
Regulation of DNA replication by the S-phase DNA damage checkpoint
-
Willis N., Rhind N. 2009. Regulation of DNA replication by the S-phase DNA damage checkpoint. Cell Div. 4, 13.
-
(2009)
Cell Div.
, vol.4
, pp. 13
-
-
Willis, N.1
Rhind, N.2
-
86
-
-
0032491517
-
Differential effects of hydroxyurea upon deoxyribonucleoside triphosphate pools, analyzed with vaccinia virus ribonucleotide reductase
-
Hendricks S. P., Mathews C. K. 1998. Differential effects of hydroxyurea upon deoxyribonucleoside triphosphate pools, analyzed with vaccinia virus ribonucleotide reductase. J. Biol. Chem. 273, 29519-29523.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 29519-29523
-
-
Hendricks, S.P.1
Mathews, C.K.2
-
88
-
-
0034306184
-
Temporally coordinated assembly and disassembly of replication factories in the absence of DNA synthesis
-
Dimitrova D. S., Gilbert D. M. 2000. Temporally coordinated assembly and disassembly of replication factories in the absence of DNA synthesis. Nature Cell. Biol. 2, 686-694.
-
(2000)
Nature Cell. Biol.
, vol.2
, pp. 686-694
-
-
Dimitrova, D.S.1
Gilbert, D.M.2
-
89
-
-
0035907338
-
Aphidicolin triggers a block to replication origin firing in Xenopus egg extracts
-
Marheineke K., Hyrien O. 2001. Aphidicolin triggers a block to replication origin firing in Xenopus egg extracts. J. Biol. Chem. 276, 17092-17100.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 17092-17100
-
-
Marheineke, K.1
Hyrien, O.2
-
90
-
-
10644297436
-
Coordination of replication and transcription along a Drosophila chromosome
-
MacAlpine D. M., Rodriguez H. K., Bell S. P. 2004. Coordination of replication and transcription along a Drosophila chromosome. Genes Dev. 18, 3094-3105.
-
(2004)
Genes Dev.
, vol.18
, pp. 3094-3105
-
-
MacAlpine, D.M.1
Rodriguez, H.K.2
Bell, S.P.3
-
91
-
-
0036668464
-
Mapping of early firing origins on a replication profile of budding yeast
-
Yabuki N., Terashima H., Kitada K. 2002. Mapping of early firing origins on a replication profile of budding yeast. Genes Cells. 7, 781-789.
-
(2002)
Genes Cells.
, vol.7
, pp. 781-789
-
-
Yabuki, N.1
Terashima, H.2
Kitada, K.3
-
93
-
-
33947110984
-
Genomewide localization of pre-RC sites and identification of replication origins in fission yeast
-
Hayashi M., Katou Y., Itoh T., et al. 2007. Genomewide localization of pre-RC sites and identification of replication origins in fission yeast. EMBO J. 26, 1327-1339.
-
(2007)
EMBO J
, vol.26
, pp. 1327-1339
-
-
Hayashi, M.1
Katou, Y.2
Itoh, T.3
-
94
-
-
30044438457
-
DNA replication origins fire stochastically in fission yeast
-
Patel P. K., Arcangioli B., Baker S. P., et al. 2006. DNA replication origins fire stochastically in fission yeast. Mol. Biol. Cell. 17, 308-316.
-
(2006)
Mol. Biol. Cell.
, vol.17
, pp. 308-316
-
-
Patel, P.K.1
Arcangioli, B.2
Baker, S.P.3
-
95
-
-
21444434023
-
ATM and ATR check in on origins: A dynamic model for origin selection and activation
-
Shechter D., Gautier J. 2005. ATM and ATR check in on origins: A dynamic model for origin selection and activation. Cell Cycle. 4, 235-238.
-
(2005)
Cell Cycle.
, vol.4
, pp. 235-238
-
-
Shechter, D.1
Gautier, J.2
-
96
-
-
68249102864
-
DNA replication as a target of the DNA damage checkpoint
-
Zegerman P., Diffley J. F. 2009. DNA replication as a target of the DNA damage checkpoint. DNA Repair. 8, 1077-1088.
-
(2009)
DNA Repair.
, vol.8
, pp. 1077-1088
-
-
Zegerman, P.1
Diffley, J.F.2
-
98
-
-
3142544855
-
Control of replication origin density and firing time in Xenopus egg extracts: Role of a caffeine-sensitive, ATR-dependent checkpoint
-
Marheineke K., Hyrien O. 2004. Control of replication origin density and firing time in Xenopus egg extracts: Role of a caffeine-sensitive, ATR-dependent checkpoint. J. Biol. Chem. 279, 28071-28081.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 28071-28081
-
-
Marheineke, K.1
Hyrien, O.2
-
99
-
-
3242670803
-
ATR and ATM regulate the timing of DNA replication origin firing
-
Shechter D., Costanzo V., Gautier J. 2004. ATR and ATM regulate the timing of DNA replication origin firing. Nature Cell Biol. 6, 648-655.
-
(2004)
Nature Cell Biol.
, vol.6
, pp. 648-655
-
-
Shechter, D.1
Costanzo, V.2
Gautier, J.3
-
100
-
-
5044224075
-
ATR, Claspin and the Rad9-Rad1-Hus1 complex regulate Chk1 and Cdc25A in the absence of DNA damage
-
Sorensen C. S., Syljuasen R. G., Lukas J., Bartek J. 2004. ATR, Claspin and the Rad9-Rad1-Hus1 complex regulate Chk1 and Cdc25A in the absence of DNA damage. Cell Cycle. 3, 941-945.
-
(2004)
Cell Cycle.
, vol.3
, pp. 941-945
-
-
Sorensen, C.S.1
Syljuasen, R.G.2
Lukas, J.3
Bartek, J.4
-
101
-
-
0037423308
-
Regulation of cellular and SV40 virus origins of replication by Chk1-dependent intrinsic and UVC radiationinduced checkpoints
-
Miao H., Seiler J. A., Burhans W. C. 2003. Regulation of cellular and SV40 virus origins of replication by Chk1-dependent intrinsic and UVC radiationinduced checkpoints. J. Biol. Chem. 278, 4295-4304.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 4295-4304
-
-
Miao, H.1
Seiler, J.A.2
Burhans, W.C.3
-
102
-
-
20244388673
-
Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage
-
Syljuasen R. G., Sorensen C. S., Hansen L. T., et al. 2005. Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage. Mol. Cell. Biol. 25, 3553-3562.
-
(2005)
Mol. Cell. Biol.
, vol.25
, pp. 3553-3562
-
-
Syljuasen, R.G.1
Sorensen, C.S.2
Hansen, L.T.3
-
103
-
-
33749599776
-
Evidence that the ATR/Chk1 pathway maintains normal replication fork progression during unperturbed S phase
-
Petermann E., Caldecott K. W. 2006. Evidence that the ATR/Chk1 pathway maintains normal replication fork progression during unperturbed S phase. Cell Cycle. 5, 2203-2209.
-
(2006)
Cell Cycle.
, vol.5
, pp. 2203-2209
-
-
Petermann, E.1
Caldecott, K.W.2
-
104
-
-
33645825609
-
Chk1 requirement for high global rates of replication fork progression during normal vertebrate S phase
-
Petermann E., Maya-Mendoza A., Zachos G., et al. 2006. Chk1 requirement for high global rates of replication fork progression during normal vertebrate S phase. Mol. Cell. Biol. 26, 3319-3326.
-
(2006)
Mol. Cell. Biol.
, vol.26
, pp. 3319-3326
-
-
Petermann, E.1
Maya-Mendoza, A.2
Zachos, G.3
-
105
-
-
34250010317
-
Chk1 regulates the density of active replication origins during the vertebrate S phase
-
Maya-Mendoza A., Petermann E., Gillespie D. A., et al. 2007. Chk1 regulates the density of active replication origins during the vertebrate S phase. EMBO J. 26, 2719-2731.
-
(2007)
EMBO J.
, vol.26
, pp. 2719-2731
-
-
Maya-Mendoza, A.1
Petermann, E.2
Gillespie, D.A.3
-
106
-
-
0032497529
-
A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication
-
Santocanale C., Diffley J. F. 1998. A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature. 395, 615-618.
-
(1998)
Nature.
, vol.395
, pp. 615-618
-
-
Santocanale, C.1
Diffley, J.F.2
-
107
-
-
69849107003
-
Ubiquitin control of S phase: A new role for the ubiquitin conjugating enzyme, UbcH7
-
Whitcomb E. A., Taylor A. 2009. Ubiquitin control of S phase: A new role for the ubiquitin conjugating enzyme, UbcH7. Cell Div. 4, 17.
-
(2009)
Cell Div.
, vol.4
, pp. 17
-
-
Whitcomb, E.A.1
Taylor, A.2
-
108
-
-
38649118240
-
Chk1 is a histone H3 threonine 11 kinase that regulates DNA damage-induced transcriptional repression
-
Shimada M., Niida H., Zineldeen D. H., et al. 2008. Chk1 is a histone H3 threonine 11 kinase that regulates DNA damage-induced transcriptional repression. Cell. 132, 221-232.
-
(2008)
Cell.
, vol.132
, pp. 221-232
-
-
Shimada, M.1
Niida, H.2
Zineldeen, D.H.3
-
109
-
-
67650531172
-
Implication of checkpoint kinase-dependent up-regulation of ribonucleotide reductase R2 in DNA damage response
-
Zhang Y. W., Jones T. L., Martin S. E., et al. 2009. Implication of checkpoint kinase-dependent up-regulation of ribonucleotide reductase R2 in DNA damage response. J. Biol. Chem. 284, 18085-18095.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 18085-18095
-
-
Zhang, Y.W.1
Jones, T.L.2
Martin, S.E.3
-
110
-
-
43049168313
-
Global regulation of genome duplication in eukaryotes: An overview from the epifluorescence microscope
-
Herrick J., Bensimon A. 2008. Global regulation of genome duplication in eukaryotes: An overview from the epifluorescence microscope. Chromosoma. 117, 243-260.
-
(2008)
Chromosoma.
, vol.117
, pp. 243-260
-
-
Herrick, J.1
Bensimon, A.2
-
111
-
-
47749107178
-
Essential role of Chk1 in S phase progression through regulation of RNR2 expression
-
Naruyama H., Shimada M., Niida H., et al. 2008. Essential role of Chk1 in S phase progression through regulation of RNR2 expression. Biochem. Biophys. Res. Commun. 374, 79-83.
-
(2008)
Biochem. Biophys. Res. Commun.
, vol.374
, pp. 79-83
-
-
Naruyama, H.1
Shimada, M.2
Niida, H.3
-
112
-
-
27544445683
-
The DNA damage response during DNA replication
-
Branzei D., Foiani M. 2005. The DNA damage response during DNA replication. Curr. Opin. Cell Biol. 17, 568-575.
-
(2005)
Curr. Opin. Cell Biol.
, vol.17
, pp. 568-575
-
-
Branzei, D.1
Foiani, M.2
-
113
-
-
37249025795
-
Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress
-
Ge X. Q., Jackson D. A., Blow J. J. 2007. Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress. Genes Dev. 21, 3331-3341.
-
(2007)
Genes Dev.
, vol.21
, pp. 3331-3341
-
-
Ge, X.Q.1
Jackson, D.A.2
Blow, J.J.3
-
114
-
-
64249120749
-
Replicon dynamics, dormant origin firing, and terminal fork integrity after double-strand break formation
-
Doksani Y., Bermejo R., Fiorani S., et al. 2009. Replicon dynamics, dormant origin firing, and terminal fork integrity after double-strand break formation. Cell. 137, 247-258.
-
(2009)
Cell.
, vol.137
, pp. 247-258
-
-
Doksani, Y.1
Bermejo, R.2
Fiorani, S.3
-
115
-
-
78650724206
-
Chk1 inhibits replication factory activation but allows dormant origin firing in existing factories
-
Ge X. Q., Blow J. J. 2010. Chk1 inhibits replication factory activation but allows dormant origin firing in existing factories. J. Cell Biol. 191, 1285-1297.
-
(2010)
J. Cell Biol.
, vol.191
, pp. 1285-1297
-
-
Ge, X.Q.1
Blow, J.J.2
-
116
-
-
0032134456
-
CLB5-dependent activation of late replication origins in S. cerevisiae
-
Donaldson A. D., Raghuraman M. K., Friedman K. L., et al. 1998. CLB5-dependent activation of late replication origins in S. cerevisiae. Mol. Cell. 2, 173-182.
-
(1998)
Mol. Cell.
, vol.2
, pp. 173-182
-
-
Donaldson, A.D.1
Raghuraman, M.K.2
Friedman, K.L.3
-
117
-
-
33644776864
-
Distinct mechanisms control the stability of the related S-phase cyclins Clb5 and Clb6
-
Jackson L. P., Reed S. I., Haase S. B. 2006. Distinct mechanisms control the stability of the related S-phase cyclins Clb5 and Clb6. Mol. Cell. Biol. 26, 2456-2466.
-
(2006)
Mol. Cell. Biol.
, vol.26
, pp. 2456-2466
-
-
Jackson, L.P.1
Reed, S.I.2
Haase, S.B.3
-
118
-
-
4744357937
-
Enforcement of late replication origin firing by clusters of short G-rich DNA sequences
-
Yompakdee C., Huberman J. A. 2004. Enforcement of late replication origin firing by clusters of short G-rich DNA sequences. J. Biol. Chem. 279, 42337-42344.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 42337-42344
-
-
Yompakdee, C.1
Huberman, J.A.2
-
119
-
-
0032516695
-
Genetic dissection of a mammalian replicator in the human beta-globin locus
-
Aladjem M. I., Rodewald L. W., Kolman J. L., Wahl G. M. 1998. Genetic dissection of a mammalian replicator in the human beta-globin locus. Science. 281, 1005-1009.
-
(1998)
Science
, vol.281
, pp. 1005-1009
-
-
Aladjem, M.I.1
Rodewald, L.W.2
Kolman, J.L.3
Wahl, G.M.4
-
120
-
-
0035863225
-
Functionally distinct, sequence-specific replicator and origin elements are required for Drosophila chorion gene amplification
-
Lu L., Zhang H., Tower J. 2001. Functionally distinct, sequence-specific replicator and origin elements are required for Drosophila chorion gene amplification. Genes Dev. 15, 134-146.
-
(2001)
Genes Dev
, vol.15
, pp. 134-146
-
-
Lu, L.1
Zhang, H.2
Tower, J.3
-
121
-
-
0036938915
-
A DNase I hypersensitive site flanks an origin of DNA replication and amplification in Sciara
-
Urnov F. D., Liang C., Blitzblau H. G., et al. 2002. A DNase I hypersensitive site flanks an origin of DNA replication and amplification in Sciara. Chromosoma. 111, 291-303.
-
(2002)
Chromosoma.
, vol.111
, pp. 291-303
-
-
Urnov, F.D.1
Liang, C.2
Blitzblau, H.G.3
-
122
-
-
0035931753
-
Nuclear position leaves its mark on replication timing
-
Gilbert D. M. 2001. Nuclear position leaves its mark on replication timing. J. Cell Biol. 152, F11-F15.
-
(2001)
J. Cell Biol.
, vol.152
-
-
Gilbert, D.M.1
-
123
-
-
78649660785
-
Cell fate transitions and the replication timing decision point
-
Gilbert D. M. 2010. Cell fate transitions and the replication timing decision point. J. Cell Biol. 191, 899-903.
-
(2010)
J. Cell Biol.
, vol.191
, pp. 899-903
-
-
Gilbert, D.M.1
-
124
-
-
77952994784
-
Evolutionarily conserved replication timing profiles predict longrange chromatin interactions and distinguish closely related cell types
-
Ryba T., Hiratani I., Lu J., et al. 2010. Evolutionarily conserved replication timing profiles predict longrange chromatin interactions and distinguish closely related cell types. Genome Res. 20, 761-770.
-
(2010)
Genome Res.
, vol.20
, pp. 761-770
-
-
Ryba, T.1
Hiratani, I.2
Lu, J.3
-
125
-
-
80052424582
-
Space and time in the nucleus: Developmental control of replication timing and chromosome architecture
-
Gilbert D. M., Takebayashi S. I., Ryba T., et al. 2010. Space and time in the nucleus: Developmental control of replication timing and chromosome architecture. Cold Spring Harb. Symp. Quant. Biol. 75, 143-153.
-
(2010)
Cold Spring Harb. Symp. Quant. Biol.
, vol.75
, pp. 143-153
-
-
Gilbert, D.M.1
Takebayashi, S.I.2
Ryba, T.3
-
126
-
-
0035931758
-
The positioning and dynamics of origins of replication in the budding yeast nucleus
-
Heun P., Laroche T., Raghuraman M. K., Gasser S. M. 2001. The positioning and dynamics of origins of replication in the budding yeast nucleus. J. Cell Biol. 152, 385-400.
-
(2001)
J. Cell Biol.
, vol.152
, pp. 385-400
-
-
Heun, P.1
Laroche, T.2
Raghuraman, M.K.3
Gasser, S.M.4
-
127
-
-
0034628607
-
Re-modelling of nuclear architecture in quiescent and senescent human fibroblasts
-
Bridger J. M., Boyle S., Kill I. R., Bickmore W. A. 2000. Re-modelling of nuclear architecture in quiescent and senescent human fibroblasts. Curr. Biol.: CB. 10, 149-152.
-
(2000)
Curr. Biol.: CB.
, vol.10
, pp. 149-152
-
-
Bridger, J.M.1
Boyle, S.2
Kill, I.R.3
Bickmore, W.A.4
-
128
-
-
53549118586
-
Global organization of replication time zones of the mouse genome
-
Farkash-Amar S., Lipson D., Polten A., et al. 2008. Global organization of replication time zones of the mouse genome. Genome Res. 18, 1562-1570.
-
(2008)
Genome Res.
, vol.18
, pp. 1562-1570
-
-
Farkash-Amar, S.1
Lipson, D.2
Polten, A.3
-
129
-
-
76349123622
-
Sequencing newly replicated DNA reveals widespread plasticity in human replication timing
-
Hansen R. S., Thomas S., Sandstrom R., et al. 2010. Sequencing newly replicated DNA reveals widespread plasticity in human replication timing. Proc. Natl. Acad. Sci. U. S. A. 107, 139-144.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 139-144
-
-
Hansen, R.S.1
Thomas, S.2
Sandstrom, R.3
-
130
-
-
75649092667
-
Genomewide dynamics of replication timing revealed by in vitro models of mouse embryogenesis
-
Hiratani I., Ryba T., Itoh M., et al. 2010. Genomewide dynamics of replication timing revealed by in vitro models of mouse embryogenesis. Genome Res. 20, 155-169.
-
(2010)
Genome Res.
, vol.20
, pp. 155-169
-
-
Hiratani, I.1
Ryba, T.2
Itoh, M.3
-
131
-
-
77649236302
-
Domainwide regulation of DNA replication timing during mammalian development
-
Pope B. D., Hiratani I., Gilbert D. M. 2010. Domainwide regulation of DNA replication timing during mammalian development. Chromosome Res. 18, 127-136.
-
(2010)
Chromosome Res.
, vol.18
, pp. 127-136
-
-
Pope, B.D.1
Hiratani, I.2
Gilbert, D.M.3
-
132
-
-
0021203243
-
Mapping of DNAase I sensitive regions on mitotic chromosomes
-
Kerem B. S., Goitein R., Diamond G., et al. 1984. Mapping of DNAase I sensitive regions on mitotic chromosomes. Cell. 38, 493-499.
-
(1984)
Cell.
, vol.38
, pp. 493-499
-
-
Kerem, B.S.1
Goitein, R.2
Diamond, G.3
-
133
-
-
0036842221
-
Genome-wide DNA replication profile for Drosophila melanogaster: A link between transcription and replication timing
-
Schubeler D., Scalzo D., Kooperberg C., et al. 2002. Genome-wide DNA replication profile for Drosophila melanogaster: A link between transcription and replication timing. Nature Genet. 32, 438-442.
-
(2002)
Nature Genet.
, vol.32
, pp. 438-442
-
-
Schubeler, D.1
Scalzo, D.2
Kooperberg, C.3
-
135
-
-
33747777132
-
DNA replication: The unbearable lightness of origins
-
Norio P. 2006. DNA replication: The unbearable lightness of origins. EMBO Rep. 7, 779-781.
-
(2006)
EMBO Rep.
, vol.7
, pp. 779-781
-
-
Norio, P.1
-
136
-
-
0036863542
-
Histone acetylation regulates the time of replication origin firing
-
Vogelauer M., Rubbi L., Lucas I., et al. 2002. Histone acetylation regulates the time of replication origin firing. Mol. Cell. 10, 1223-1233.
-
(2002)
Mol. Cell.
, vol.10
, pp. 1223-1233
-
-
Vogelauer, M.1
Rubbi, L.2
Lucas, I.3
-
137
-
-
0029089444
-
Factors affecting the timing and imprinting of replication on a mammalian chromosome
-
Bickmore W. A., Carothers A. D. 1995. Factors affecting the timing and imprinting of replication on a mammalian chromosome. J. Cell Sci. 108 (8), 2801-2809.
-
(1995)
J. Cell Sci.
, vol.108
, Issue.8
, pp. 2801-2809
-
-
Bickmore, W.A.1
Carothers, A.D.2
-
138
-
-
65449178609
-
Replication timing as an epigenetic mark
-
Hiratani I., Gilbert D. M. 2009. Replication timing as an epigenetic mark. Epigenetics. 4, 93-97.
-
(2009)
Epigenetics.
, vol.4
, pp. 93-97
-
-
Hiratani, I.1
Gilbert, D.M.2
-
139
-
-
39749176602
-
The impact of chromatin modifiers on the timing of locus replication in mouse embryonic stem cells
-
Jorgensen H. F., Azuara V., Amoils S., et al. 2007. The impact of chromatin modifiers on the timing of locus replication in mouse embryonic stem cells. Genome Biol. 8, R169.
-
(2007)
Genome Biol.
, vol.8
-
-
Jorgensen, H.F.1
Azuara, V.2
Amoils, S.3
-
140
-
-
33746082480
-
Uncoupling global and fine-tuning replication timing determinants for mouse pericentric heterochromatin
-
Wu R., Singh P. B., Gilbert D. M. 2006. Uncoupling global and fine-tuning replication timing determinants for mouse pericentric heterochromatin. J. Cell Biol. 174, 185-194.
-
(2006)
J. Cell Biol.
, vol.174
, pp. 185-194
-
-
Wu, R.1
Singh, P.B.2
Gilbert, D.M.3
-
141
-
-
61849184077
-
The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-type locus
-
Hayashi M. T., Takahashi T. S., Nakagawa T., et al. 2009. The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-type locus. Nature Cell Biol. 11, 357-362.
-
(2009)
Nature Cell Biol.
, vol.11
, pp. 357-362
-
-
Hayashi, M.T.1
Takahashi, T.S.2
Nakagawa, T.3
-
142
-
-
77953004689
-
Heterochromatin protein 1 (HP1) modulates replication timing of the Drosophila genome
-
Schwaiger M., Kohler H., Oakeley E. J., et al. 2010. Heterochromatin protein 1 (HP1) modulates replication timing of the Drosophila genome. Genome Res. 20, 771-780.
-
(2010)
Genome Res.
, vol.20
, pp. 771-780
-
-
Schwaiger, M.1
Kohler, H.2
Oakeley, E.J.3
-
143
-
-
0030917145
-
Precise switching of DNA replication timing in the GC content transition area in the human major histocompatibility complex
-
Tenzen T., Yamagata T., Fukagawa T., et al. 1997. Precise switching of DNA replication timing in the GC content transition area in the human major histocompatibility complex. Mol. Cell. Biol. 17, 4043-4050.
-
(1997)
Mol. Cell. Biol.
, vol.17
, pp. 4043-4050
-
-
Tenzen, T.1
Yamagata, T.2
Fukagawa, T.3
-
144
-
-
0034636703
-
Replication timing of the human X-inactivation center (XIC) region: Correlation with chromosome bands
-
Watanabe Y., Tenzen T., Nagasaka Y., et al. 2000. Replication timing of the human X-inactivation center (XIC) region: Correlation with chromosome bands. Gene. 252, 163-172.
-
(2000)
Gene.
, vol.252
, pp. 163-172
-
-
Watanabe, Y.1
Tenzen, T.2
Nagasaka, Y.3
-
145
-
-
0030812754
-
High-resolution analysis of DNA replication domain organization across an R/G-band boundary
-
Strehl S., LaSalle J. M., Lalande M. 1997. High-resolution analysis of DNA replication domain organization across an R/G-band boundary. Mol. Cell. Biol. 17, 6157-6166.
-
(1997)
Mol. Cell. Biol.
, vol.17
, pp. 6157-6166
-
-
Strehl, S.1
LaSalle, J.M.2
Lalande, M.3
-
146
-
-
27944452746
-
Progressive activation of DNA replication initiation in large domains of the immunoglobulin heavy chain locus during B cell development
-
Norio P., Kosiyatrakul S., Yang Q., et al. 2005. Progressive activation of DNA replication initiation in large domains of the immunoglobulin heavy chain locus during B cell development. Mol. Cell. 20, 575-587.
-
(2005)
Mol. Cell.
, vol.20
, pp. 575-587
-
-
Norio, P.1
Kosiyatrakul, S.2
Yang, Q.3
-
147
-
-
74049163810
-
Decreased replication origin activity in temporal transition regions
-
Guan Z., Hughes C. M., Kosiyatrakul S., et al. 2009. Decreased replication origin activity in temporal transition regions. J. Cell Biol. 187, 623-635.
-
(2009)
J. Cell Biol.
, vol.187
, pp. 623-635
-
-
Guan, Z.1
Hughes, C.M.2
Kosiyatrakul, S.3
-
148
-
-
84855272663
-
Evidence for sequential and increasing activation of replication origins along replication timing gradients in the human genome
-
Guilbaud G., Rappailles A., Baker A., et al. 2011. Evidence for sequential and increasing activation of replication origins along replication timing gradients in the human genome. PLoS Comput. Biol. 7, e1002322.
-
(2011)
PLoS Comput. Biol.
, vol.7
-
-
Guilbaud, G.1
Rappailles, A.2
Baker, A.3
-
149
-
-
65449142884
-
Replication timing and transcriptional control: Beyond cause and effect? Part II
-
Hiratani I., Takebayashi S., Lu J., Gilbert D. M. 2009. Replication timing and transcriptional control: Beyond cause and effect? Part II. Curr. Opin. Genet. Dev. 19, 142-149.
-
(2009)
Curr. Opin. Genet. Dev.
, vol.19
, pp. 142-149
-
-
Hiratani, I.1
Takebayashi, S.2
Lu, J.3
Gilbert, D.M.4
-
150
-
-
17444425224
-
Replication timing of human chromosome 6
-
Woodfine K., Beare D. M., Ichimura K., et al. 2005. Replication timing of human chromosome 6. Cell Cycle. 4, 172-176.
-
(2005)
Cell Cycle.
, vol.4
, pp. 172-176
-
-
Woodfine, K.1
Beare, D.M.2
Ichimura, K.3
-
151
-
-
84855566916
-
Late replication domains in polytene and nonpolytene cells of Drosophila melanogaster
-
Belyaeva E. S., Goncharov F. P., Demakova O. V., et al. 2012. Late replication domains in polytene and nonpolytene cells of Drosophila melanogaster. PloS ONE. 7, e30035.
-
(2012)
PloS ONE.
, vol.7
-
-
Belyaeva, E.S.1
Goncharov, F.P.2
Demakova, O.V.3
-
152
-
-
77957369058
-
Comparative analysis of DNA replication timing reveals conserved large-scale chromosomal architecture
-
Yaffe E., Farkash-Amar S., Polten A., et al. 2010. Comparative analysis of DNA replication timing reveals conserved large-scale chromosomal architecture. PLoS Genet. 6, e1001011.
-
(2010)
PLoS Genet.
, vol.6
-
-
Yaffe, E.1
Farkash-Amar, S.2
Polten, A.3
-
153
-
-
80055086494
-
Replication timing: A fingerprint for cell identity and pluripotency
-
Ryba T., Hiratani I., Sasaki T., et al. 2011. Replication timing: A fingerprint for cell identity and pluripotency. PLoS Comput. Biol. 7, e1002225.
-
(2011)
PLoS Comput. Biol.
, vol.7
-
-
Ryba, T.1
Hiratani, I.2
Sasaki, T.3
-
154
-
-
2642570305
-
The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote
-
Schubeler D., MacAlpine D. M., Scalzo D., et al. 2004. The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev. 18, 1263-1271.
-
(2004)
Genes Dev.
, vol.18
, pp. 1263-1271
-
-
Schubeler, D.1
MacAlpine, D.M.2
Scalzo, D.3
-
156
-
-
0242439142
-
Nuclear localization and histone acetylation: A pathway for chromatin opening and transcriptional activation of the human beta-globin locus
-
Schubeler D., Francastel C., Cimbora D. M., et al. 2000. Nuclear localization and histone acetylation: A pathway for chromatin opening and transcriptional activation of the human beta-globin locus. Genes Dev. 14, 940-950.
-
(2000)
Genes Dev.
, vol.14
, pp. 940-950
-
-
Schubeler, D.1
Francastel, C.2
Cimbora, D.M.3
-
157
-
-
0343953085
-
Long-distance control of origin choice and replication timing in the human beta-globin locus are independent of the locus control region
-
Cimbora D. M., Schubeler D., Reik A., et al. 2000. Long-distance control of origin choice and replication timing in the human beta-globin locus are independent of the locus control region. Mol. Cell. Biol. 20, 5581-5591.
-
(2000)
Mol. Cell. Biol.
, vol.20
, pp. 5581-5591
-
-
Cimbora, D.M.1
Schubeler, D.2
Reik, A.3
-
158
-
-
2642647114
-
Initiation of DNA replication at CpG islands in mammalian chromosomes
-
Delgado S., Gomez M., Bird A., Antequera F. 1998. Initiation of DNA replication at CpG islands in mammalian chromosomes. EMBO J. 17, 2426-2435.
-
(1998)
EMBO J.
, vol.17
, pp. 2426-2435
-
-
Delgado, S.1
Gomez, M.2
Bird, A.3
Antequera, F.4
-
160
-
-
77957337127
-
Epigenetically-inherited centromere and neocentromere DNA replicates earliest in S-phase
-
Koren A., Tsai H. J., Tirosh I., et al. 2010. Epigenetically-inherited centromere and neocentromere DNA replicates earliest in S-phase. PLoS Genet. 6, e1001068.
-
(2010)
PLoS Genet.
, vol.6
-
-
Koren, A.1
Tsai, H.J.2
Tirosh, I.3
-
161
-
-
30044434136
-
Replication of centromeric heterochromatin in mouse fibroblasts takes place in early, middle, and late S phase
-
Weidtkamp-Peters S., Rahn H. P., Cardoso M. C., Hemmerich P. 2006. Replication of centromeric heterochromatin in mouse fibroblasts takes place in early, middle, and late S phase. Histochem. Cell Biol. 125, 91-102.
-
(2006)
Histochem. Cell Biol.
, vol.125
, pp. 91-102
-
-
Weidtkamp-Peters, S.1
Rahn, H.P.2
Cardoso, M.C.3
Hemmerich, P.4
-
162
-
-
67649126836
-
Shifts in replication timing actively affect histone acetylation during nucleosome reassembly
-
Lande-Diner L., Zhang J., Cedar H. 2009. Shifts in replication timing actively affect histone acetylation during nucleosome reassembly. Mol. Cell. 34, 767-774.
-
(2009)
Mol. Cell.
, vol.34
, pp. 767-774
-
-
Lande-Diner, L.1
Zhang, J.2
Cedar, H.3
-
163
-
-
0027205671
-
Allelespecific replication timing of imprinted gene regions
-
Kitsberg D., Selig S., Brandeis M., et al. 1993. Allelespecific replication timing of imprinted gene regions. Nature. 364, 459-463.
-
(1993)
Nature.
, vol.364
, pp. 459-463
-
-
Kitsberg, D.1
Selig, S.2
Brandeis, M.3
-
165
-
-
0037078986
-
Establishment of transcriptional competence in early and late S phase
-
Zhang J., Xu F., Hashimshony T., Keshet I., Cedar H. 2002. Establishment of transcriptional competence in early and late S phase. Nature. 420, 198-202.
-
(2002)
Nature.
, vol.420
, pp. 198-202
-
-
Zhang, J.1
Xu, F.2
Hashimshony, T.3
Keshet, I.4
Cedar, H.5
-
166
-
-
80054948832
-
Genetic variation and DNA replication timing, or why is there late replicating DNA?
-
Herrick J. 2011. Genetic variation and DNA replication timing, or why is there late replicating DNA? Evol. Int. J. Organic Evol. 65, 3031-3047.
-
(2011)
Evol. Int. J. Organic Evol.
, vol.65
, pp. 3031-3047
-
-
Herrick, J.1
-
167
-
-
78650132334
-
Developmental control of late replication and S phase length
-
Shermoen A. W., McCleland M. L., O'Farrell P. H. 2010. Developmental control of late replication and S phase length. Curr. Biol.: CB. 20, 2067-2077.
-
(2010)
Curr. Biol.: CB.
, vol.20
, pp. 2067-2077
-
-
Shermoen, A.W.1
McCleland, M.L.2
O'Farrell, P.H.3
-
168
-
-
78649315607
-
Gene density profile reveals the marking of late replicated domains in the Drosophila melanogaster genome
-
Belyakin S. N., Babenko V. N., Maksimov D. A., et al. 2010. Gene density profile reveals the marking of late replicated domains in the Drosophila melanogaster genome. Chromosoma. 119, 589-600.
-
(2010)
Chromosoma.
, vol.119
, pp. 589-600
-
-
Belyakin, S.N.1
Babenko, V.N.2
Maksimov, D.A.3
-
169
-
-
77950661675
-
Impact of replication timing on non-CpG and CpG substitution rates in mammalian genomes
-
Chen C. L., Rappailles A., Duquenne L., et al. 2010. Impact of replication timing on non-CpG and CpG substitution rates in mammalian genomes. Genome Res. 20, 447-457.
-
(2010)
Genome Res.
, vol.20
, pp. 447-457
-
-
Chen, C.L.1
Rappailles, A.2
Duquenne, L.3
-
170
-
-
84855877053
-
Late-replicating domains have higher divergence and diversity in Drosophila melanogaster
-
Weber C. C., Pink C. J., Hurst L. D. 2012. Late-replicating domains have higher divergence and diversity in Drosophila melanogaster. Mol. Biol. Evol. 29, 873-882.
-
(2012)
Mol. Biol. Evol.
, vol.29
, pp. 873-882
-
-
Weber, C.C.1
Pink, C.J.2
Hurst, L.D.3
|