메뉴 건너뛰기




Volumn 47, Issue 1, 2013, Pages 12-33

Regulation of DNA replication timing

Author keywords

late replication; replication; replication domain; replication focus; replication initiation; replication origin; replication timing

Indexed keywords

ANIMAL; CELL CYCLE S PHASE; CELL NUCLEUS; CHROMATIN; DNA REPLICATION; DNA REPLICATION ORIGIN; DNA REPLICATION TIMING; GENETIC TRANSCRIPTION; GENETICS; HUMAN; REVIEW; SACCHAROMYCES CEREVISIAE;

EID: 84874388834     PISSN: 00268933     EISSN: 16083245     Source Type: Journal    
DOI: 10.1134/S0026893312060118     Document Type: Review
Times cited : (7)

References (170)
  • 1
    • 79957808242 scopus 로고    scopus 로고
    • Open sesame: Activating dormant replication origins in the mouse immunoglobulin heavy chain (IgH) locus
    • Borowiec J. A., Schildkraut C. L. 2011. Open sesame: Activating dormant replication origins in the mouse immunoglobulin heavy chain (IgH) locus. Curr. Opin. Cell. Biol. 23, 284-292.
    • (2011) Curr. Opin. Cell. Biol. , vol.23 , pp. 284-292
    • Borowiec, J.A.1    Schildkraut, C.L.2
  • 2
    • 0038512143 scopus 로고    scopus 로고
    • The 'ORC cycle': A novel pathway for regulating eukaryotic DNA replication
    • DePamphilis M. L. 2003. The 'ORC cycle': A novel pathway for regulating eukaryotic DNA replication. Gene. 310, 1-15.
    • (2003) Gene. , vol.310 , pp. 1-15
    • DePamphilis, M.L.1
  • 3
    • 0036500535 scopus 로고    scopus 로고
    • The chromosome replication cycle
    • Diffley J. F., Labib K. 2002. The chromosome replication cycle. J. Cell Sci. 115, 869-872.
    • (2002) J. Cell Sci. , vol.115 , pp. 869-872
    • Diffley, J.F.1    Labib, K.2
  • 4
    • 0033369515 scopus 로고    scopus 로고
    • The spatial position and replication timing of chromosomal domains are both established in early G1 phase
    • Dimitrova D. S., Gilbert D. M. 1999. The spatial position and replication timing of chromosomal domains are both established in early G1 phase. Mol. Cell. 4, 983-993.
    • (1999) Mol. Cell. , vol.4 , pp. 983-993
    • Dimitrova, D.S.1    Gilbert, D.M.2
  • 5
    • 74749095240 scopus 로고    scopus 로고
    • Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins
    • Ilves I., Petojevic T., Pesavento J. J., Botchan M. R. 2010. Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol. Cell. 37, 247-258.
    • (2010) Mol. Cell. , vol.37 , pp. 247-258
    • Ilves, I.1    Petojevic, T.2    Pesavento, J.J.3    Botchan, M.R.4
  • 6
    • 15444363490 scopus 로고    scopus 로고
    • Chromatin decondensation in S-phase involves recruitment of Cdk2 by Cdc45 and histone H1 phosphorylation
    • Alexandrow M. G., Hamlin J. L. 2005. Chromatin decondensation in S-phase involves recruitment of Cdk2 by Cdc45 and histone H1 phosphorylation. J. Cell Biol. 168, 875-886.
    • (2005) J. Cell Biol. , vol.168 , pp. 875-886
    • Alexandrow, M.G.1    Hamlin, J.L.2
  • 7
    • 33947127410 scopus 로고    scopus 로고
    • Strength in numbers: Preventing rereplication via multiple mechanisms in eukaryotic cells
    • Arias E. E., Walter J. C. 2007. Strength in numbers: Preventing rereplication via multiple mechanisms in eukaryotic cells. Genes Dev. 21, 497-518.
    • (2007) Genes Dev. , vol.21 , pp. 497-518
    • Arias, E.E.1    Walter, J.C.2
  • 8
  • 9
    • 33750438774 scopus 로고    scopus 로고
    • Genome-wide characterization of fission yeast DNA replication origins
    • Heichinger C., Penkett C. J., Bahler J., Nurse P. 2006. Genome-wide characterization of fission yeast DNA replication origins. EMBO J. 25, 5171-5179.
    • (2006) EMBO J. , vol.25 , pp. 5171-5179
    • Heichinger, C.1    Penkett, C.J.2    Bahler, J.3    Nurse, P.4
  • 10
    • 33845405316 scopus 로고    scopus 로고
    • DNA replication origin interference increases the spacing between initiation events in human cells
    • Lebofsky R., Heilig R., Sonnleitner M., et al. 2006. DNA replication origin interference increases the spacing between initiation events in human cells. Mol. Biol. Cell. 17, 5337-5345.
    • (2006) Mol. Biol. Cell. , vol.17 , pp. 5337-5345
    • Lebofsky, R.1    Heilig, R.2    Sonnleitner, M.3
  • 11
    • 54849417379 scopus 로고    scopus 로고
    • A revisionist replicon model for higher eukaryotic genomes
    • Hamlin J. L., Mesner L. D., Lar O., et al. 2008. A revisionist replicon model for higher eukaryotic genomes. J. Cell. Biochem. 105, 321-329.
    • (2008) J. Cell. Biochem. , vol.105 , pp. 321-329
    • Hamlin, J.L.1    Mesner, L.D.2    Lar, O.3
  • 12
    • 79952270733 scopus 로고    scopus 로고
    • Bubble-chip analysis of human origin distributions demonstrates on a genomic scale significant clustering into zones and significant association with transcription
    • Mesner L. D., Valsakumar V., Karnani N., et al. 2011. Bubble-chip analysis of human origin distributions demonstrates on a genomic scale significant clustering into zones and significant association with transcription. Genome Res. 21, 377-389.
    • (2011) Genome Res. , vol.21 , pp. 377-389
    • Mesner, L.D.1    Valsakumar, V.2    Karnani, N.3
  • 13
    • 79952303535 scopus 로고    scopus 로고
    • Cdc45 limits replicon usage from a low density of preRCs in mammalian cells
    • Wong P. G., Winter S. L., Zaika E., et al. 2011. Cdc45 limits replicon usage from a low density of preRCs in mammalian cells. PLoS ONE. 6, e17533.
    • (2011) PLoS ONE. , vol.6
    • Wong, P.G.1    Winter, S.L.2    Zaika, E.3
  • 14
    • 0026890665 scopus 로고
    • Chromosome bands, their chromatin flavors, and their functional features
    • Holmquist G. P. 1992. Chromosome bands, their chromatin flavors, and their functional features. Am. J. Hum. Genet. 51, 17-37.
    • (1992) Am. J. Hum. Genet. , vol.51 , pp. 17-37
    • Holmquist, G.P.1
  • 15
    • 42149091628 scopus 로고    scopus 로고
    • Replication timing, chromosomal bands, and isochores
    • Costantini M., Bernardi G. 2008. Replication timing, chromosomal bands, and isochores. Proc. Natl. Acad. Sci. U. S. A. 105, 3433-3437.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , pp. 3433-3437
    • Costantini, M.1    Bernardi, G.2
  • 16
    • 0034008103 scopus 로고    scopus 로고
    • Heterogeneity of eukaryotic replicons, replicon clusters, and replication foci
    • Berezney R., Dubey D. D., Huberman J. A. 2000. Heterogeneity of eukaryotic replicons, replicon clusters, and replication foci. Chromosoma. 108, 471-484.
    • (2000) Chromosoma. , vol.108 , pp. 471-484
    • Berezney, R.1    Dubey, D.D.2    Huberman, J.A.3
  • 17
    • 9444269829 scopus 로고    scopus 로고
    • Stable chromosomal units determine the spatial and temporal organization of DNA replication
    • Sadoni N., Cardoso M. C., Stelzer E. H., et al. 2004. Stable chromosomal units determine the spatial and temporal organization of DNA replication. J. Cell. Sci. 117, 5353-5365.
    • (2004) J. Cell. Sci. , vol.117 , pp. 5353-5365
    • Sadoni, N.1    Cardoso, M.C.2    Stelzer, E.H.3
  • 19
    • 0032559794 scopus 로고    scopus 로고
    • Replicon clusters are stable units of chromosome structure: Evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells
    • Jackson D. A., Pombo A. 1998. Replicon clusters are stable units of chromosome structure: Evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J. Cell. Biol. 140, 1285-1295.
    • (1998) J. Cell. Biol. , vol.140 , pp. 1285-1295
    • Jackson, D.A.1    Pombo, A.2
  • 20
    • 34547814092 scopus 로고    scopus 로고
    • Replication fork velocities at adjacent replication origins are coordinately modified during DNA replication in human cells
    • Conti C., Sacca B., Herrick J., et al. 2007. Replication fork velocities at adjacent replication origins are coordinately modified during DNA replication in human cells. Mol. Biol. Cell. 18, 3059-3067.
    • (2007) Mol. Biol. Cell. , vol.18 , pp. 3059-3067
    • Conti, C.1    Sacca, B.2    Herrick, J.3
  • 21
    • 0036929125 scopus 로고    scopus 로고
    • DNA polymerase clamp shows little turnover at established replication sites but sequential de novo assembly at adjacent origin clusters
    • Sporbert A., Gahl A., Ankerhold R., et al. 2002. DNA polymerase clamp shows little turnover at established replication sites but sequential de novo assembly at adjacent origin clusters. Mol. Cell. 10, 1355-1365.
    • (2002) Mol. Cell. , vol.10 , pp. 1355-1365
    • Sporbert, A.1    Gahl, A.2    Ankerhold, R.3
  • 22
    • 77952343862 scopus 로고    scopus 로고
    • S phase progression in human cells is dictated by the genetic continuity of DNA foci
    • Maya-Mendoza A., Olivares-Chauvet P., Shaw A., Jackson D. A. 2010. S phase progression in human cells is dictated by the genetic continuity of DNA foci. PLoS Genet. 6, e1000900.
    • (2010) PLoS Genet. , vol.6
    • Maya-Mendoza, A.1    Olivares-Chauvet, P.2    Shaw, A.3    Jackson, D.A.4
  • 23
    • 0033104977 scopus 로고    scopus 로고
    • Evidence that a single replication fork proceeds from early to late replicating domains in the IgH locus in a non-B cell line
    • Ermakova O. V., Nguyen L. H., Little R. D., et al. 1999. Evidence that a single replication fork proceeds from early to late replicating domains in the IgH locus in a non-B cell line. Mol. Cell. 3, 321-330.
    • (1999) Mol. Cell. , vol.3 , pp. 321-330
    • Ermakova, O.V.1    Nguyen, L.H.2    Little, R.D.3
  • 24
    • 0031261584 scopus 로고    scopus 로고
    • The efficiency and timing of initiation of replication of multiple replicons of Saccharomyces cerevisiae chromosome VI
    • Yamashita M., Hori Y., Shinomiya T., et al. 1997. The efficiency and timing of initiation of replication of multiple replicons of Saccharomyces cerevisiae chromosome VI. Genes Cells. 2, 655-665.
    • (1997) Genes Cells. , vol.2 , pp. 655-665
    • Yamashita, M.1    Hori, Y.2    Shinomiya, T.3
  • 25
    • 34447565003 scopus 로고    scopus 로고
    • Replication in context: Dynamic regulation of DNA replication patterns in metazoans
    • Aladjem M. I. 2007. Replication in context: Dynamic regulation of DNA replication patterns in metazoans. Nature Rev. Genet. 8, 588-600.
    • (2007) Nature Rev. Genet. , vol.8 , pp. 588-600
    • Aladjem, M.I.1
  • 27
    • 57349149434 scopus 로고    scopus 로고
    • Genome-wide studies highlight indirect links between human replication origins and gene regulation
    • Cadoret J. C., Meisch F., Hassan-Zadeh V., et al. 2008. Genome-wide studies highlight indirect links between human replication origins and gene regulation. Proc. Natl. Acad. Sci. U. S. A. 105, 15837-15842.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , pp. 15837-15842
    • Cadoret, J.C.1    Meisch, F.2    Hassan-Zadeh, V.3
  • 28
    • 66149138883 scopus 로고    scopus 로고
    • Transcription initiation activity sets replication origin efficiency in mammalian cells
    • Sequeira-Mendes J., Diaz-Uriarte R., Apedaile A., et al. 2009. Transcription initiation activity sets replication origin efficiency in mammalian cells. PLoS Genet. 5, e1000446.
    • (2009) PLoS Genet. , vol.5
    • Sequeira-Mendes, J.1    Diaz-Uriarte, R.2    Apedaile, A.3
  • 29
    • 76049105950 scopus 로고    scopus 로고
    • Genomic study of replication initiation in human chromosomes reveals the influence of transcription regulation and chromatin structure on origin selection
    • Karnani N., Taylor C. M., Malhotra A., Dutta A. 2010. Genomic study of replication initiation in human chromosomes reveals the influence of transcription regulation and chromatin structure on origin selection. Mol. Biol. Cell. 21, 393-404.
    • (2010) Mol. Biol. Cell. , vol.21 , pp. 393-404
    • Karnani, N.1    Taylor, C.M.2    Malhotra, A.3    Dutta, A.4
  • 30
    • 75649109712 scopus 로고    scopus 로고
    • Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading
    • MacAlpine H. K., Gordan R., Powell S. K., et al. 2010. Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading. Genome Res. 20, 201-211.
    • (2010) Genome Res. , vol.20 , pp. 201-211
    • MacAlpine, H.K.1    Gordan, R.2    Powell, S.K.3
  • 31
    • 84855336201 scopus 로고    scopus 로고
    • Developmental control of gene copy number by repression of replication initiation and fork progression
    • Sher N., Bell G. W., Li S., et al. 2012. Developmental control of gene copy number by repression of replication initiation and fork progression. Genome Res. 22, 64-75.
    • (2012) Genome Res. , vol.22 , pp. 64-75
    • Sher, N.1    Bell, G.W.2    Li, S.3
  • 32
    • 80052523848 scopus 로고    scopus 로고
    • Genome-scale analysis of metazoan replication origins reveals their organization in specific but flexible sites defined by conserved features
    • Cayrou C., Coulombe P., Vigneron A., et al. 2011. Genome-scale analysis of metazoan replication origins reveals their organization in specific but flexible sites defined by conserved features. Genome Res. 21, 1438-1449.
    • (2011) Genome Res. , vol.21 , pp. 1438-1449
    • Cayrou, C.1    Coulombe, P.2    Vigneron, A.3
  • 33
    • 79952359976 scopus 로고    scopus 로고
    • Genome-wide mapping of Arabidopsis thaliana origins of DNA replication and their associated epigenetic marks
    • Costas C., de la Paz Sanchez M., Stroud H., et al. 2011. Genome-wide mapping of Arabidopsis thaliana origins of DNA replication and their associated epigenetic marks. Nature Struct. Mol. Biol. 18, 395-400.
    • (2011) Nature Struct. Mol. Biol. , vol.18 , pp. 395-400
    • Costas, C.1    de la Paz Sanchez, M.2    Stroud, H.3
  • 34
    • 79551581102 scopus 로고    scopus 로고
    • Chromatin signatures of the Drosophila replication program
    • Eaton M. L., Prinz J. A., MacAlpine H. K., et al. 2011. Chromatin signatures of the Drosophila replication program. Genome Res. 21, 164-174.
    • (2011) Genome Res. , vol.21 , pp. 164-174
    • Eaton, M.L.1    Prinz, J.A.2    MacAlpine, H.K.3
  • 35
    • 77956879643 scopus 로고    scopus 로고
    • Evaluating genome-scale approaches to eukaryotic DNA replication
    • Gilbert D. M. 2010. Evaluating genome-scale approaches to eukaryotic DNA replication. Nature Rev. Genet. 11, 673-684.
    • (2010) Nature Rev. Genet. , vol.11 , pp. 673-684
    • Gilbert, D.M.1
  • 36
    • 73249147619 scopus 로고    scopus 로고
    • Predictable dynamic program of timing of DNA replication in human cells
    • Desprat R., Thierry-Mieg D., Lailler N., et al. 2009. Predictable dynamic program of timing of DNA replication in human cells. Genome Res. 19, 2288-2299.
    • (2009) Genome Res. , vol.19 , pp. 2288-2299
    • Desprat, R.1    Thierry-Mieg, D.2    Lailler, N.3
  • 37
    • 0042125189 scopus 로고    scopus 로고
    • Sequenceindependent DNA binding and replication initiation by the human origin recognition complex
    • Vashee S., Cvetic C., Lu W., et al. 2003. Sequenceindependent DNA binding and replication initiation by the human origin recognition complex. Genes Dev. 17, 1894-1908.
    • (2003) Genes Dev. , vol.17 , pp. 1894-1908
    • Vashee, S.1    Cvetic, C.2    Lu, W.3
  • 38
    • 1842509904 scopus 로고    scopus 로고
    • DNA topology, not DNA sequence, is a critical determinant for Drosophila ORC-DNA binding
    • Remus D., Beall E. L., Botchan M. R. 2004. DNA topology, not DNA sequence, is a critical determinant for Drosophila ORC-DNA binding. EMBO J. 23, 897-907.
    • (2004) EMBO J , vol.23 , pp. 897-907
    • Remus, D.1    Beall, E.L.2    Botchan, M.R.3
  • 39
    • 0025067370 scopus 로고
    • Nucleosome positioning can affect the function of a cis-acting DNA element in vivo
    • Simpson R. T. 1990. Nucleosome positioning can affect the function of a cis-acting DNA element in vivo. Nature. 343, 387-389.
    • (1990) Nature. , vol.343 , pp. 387-389
    • Simpson, R.T.1
  • 40
    • 43049124410 scopus 로고    scopus 로고
    • An ARS element inhibits DNA replication through a SIR2-dependent mechanism
    • Crampton A., Chang F., Pappas D. L. Jr., et al. 2008. An ARS element inhibits DNA replication through a SIR2-dependent mechanism. Mol. Cell. 30, 156-166.
    • (2008) Mol. Cell. , vol.30 , pp. 156-166
    • Crampton, A.1    Chang, F.2    Pappas Jr., D.L.3
  • 41
    • 57149119464 scopus 로고    scopus 로고
    • Distinct modes of regulation by chromatin encoded through nucleosome positioning signals
    • Field Y., Kaplan N., Fondufe-Mittendorf Y., et al. 2008. Distinct modes of regulation by chromatin encoded through nucleosome positioning signals. PLoS Comput. Biol. 4, e1000216.
    • (2008) PLoS Comput. Biol. , vol.4
    • Field, Y.1    Kaplan, N.2    Fondufe-Mittendorf, Y.3
  • 42
    • 78650331647 scopus 로고    scopus 로고
    • Identification of functional elements and regulatory circuits by Drosophila modENCODE
    • Roy S., Ernst J., Kharchenko P. V., Kheradpour P., et al. 2010. Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science. 330, 1787-1797.
    • (2010) Science. , vol.330 , pp. 1787-1797
    • Roy, S.1    Ernst, J.2    Kharchenko, P.V.3    Kheradpour, P.4
  • 43
    • 78049415820 scopus 로고    scopus 로고
    • Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure
    • Berbenetz N. M., Nislow C., Brown G. W. 2010. Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure. PLoS Genet. 6, e1001092.
    • (2010) PLoS Genet. , vol.6
    • Berbenetz, N.M.1    Nislow, C.2    Brown, G.W.3
  • 44
    • 77952996319 scopus 로고    scopus 로고
    • Genomewide kinetics of nucleosome turnover determined by metabolic labeling of histones
    • Deal R. B., Henikoff J. G., Henikoff S. 2010. Genomewide kinetics of nucleosome turnover determined by metabolic labeling of histones. Science. 328, 1161-1164.
    • (2010) Science , vol.328 , pp. 1161-1164
    • Deal, R.B.1    Henikoff, J.G.2    Henikoff, S.3
  • 45
    • 77950962157 scopus 로고    scopus 로고
    • Conserved nucleosome positioning defines replication origins
    • Eaton M. L., Galani K., Kang S., et al. 2010. Conserved nucleosome positioning defines replication origins. Genes Dev. 24, 748-753.
    • (2010) Genes Dev. , vol.24 , pp. 748-753
    • Eaton, M.L.1    Galani, K.2    Kang, S.3
  • 46
    • 77649235074 scopus 로고    scopus 로고
    • Programming DNA replication origins and chromosome organization
    • Cayrou C., Coulombe P., Mechali M. 2010. Programming DNA replication origins and chromosome organization. Chromosome Res. 18, 137-145.
    • (2010) Chromosome Res. , vol.18 , pp. 137-145
    • Cayrou, C.1    Coulombe, P.2    Mechali, M.3
  • 47
    • 0035104474 scopus 로고    scopus 로고
    • Nucleosomes positioned by ORC facilitate the initiation of DNA replication
    • Lipford J. R., Bell S. P. 2001. Nucleosomes positioned by ORC facilitate the initiation of DNA replication. Mol. Cell. 7, 21-30.
    • (2001) Mol. Cell. , vol.7 , pp. 21-30
    • Lipford, J.R.1    Bell, S.P.2
  • 48
    • 33745807643 scopus 로고    scopus 로고
    • Differential binding of replication proteins across the human c-myc replicator
    • Ghosh M., Kemp M., Liu G., et al. 2006. Differential binding of replication proteins across the human c-myc replicator. Mol. Cell. Biol. 26, 5270-5283.
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 5270-5283
    • Ghosh, M.1    Kemp, M.2    Liu, G.3
  • 49
    • 34748826166 scopus 로고    scopus 로고
    • A high-resolution atlas of nucleosome occupancy in yeast
    • Lee W., Tillo D., Bray N., et al. 2007. A high-resolution atlas of nucleosome occupancy in yeast. Nature Genet. 39, 1235-1244.
    • (2007) Nature Genet. , vol.39 , pp. 1235-1244
    • Lee, W.1    Tillo, D.2    Bray, N.3
  • 50
    • 0024977788 scopus 로고
    • Similarity between the transcriptional silencer binding proteins ABF1 and RAP1
    • Diffley J. F., Stillman B. 1989. Similarity between the transcriptional silencer binding proteins ABF1 and RAP1. Science. 246, 1034-1038.
    • (1989) Science. , vol.246 , pp. 1034-1038
    • Diffley, J.F.1    Stillman, B.2
  • 51
    • 12244265093 scopus 로고    scopus 로고
    • DNA replication origins in the Schizosaccharomyces pombe genome
    • Dai J., Chuang R. Y., Kelly T. J. 2005. DNA replication origins in the Schizosaccharomyces pombe genome. Proc. Natl. Acad. Sci. U. S. A. 102, 337-342.
    • (2005) Proc. Natl. Acad. Sci. U. S. A. , vol.102 , pp. 337-342
    • Dai, J.1    Chuang, R.Y.2    Kelly, T.J.3
  • 52
    • 77957168933 scopus 로고    scopus 로고
    • Eukaryotic DNA replication origins: Many choices for appropriate answers
    • Mechali M. 2010. Eukaryotic DNA replication origins: Many choices for appropriate answers. Nature Rev. Mol. Cell Biol. 11, 728-738.
    • (2010) Nature Rev. Mol. Cell Biol. , vol.11 , pp. 728-738
    • Mechali, M.1
  • 53
    • 0029670538 scopus 로고    scopus 로고
    • A distinct G1 step required to specify the Chinese hamster DHFR replication origin
    • Wu J. R., Gilbert D. M. 1996. A distinct G1 step required to specify the Chinese hamster DHFR replication origin. Science. 271, 1270-1272.
    • (1996) Science. , vol.271 , pp. 1270-1272
    • Wu, J.R.1    Gilbert, D.M.2
  • 54
    • 80054821878 scopus 로고    scopus 로고
    • Synergic reprogramming of mammalian cells by combined exposure to mitotic Xenopus egg extracts and transcription factors
    • Ganier O., Bocquet S., Peiffer I., et al. 2011. Synergic reprogramming of mammalian cells by combined exposure to mitotic Xenopus egg extracts and transcription factors. Proc. Natl. Acad. Sci. U. S. A. 108, 17331-17336.
    • (2011) Proc. Natl. Acad. Sci. U. S. A. , vol.108 , pp. 17331-17336
    • Ganier, O.1    Bocquet, S.2    Peiffer, I.3
  • 55
    • 33847221417 scopus 로고    scopus 로고
    • Functional interactions of DNA topoisomerases with a human replication origin
    • Abdurashidova G., Radulescu S., Sandoval O., et al. 2007. Functional interactions of DNA topoisomerases with a human replication origin. EMBO J. 26, 998-1009.
    • (2007) EMBO J , vol.26 , pp. 998-1009
    • Abdurashidova, G.1    Radulescu, S.2    Sandoval, O.3
  • 56
    • 34249890186 scopus 로고    scopus 로고
    • Developmental reprogramming after chromosome transfer into mitotic mouse zygotes
    • Egli D., Rosains J., Birkhoff G., Eggan K. 2007. Developmental reprogramming after chromosome transfer into mitotic mouse zygotes. Nature. 447, 679-685.
    • (2007) Nature , vol.447 , pp. 679-685
    • Egli, D.1    Rosains, J.2    Birkhoff, G.3    Eggan, K.4
  • 57
    • 28344440877 scopus 로고    scopus 로고
    • Mitotic remodeling of the replicon and chromosome structure
    • Lemaitre J. M., Danis E., Pasero P., et al. 2005. Mitotic remodeling of the replicon and chromosome structure. Cell. 123, 787-801.
    • (2005) Cell. , vol.123 , pp. 787-801
    • Lemaitre, J.M.1    Danis, E.2    Pasero, P.3
  • 58
    • 54949085778 scopus 로고    scopus 로고
    • Global reorganization of replication domains during embryonic stem cell differentiation
    • Hiratani I., Ryba T., Itoh M., et al. 2008. Global reorganization of replication domains during embryonic stem cell differentiation. PLoS Biol. 6, e245.
    • (2008) PLoS Biol. , vol.6
    • Hiratani, I.1    Ryba, T.2    Itoh, M.3
  • 59
    • 61849177618 scopus 로고    scopus 로고
    • Chromatin state marks cell-type- and gender-specific replication of the Drosophila genome
    • Schwaiger M., Stadler M. B., Bell O., et al. 2009. Chromatin state marks cell-type- and gender-specific replication of the Drosophila genome. Genes Dev. 23, 589-601.
    • (2009) Genes Dev. , vol.23 , pp. 589-601
    • Schwaiger, M.1    Stadler, M.B.2    Bell, O.3
  • 60
    • 77956225395 scopus 로고    scopus 로고
    • Nucleotide supply, not local histone acetylation, sets replication origin usage in transcribed regions
    • Gay S., Lachages A. M., Millot G. A., et al. 2010. Nucleotide supply, not local histone acetylation, sets replication origin usage in transcribed regions. EMBO Rep. 11, 698-704.
    • (2010) EMBO Rep. , vol.11 , pp. 698-704
    • Gay, S.1    Lachages, A.M.2    Millot, G.A.3
  • 61
    • 77953569966 scopus 로고    scopus 로고
    • G2 phase chromatin lacks determinants of replication timing
    • Lu J., Li F., Murphy C. S., et al. 2010. G2 phase chromatin lacks determinants of replication timing. J. Cell. Biol. 189, 967-980.
    • (2010) J. Cell. Biol. , vol.189 , pp. 967-980
    • Lu, J.1    Li, F.2    Murphy, C.S.3
  • 62
    • 61349201535 scopus 로고    scopus 로고
    • Establishing the program of origin firing during S phase in fission yeast
    • Wu P. Y., Nurse P. 2009. Establishing the program of origin firing during S phase in fission yeast. Cell. 136, 852-864.
    • (2009) Cell. , vol.136 , pp. 852-864
    • Wu, P.Y.1    Nurse, P.2
  • 63
    • 33747432986 scopus 로고    scopus 로고
    • Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress
    • Woodward A. M., Gohler T., Luciani M. G., et al. 2006. Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress. J. Cell. Biol. 173, 673-683.
    • (2006) J. Cell. Biol. , vol.173 , pp. 673-683
    • Woodward, A.M.1    Gohler, T.2    Luciani, M.G.3
  • 64
    • 48249084972 scopus 로고    scopus 로고
    • Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication
    • Ibarra A., Schwob E., Mendez J. 2008. Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication. Proc. Natl. Acad. Sci. U. S. A. 105, 8956-8961.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , pp. 8956-8961
    • Ibarra, A.1    Schwob, E.2    Mendez, J.3
  • 65
    • 59449092118 scopus 로고    scopus 로고
    • The Hsk1(Cdc7) replication kinase regulates origin efficiency
    • Patel P. K., Kommajosyula N., Rosebrock A., et al. 2008. The Hsk1(Cdc7) replication kinase regulates origin efficiency. Mol. Biol. Cell. 19, 5550-5558.
    • (2008) Mol. Biol. Cell. , vol.19 , pp. 5550-5558
    • Patel, P.K.1    Kommajosyula, N.2    Rosebrock, A.3
  • 66
    • 62549132126 scopus 로고    scopus 로고
    • Cyclin A-Cdk1 regulates the origin firing program in mammalian cells
    • Katsuno Y., Suzuki A., Sugimura K., et al. 2009. Cyclin A-Cdk1 regulates the origin firing program in mammalian cells. Proc. Natl. Acad. Sci. U. S. A. 106, 3184-3189.
    • (2009) Proc. Natl. Acad. Sci. U. S. A. , vol.106 , pp. 3184-3189
    • Katsuno, Y.1    Suzuki, A.2    Sugimura, K.3
  • 67
    • 40949152974 scopus 로고    scopus 로고
    • Cdk1 and Cdk2 activity levels determine the efficiency of replication origin firing in Xenopus
    • Krasinska L., Besnard E., Cot E., et al. 2008. Cdk1 and Cdk2 activity levels determine the efficiency of replication origin firing in Xenopus. EMBO J. 27, 758-769.
    • (2008) EMBO J. , vol.27 , pp. 758-769
    • Krasinska, L.1    Besnard, E.2    Cot, E.3
  • 68
    • 61849083545 scopus 로고    scopus 로고
    • The temporal program of chromosome replication: Genomewide replication in clb5{Delta} Saccharomyces cerevisiae
    • McCune H. J., Danielson L. S., Alvino G. M., et al. 2008. The temporal program of chromosome replication: Genomewide replication in clb5{Delta} Saccharomyces cerevisiae. Genetics. 180, 1833-1847.
    • (2008) Genetics. , vol.180 , pp. 1833-1847
    • McCune, H.J.1    Danielson, L.S.2    Alvino, G.M.3
  • 69
    • 0019998194 scopus 로고
    • A relationship between replicon size and supercoiled loop domains in the eukaryotic genome
    • Buongiorno-Nardelli M., Micheli G., Carri M. T., Marilley M. 1982. A relationship between replicon size and supercoiled loop domains in the eukaryotic genome. Nature. 298, 100-102.
    • (1982) Nature. , vol.298 , pp. 100-102
    • Buongiorno-Nardelli, M.1    Micheli, G.2    Carri, M.T.3    Marilley, M.4
  • 70
    • 52949092763 scopus 로고    scopus 로고
    • Replication fork movement sets chromatin loop size and origin choice in mammalian cells
    • Courbet S., Gay S., Arnoult N., et al. 2008. Replication fork movement sets chromatin loop size and origin choice in mammalian cells. Nature. 455, 557-560.
    • (2008) Nature. , vol.455 , pp. 557-560
    • Courbet, S.1    Gay, S.2    Arnoult, N.3
  • 71
    • 0028556685 scopus 로고
    • Replication initiation sites are distributed widely in the amplified CHO dihydrofolate reductase domain
    • Dijkwel P. A., Vaughn J. P., Hamlin J. L. 1994. Replication initiation sites are distributed widely in the amplified CHO dihydrofolate reductase domain. Nucleic Acids Res. 22, 4989-4996.
    • (1994) Nucleic Acids Res. , vol.22 , pp. 4989-4996
    • Dijkwel, P.A.1    Vaughn, J.P.2    Hamlin, J.L.3
  • 72
    • 0032437465 scopus 로고    scopus 로고
    • Attachment to the nuclear matrix mediates specific alterations in chromatin structure
    • Pemov A., Bavykin S., Hamlin J. L. 1998. Attachment to the nuclear matrix mediates specific alterations in chromatin structure. Proc. Natl. Acad. Sci. U. S. A. 95, 14757-14762.
    • (1998) Proc. Natl. Acad. Sci. U. S. A. , vol.95 , pp. 14757-14762
    • Pemov, A.1    Bavykin, S.2    Hamlin, J.L.3
  • 75
    • 0021966486 scopus 로고
    • Localization of topoisomerase II in mitotic chromosomes
    • Earnshaw W. C., Heck M. M. 1985. Localization of topoisomerase II in mitotic chromosomes. J. Cell. Biol. 100, 1716-1725.
    • (1985) J. Cell. Biol. , vol.100 , pp. 1716-1725
    • Earnshaw, W.C.1    Heck, M.M.2
  • 76
    • 60349099608 scopus 로고    scopus 로고
    • Interaction in vivo between the two matrix attachment regions flanking a single chromatin loop
    • Eivazova E. R., Gavrilov A., Pirozhkova I., et al. 2009. Interaction in vivo between the two matrix attachment regions flanking a single chromatin loop. J. Mol. Biol. 386, 929-937.
    • (2009) J. Mol. Biol. , vol.386 , pp. 929-937
    • Eivazova, E.R.1    Gavrilov, A.2    Pirozhkova, I.3
  • 77
    • 0036791653 scopus 로고    scopus 로고
    • Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus
    • Pasero P., Bensimon A., Schwob E. 2002. Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus. Genes Dev. 16, 2479-2484.
    • (2002) Genes Dev. , vol.16 , pp. 2479-2484
    • Pasero, P.1    Bensimon, A.2    Schwob, E.3
  • 78
    • 44149084708 scopus 로고    scopus 로고
    • DNA replication timing of the human beta-globin domain is controlled by histone modification at the origin
    • Goren A., Tabib A., Hecht M., Cedar H. 2008. DNA replication timing of the human beta-globin domain is controlled by histone modification at the origin. Genes Dev. 22, 1319-1324.
    • (2008) Genes Dev. , vol.22 , pp. 1319-1324
    • Goren, A.1    Tabib, A.2    Hecht, M.3    Cedar, H.4
  • 79
    • 3142768347 scopus 로고    scopus 로고
    • Chromatin regulates origin activity in Drosophila follicle cells
    • Aggarwal B. D., Calvi B. R. 2004. Chromatin regulates origin activity in Drosophila follicle cells. Nature. 430, 372-376.
    • (2004) Nature. , vol.430 , pp. 372-376
    • Aggarwal, B.D.1    Calvi, B.R.2
  • 80
    • 53549122748 scopus 로고    scopus 로고
    • HBO1 histone acetylase is a coactivator of the replication licensing factor Cdt1
    • Miotto B., Struhl K. 2008. HBO1 histone acetylase is a coactivator of the replication licensing factor Cdt1. Genes Dev. 22, 2633-2638.
    • (2008) Genes Dev. , vol.22 , pp. 2633-2638
    • Miotto, B.1    Struhl, K.2
  • 81
    • 62549137804 scopus 로고    scopus 로고
    • Histone acetyltransferase Hbo1: Catalytic activity, cellular abundance, and links to primary cancers
    • Iizuka M., Takahashi Y., Mizzen C. A., et al. 2009. Histone acetyltransferase Hbo1: Catalytic activity, cellular abundance, and links to primary cancers. Gene. 436, 108-114.
    • (2009) Gene. , vol.436 , pp. 108-114
    • Iizuka, M.1    Takahashi, Y.2    Mizzen, C.A.3
  • 82
    • 61849184077 scopus 로고    scopus 로고
    • The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-type locus
    • Hayashi M. T., Takahashi T. S., Nakagawa T., et al. 2009. The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-type locus. Nature Cell. Biol. 11, 357-362.
    • (2009) Nature Cell. Biol. , vol.11 , pp. 357-362
    • Hayashi, M.T.1    Takahashi, T.S.2    Nakagawa, T.3
  • 83
    • 0030722744 scopus 로고    scopus 로고
    • Association of the origin recognition complex with heterochromatin and HP1 in higher eukaryotes
    • Pak D. T., Pflumm M., Chesnokov I., et al. 1997. Association of the origin recognition complex with heterochromatin and HP1 in higher eukaryotes. Cell. 91, 311-323.
    • (1997) Cell. , vol.91 , pp. 311-323
    • Pak, D.T.1    Pflumm, M.2    Chesnokov, I.3
  • 84
    • 0032497548 scopus 로고    scopus 로고
    • Regulation of DNA-replication origins during cell-cycle progression
    • Shirahige K., Hori Y., Shiraishi K., et al. 1998. Regulation of DNA-replication origins during cell-cycle progression. Nature. 395, 618-621.
    • (1998) Nature. , vol.395 , pp. 618-621
    • Shirahige, K.1    Hori, Y.2    Shiraishi, K.3
  • 85
    • 68249142957 scopus 로고    scopus 로고
    • Regulation of DNA replication by the S-phase DNA damage checkpoint
    • Willis N., Rhind N. 2009. Regulation of DNA replication by the S-phase DNA damage checkpoint. Cell Div. 4, 13.
    • (2009) Cell Div. , vol.4 , pp. 13
    • Willis, N.1    Rhind, N.2
  • 86
    • 0032491517 scopus 로고    scopus 로고
    • Differential effects of hydroxyurea upon deoxyribonucleoside triphosphate pools, analyzed with vaccinia virus ribonucleotide reductase
    • Hendricks S. P., Mathews C. K. 1998. Differential effects of hydroxyurea upon deoxyribonucleoside triphosphate pools, analyzed with vaccinia virus ribonucleotide reductase. J. Biol. Chem. 273, 29519-29523.
    • (1998) J. Biol. Chem. , vol.273 , pp. 29519-29523
    • Hendricks, S.P.1    Mathews, C.K.2
  • 88
    • 0034306184 scopus 로고    scopus 로고
    • Temporally coordinated assembly and disassembly of replication factories in the absence of DNA synthesis
    • Dimitrova D. S., Gilbert D. M. 2000. Temporally coordinated assembly and disassembly of replication factories in the absence of DNA synthesis. Nature Cell. Biol. 2, 686-694.
    • (2000) Nature Cell. Biol. , vol.2 , pp. 686-694
    • Dimitrova, D.S.1    Gilbert, D.M.2
  • 89
    • 0035907338 scopus 로고    scopus 로고
    • Aphidicolin triggers a block to replication origin firing in Xenopus egg extracts
    • Marheineke K., Hyrien O. 2001. Aphidicolin triggers a block to replication origin firing in Xenopus egg extracts. J. Biol. Chem. 276, 17092-17100.
    • (2001) J. Biol. Chem. , vol.276 , pp. 17092-17100
    • Marheineke, K.1    Hyrien, O.2
  • 90
    • 10644297436 scopus 로고    scopus 로고
    • Coordination of replication and transcription along a Drosophila chromosome
    • MacAlpine D. M., Rodriguez H. K., Bell S. P. 2004. Coordination of replication and transcription along a Drosophila chromosome. Genes Dev. 18, 3094-3105.
    • (2004) Genes Dev. , vol.18 , pp. 3094-3105
    • MacAlpine, D.M.1    Rodriguez, H.K.2    Bell, S.P.3
  • 91
    • 0036668464 scopus 로고    scopus 로고
    • Mapping of early firing origins on a replication profile of budding yeast
    • Yabuki N., Terashima H., Kitada K. 2002. Mapping of early firing origins on a replication profile of budding yeast. Genes Cells. 7, 781-789.
    • (2002) Genes Cells. , vol.7 , pp. 781-789
    • Yabuki, N.1    Terashima, H.2    Kitada, K.3
  • 93
    • 33947110984 scopus 로고    scopus 로고
    • Genomewide localization of pre-RC sites and identification of replication origins in fission yeast
    • Hayashi M., Katou Y., Itoh T., et al. 2007. Genomewide localization of pre-RC sites and identification of replication origins in fission yeast. EMBO J. 26, 1327-1339.
    • (2007) EMBO J , vol.26 , pp. 1327-1339
    • Hayashi, M.1    Katou, Y.2    Itoh, T.3
  • 94
    • 30044438457 scopus 로고    scopus 로고
    • DNA replication origins fire stochastically in fission yeast
    • Patel P. K., Arcangioli B., Baker S. P., et al. 2006. DNA replication origins fire stochastically in fission yeast. Mol. Biol. Cell. 17, 308-316.
    • (2006) Mol. Biol. Cell. , vol.17 , pp. 308-316
    • Patel, P.K.1    Arcangioli, B.2    Baker, S.P.3
  • 95
    • 21444434023 scopus 로고    scopus 로고
    • ATM and ATR check in on origins: A dynamic model for origin selection and activation
    • Shechter D., Gautier J. 2005. ATM and ATR check in on origins: A dynamic model for origin selection and activation. Cell Cycle. 4, 235-238.
    • (2005) Cell Cycle. , vol.4 , pp. 235-238
    • Shechter, D.1    Gautier, J.2
  • 96
    • 68249102864 scopus 로고    scopus 로고
    • DNA replication as a target of the DNA damage checkpoint
    • Zegerman P., Diffley J. F. 2009. DNA replication as a target of the DNA damage checkpoint. DNA Repair. 8, 1077-1088.
    • (2009) DNA Repair. , vol.8 , pp. 1077-1088
    • Zegerman, P.1    Diffley, J.F.2
  • 98
    • 3142544855 scopus 로고    scopus 로고
    • Control of replication origin density and firing time in Xenopus egg extracts: Role of a caffeine-sensitive, ATR-dependent checkpoint
    • Marheineke K., Hyrien O. 2004. Control of replication origin density and firing time in Xenopus egg extracts: Role of a caffeine-sensitive, ATR-dependent checkpoint. J. Biol. Chem. 279, 28071-28081.
    • (2004) J. Biol. Chem. , vol.279 , pp. 28071-28081
    • Marheineke, K.1    Hyrien, O.2
  • 99
    • 3242670803 scopus 로고    scopus 로고
    • ATR and ATM regulate the timing of DNA replication origin firing
    • Shechter D., Costanzo V., Gautier J. 2004. ATR and ATM regulate the timing of DNA replication origin firing. Nature Cell Biol. 6, 648-655.
    • (2004) Nature Cell Biol. , vol.6 , pp. 648-655
    • Shechter, D.1    Costanzo, V.2    Gautier, J.3
  • 100
    • 5044224075 scopus 로고    scopus 로고
    • ATR, Claspin and the Rad9-Rad1-Hus1 complex regulate Chk1 and Cdc25A in the absence of DNA damage
    • Sorensen C. S., Syljuasen R. G., Lukas J., Bartek J. 2004. ATR, Claspin and the Rad9-Rad1-Hus1 complex regulate Chk1 and Cdc25A in the absence of DNA damage. Cell Cycle. 3, 941-945.
    • (2004) Cell Cycle. , vol.3 , pp. 941-945
    • Sorensen, C.S.1    Syljuasen, R.G.2    Lukas, J.3    Bartek, J.4
  • 101
    • 0037423308 scopus 로고    scopus 로고
    • Regulation of cellular and SV40 virus origins of replication by Chk1-dependent intrinsic and UVC radiationinduced checkpoints
    • Miao H., Seiler J. A., Burhans W. C. 2003. Regulation of cellular and SV40 virus origins of replication by Chk1-dependent intrinsic and UVC radiationinduced checkpoints. J. Biol. Chem. 278, 4295-4304.
    • (2003) J. Biol. Chem. , vol.278 , pp. 4295-4304
    • Miao, H.1    Seiler, J.A.2    Burhans, W.C.3
  • 102
    • 20244388673 scopus 로고    scopus 로고
    • Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage
    • Syljuasen R. G., Sorensen C. S., Hansen L. T., et al. 2005. Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage. Mol. Cell. Biol. 25, 3553-3562.
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 3553-3562
    • Syljuasen, R.G.1    Sorensen, C.S.2    Hansen, L.T.3
  • 103
    • 33749599776 scopus 로고    scopus 로고
    • Evidence that the ATR/Chk1 pathway maintains normal replication fork progression during unperturbed S phase
    • Petermann E., Caldecott K. W. 2006. Evidence that the ATR/Chk1 pathway maintains normal replication fork progression during unperturbed S phase. Cell Cycle. 5, 2203-2209.
    • (2006) Cell Cycle. , vol.5 , pp. 2203-2209
    • Petermann, E.1    Caldecott, K.W.2
  • 104
    • 33645825609 scopus 로고    scopus 로고
    • Chk1 requirement for high global rates of replication fork progression during normal vertebrate S phase
    • Petermann E., Maya-Mendoza A., Zachos G., et al. 2006. Chk1 requirement for high global rates of replication fork progression during normal vertebrate S phase. Mol. Cell. Biol. 26, 3319-3326.
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 3319-3326
    • Petermann, E.1    Maya-Mendoza, A.2    Zachos, G.3
  • 105
    • 34250010317 scopus 로고    scopus 로고
    • Chk1 regulates the density of active replication origins during the vertebrate S phase
    • Maya-Mendoza A., Petermann E., Gillespie D. A., et al. 2007. Chk1 regulates the density of active replication origins during the vertebrate S phase. EMBO J. 26, 2719-2731.
    • (2007) EMBO J. , vol.26 , pp. 2719-2731
    • Maya-Mendoza, A.1    Petermann, E.2    Gillespie, D.A.3
  • 106
    • 0032497529 scopus 로고    scopus 로고
    • A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication
    • Santocanale C., Diffley J. F. 1998. A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature. 395, 615-618.
    • (1998) Nature. , vol.395 , pp. 615-618
    • Santocanale, C.1    Diffley, J.F.2
  • 107
    • 69849107003 scopus 로고    scopus 로고
    • Ubiquitin control of S phase: A new role for the ubiquitin conjugating enzyme, UbcH7
    • Whitcomb E. A., Taylor A. 2009. Ubiquitin control of S phase: A new role for the ubiquitin conjugating enzyme, UbcH7. Cell Div. 4, 17.
    • (2009) Cell Div. , vol.4 , pp. 17
    • Whitcomb, E.A.1    Taylor, A.2
  • 108
    • 38649118240 scopus 로고    scopus 로고
    • Chk1 is a histone H3 threonine 11 kinase that regulates DNA damage-induced transcriptional repression
    • Shimada M., Niida H., Zineldeen D. H., et al. 2008. Chk1 is a histone H3 threonine 11 kinase that regulates DNA damage-induced transcriptional repression. Cell. 132, 221-232.
    • (2008) Cell. , vol.132 , pp. 221-232
    • Shimada, M.1    Niida, H.2    Zineldeen, D.H.3
  • 109
    • 67650531172 scopus 로고    scopus 로고
    • Implication of checkpoint kinase-dependent up-regulation of ribonucleotide reductase R2 in DNA damage response
    • Zhang Y. W., Jones T. L., Martin S. E., et al. 2009. Implication of checkpoint kinase-dependent up-regulation of ribonucleotide reductase R2 in DNA damage response. J. Biol. Chem. 284, 18085-18095.
    • (2009) J. Biol. Chem. , vol.284 , pp. 18085-18095
    • Zhang, Y.W.1    Jones, T.L.2    Martin, S.E.3
  • 110
    • 43049168313 scopus 로고    scopus 로고
    • Global regulation of genome duplication in eukaryotes: An overview from the epifluorescence microscope
    • Herrick J., Bensimon A. 2008. Global regulation of genome duplication in eukaryotes: An overview from the epifluorescence microscope. Chromosoma. 117, 243-260.
    • (2008) Chromosoma. , vol.117 , pp. 243-260
    • Herrick, J.1    Bensimon, A.2
  • 111
    • 47749107178 scopus 로고    scopus 로고
    • Essential role of Chk1 in S phase progression through regulation of RNR2 expression
    • Naruyama H., Shimada M., Niida H., et al. 2008. Essential role of Chk1 in S phase progression through regulation of RNR2 expression. Biochem. Biophys. Res. Commun. 374, 79-83.
    • (2008) Biochem. Biophys. Res. Commun. , vol.374 , pp. 79-83
    • Naruyama, H.1    Shimada, M.2    Niida, H.3
  • 112
    • 27544445683 scopus 로고    scopus 로고
    • The DNA damage response during DNA replication
    • Branzei D., Foiani M. 2005. The DNA damage response during DNA replication. Curr. Opin. Cell Biol. 17, 568-575.
    • (2005) Curr. Opin. Cell Biol. , vol.17 , pp. 568-575
    • Branzei, D.1    Foiani, M.2
  • 113
    • 37249025795 scopus 로고    scopus 로고
    • Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress
    • Ge X. Q., Jackson D. A., Blow J. J. 2007. Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress. Genes Dev. 21, 3331-3341.
    • (2007) Genes Dev. , vol.21 , pp. 3331-3341
    • Ge, X.Q.1    Jackson, D.A.2    Blow, J.J.3
  • 114
    • 64249120749 scopus 로고    scopus 로고
    • Replicon dynamics, dormant origin firing, and terminal fork integrity after double-strand break formation
    • Doksani Y., Bermejo R., Fiorani S., et al. 2009. Replicon dynamics, dormant origin firing, and terminal fork integrity after double-strand break formation. Cell. 137, 247-258.
    • (2009) Cell. , vol.137 , pp. 247-258
    • Doksani, Y.1    Bermejo, R.2    Fiorani, S.3
  • 115
    • 78650724206 scopus 로고    scopus 로고
    • Chk1 inhibits replication factory activation but allows dormant origin firing in existing factories
    • Ge X. Q., Blow J. J. 2010. Chk1 inhibits replication factory activation but allows dormant origin firing in existing factories. J. Cell Biol. 191, 1285-1297.
    • (2010) J. Cell Biol. , vol.191 , pp. 1285-1297
    • Ge, X.Q.1    Blow, J.J.2
  • 116
    • 0032134456 scopus 로고    scopus 로고
    • CLB5-dependent activation of late replication origins in S. cerevisiae
    • Donaldson A. D., Raghuraman M. K., Friedman K. L., et al. 1998. CLB5-dependent activation of late replication origins in S. cerevisiae. Mol. Cell. 2, 173-182.
    • (1998) Mol. Cell. , vol.2 , pp. 173-182
    • Donaldson, A.D.1    Raghuraman, M.K.2    Friedman, K.L.3
  • 117
    • 33644776864 scopus 로고    scopus 로고
    • Distinct mechanisms control the stability of the related S-phase cyclins Clb5 and Clb6
    • Jackson L. P., Reed S. I., Haase S. B. 2006. Distinct mechanisms control the stability of the related S-phase cyclins Clb5 and Clb6. Mol. Cell. Biol. 26, 2456-2466.
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 2456-2466
    • Jackson, L.P.1    Reed, S.I.2    Haase, S.B.3
  • 118
    • 4744357937 scopus 로고    scopus 로고
    • Enforcement of late replication origin firing by clusters of short G-rich DNA sequences
    • Yompakdee C., Huberman J. A. 2004. Enforcement of late replication origin firing by clusters of short G-rich DNA sequences. J. Biol. Chem. 279, 42337-42344.
    • (2004) J. Biol. Chem. , vol.279 , pp. 42337-42344
    • Yompakdee, C.1    Huberman, J.A.2
  • 119
    • 0032516695 scopus 로고    scopus 로고
    • Genetic dissection of a mammalian replicator in the human beta-globin locus
    • Aladjem M. I., Rodewald L. W., Kolman J. L., Wahl G. M. 1998. Genetic dissection of a mammalian replicator in the human beta-globin locus. Science. 281, 1005-1009.
    • (1998) Science , vol.281 , pp. 1005-1009
    • Aladjem, M.I.1    Rodewald, L.W.2    Kolman, J.L.3    Wahl, G.M.4
  • 120
    • 0035863225 scopus 로고    scopus 로고
    • Functionally distinct, sequence-specific replicator and origin elements are required for Drosophila chorion gene amplification
    • Lu L., Zhang H., Tower J. 2001. Functionally distinct, sequence-specific replicator and origin elements are required for Drosophila chorion gene amplification. Genes Dev. 15, 134-146.
    • (2001) Genes Dev , vol.15 , pp. 134-146
    • Lu, L.1    Zhang, H.2    Tower, J.3
  • 121
    • 0036938915 scopus 로고    scopus 로고
    • A DNase I hypersensitive site flanks an origin of DNA replication and amplification in Sciara
    • Urnov F. D., Liang C., Blitzblau H. G., et al. 2002. A DNase I hypersensitive site flanks an origin of DNA replication and amplification in Sciara. Chromosoma. 111, 291-303.
    • (2002) Chromosoma. , vol.111 , pp. 291-303
    • Urnov, F.D.1    Liang, C.2    Blitzblau, H.G.3
  • 122
    • 0035931753 scopus 로고    scopus 로고
    • Nuclear position leaves its mark on replication timing
    • Gilbert D. M. 2001. Nuclear position leaves its mark on replication timing. J. Cell Biol. 152, F11-F15.
    • (2001) J. Cell Biol. , vol.152
    • Gilbert, D.M.1
  • 123
    • 78649660785 scopus 로고    scopus 로고
    • Cell fate transitions and the replication timing decision point
    • Gilbert D. M. 2010. Cell fate transitions and the replication timing decision point. J. Cell Biol. 191, 899-903.
    • (2010) J. Cell Biol. , vol.191 , pp. 899-903
    • Gilbert, D.M.1
  • 124
    • 77952994784 scopus 로고    scopus 로고
    • Evolutionarily conserved replication timing profiles predict longrange chromatin interactions and distinguish closely related cell types
    • Ryba T., Hiratani I., Lu J., et al. 2010. Evolutionarily conserved replication timing profiles predict longrange chromatin interactions and distinguish closely related cell types. Genome Res. 20, 761-770.
    • (2010) Genome Res. , vol.20 , pp. 761-770
    • Ryba, T.1    Hiratani, I.2    Lu, J.3
  • 125
    • 80052424582 scopus 로고    scopus 로고
    • Space and time in the nucleus: Developmental control of replication timing and chromosome architecture
    • Gilbert D. M., Takebayashi S. I., Ryba T., et al. 2010. Space and time in the nucleus: Developmental control of replication timing and chromosome architecture. Cold Spring Harb. Symp. Quant. Biol. 75, 143-153.
    • (2010) Cold Spring Harb. Symp. Quant. Biol. , vol.75 , pp. 143-153
    • Gilbert, D.M.1    Takebayashi, S.I.2    Ryba, T.3
  • 126
    • 0035931758 scopus 로고    scopus 로고
    • The positioning and dynamics of origins of replication in the budding yeast nucleus
    • Heun P., Laroche T., Raghuraman M. K., Gasser S. M. 2001. The positioning and dynamics of origins of replication in the budding yeast nucleus. J. Cell Biol. 152, 385-400.
    • (2001) J. Cell Biol. , vol.152 , pp. 385-400
    • Heun, P.1    Laroche, T.2    Raghuraman, M.K.3    Gasser, S.M.4
  • 127
    • 0034628607 scopus 로고    scopus 로고
    • Re-modelling of nuclear architecture in quiescent and senescent human fibroblasts
    • Bridger J. M., Boyle S., Kill I. R., Bickmore W. A. 2000. Re-modelling of nuclear architecture in quiescent and senescent human fibroblasts. Curr. Biol.: CB. 10, 149-152.
    • (2000) Curr. Biol.: CB. , vol.10 , pp. 149-152
    • Bridger, J.M.1    Boyle, S.2    Kill, I.R.3    Bickmore, W.A.4
  • 128
    • 53549118586 scopus 로고    scopus 로고
    • Global organization of replication time zones of the mouse genome
    • Farkash-Amar S., Lipson D., Polten A., et al. 2008. Global organization of replication time zones of the mouse genome. Genome Res. 18, 1562-1570.
    • (2008) Genome Res. , vol.18 , pp. 1562-1570
    • Farkash-Amar, S.1    Lipson, D.2    Polten, A.3
  • 129
    • 76349123622 scopus 로고    scopus 로고
    • Sequencing newly replicated DNA reveals widespread plasticity in human replication timing
    • Hansen R. S., Thomas S., Sandstrom R., et al. 2010. Sequencing newly replicated DNA reveals widespread plasticity in human replication timing. Proc. Natl. Acad. Sci. U. S. A. 107, 139-144.
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , pp. 139-144
    • Hansen, R.S.1    Thomas, S.2    Sandstrom, R.3
  • 130
    • 75649092667 scopus 로고    scopus 로고
    • Genomewide dynamics of replication timing revealed by in vitro models of mouse embryogenesis
    • Hiratani I., Ryba T., Itoh M., et al. 2010. Genomewide dynamics of replication timing revealed by in vitro models of mouse embryogenesis. Genome Res. 20, 155-169.
    • (2010) Genome Res. , vol.20 , pp. 155-169
    • Hiratani, I.1    Ryba, T.2    Itoh, M.3
  • 131
    • 77649236302 scopus 로고    scopus 로고
    • Domainwide regulation of DNA replication timing during mammalian development
    • Pope B. D., Hiratani I., Gilbert D. M. 2010. Domainwide regulation of DNA replication timing during mammalian development. Chromosome Res. 18, 127-136.
    • (2010) Chromosome Res. , vol.18 , pp. 127-136
    • Pope, B.D.1    Hiratani, I.2    Gilbert, D.M.3
  • 132
    • 0021203243 scopus 로고
    • Mapping of DNAase I sensitive regions on mitotic chromosomes
    • Kerem B. S., Goitein R., Diamond G., et al. 1984. Mapping of DNAase I sensitive regions on mitotic chromosomes. Cell. 38, 493-499.
    • (1984) Cell. , vol.38 , pp. 493-499
    • Kerem, B.S.1    Goitein, R.2    Diamond, G.3
  • 133
    • 0036842221 scopus 로고    scopus 로고
    • Genome-wide DNA replication profile for Drosophila melanogaster: A link between transcription and replication timing
    • Schubeler D., Scalzo D., Kooperberg C., et al. 2002. Genome-wide DNA replication profile for Drosophila melanogaster: A link between transcription and replication timing. Nature Genet. 32, 438-442.
    • (2002) Nature Genet. , vol.32 , pp. 438-442
    • Schubeler, D.1    Scalzo, D.2    Kooperberg, C.3
  • 134
    • 1642514822 scopus 로고    scopus 로고
    • Replication timing of the human genome
    • Woodfine K., Fiegler H., Beare D. M., et al. 2004. Replication timing of the human genome. Hum. Mol. Genet. 13, 191-202.
    • (2004) Hum. Mol. Genet. , vol.13 , pp. 191-202
    • Woodfine, K.1    Fiegler, H.2    Beare, D.M.3
  • 135
    • 33747777132 scopus 로고    scopus 로고
    • DNA replication: The unbearable lightness of origins
    • Norio P. 2006. DNA replication: The unbearable lightness of origins. EMBO Rep. 7, 779-781.
    • (2006) EMBO Rep. , vol.7 , pp. 779-781
    • Norio, P.1
  • 136
    • 0036863542 scopus 로고    scopus 로고
    • Histone acetylation regulates the time of replication origin firing
    • Vogelauer M., Rubbi L., Lucas I., et al. 2002. Histone acetylation regulates the time of replication origin firing. Mol. Cell. 10, 1223-1233.
    • (2002) Mol. Cell. , vol.10 , pp. 1223-1233
    • Vogelauer, M.1    Rubbi, L.2    Lucas, I.3
  • 137
    • 0029089444 scopus 로고
    • Factors affecting the timing and imprinting of replication on a mammalian chromosome
    • Bickmore W. A., Carothers A. D. 1995. Factors affecting the timing and imprinting of replication on a mammalian chromosome. J. Cell Sci. 108 (8), 2801-2809.
    • (1995) J. Cell Sci. , vol.108 , Issue.8 , pp. 2801-2809
    • Bickmore, W.A.1    Carothers, A.D.2
  • 138
    • 65449178609 scopus 로고    scopus 로고
    • Replication timing as an epigenetic mark
    • Hiratani I., Gilbert D. M. 2009. Replication timing as an epigenetic mark. Epigenetics. 4, 93-97.
    • (2009) Epigenetics. , vol.4 , pp. 93-97
    • Hiratani, I.1    Gilbert, D.M.2
  • 139
    • 39749176602 scopus 로고    scopus 로고
    • The impact of chromatin modifiers on the timing of locus replication in mouse embryonic stem cells
    • Jorgensen H. F., Azuara V., Amoils S., et al. 2007. The impact of chromatin modifiers on the timing of locus replication in mouse embryonic stem cells. Genome Biol. 8, R169.
    • (2007) Genome Biol. , vol.8
    • Jorgensen, H.F.1    Azuara, V.2    Amoils, S.3
  • 140
    • 33746082480 scopus 로고    scopus 로고
    • Uncoupling global and fine-tuning replication timing determinants for mouse pericentric heterochromatin
    • Wu R., Singh P. B., Gilbert D. M. 2006. Uncoupling global and fine-tuning replication timing determinants for mouse pericentric heterochromatin. J. Cell Biol. 174, 185-194.
    • (2006) J. Cell Biol. , vol.174 , pp. 185-194
    • Wu, R.1    Singh, P.B.2    Gilbert, D.M.3
  • 141
    • 61849184077 scopus 로고    scopus 로고
    • The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-type locus
    • Hayashi M. T., Takahashi T. S., Nakagawa T., et al. 2009. The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-type locus. Nature Cell Biol. 11, 357-362.
    • (2009) Nature Cell Biol. , vol.11 , pp. 357-362
    • Hayashi, M.T.1    Takahashi, T.S.2    Nakagawa, T.3
  • 142
    • 77953004689 scopus 로고    scopus 로고
    • Heterochromatin protein 1 (HP1) modulates replication timing of the Drosophila genome
    • Schwaiger M., Kohler H., Oakeley E. J., et al. 2010. Heterochromatin protein 1 (HP1) modulates replication timing of the Drosophila genome. Genome Res. 20, 771-780.
    • (2010) Genome Res. , vol.20 , pp. 771-780
    • Schwaiger, M.1    Kohler, H.2    Oakeley, E.J.3
  • 143
    • 0030917145 scopus 로고    scopus 로고
    • Precise switching of DNA replication timing in the GC content transition area in the human major histocompatibility complex
    • Tenzen T., Yamagata T., Fukagawa T., et al. 1997. Precise switching of DNA replication timing in the GC content transition area in the human major histocompatibility complex. Mol. Cell. Biol. 17, 4043-4050.
    • (1997) Mol. Cell. Biol. , vol.17 , pp. 4043-4050
    • Tenzen, T.1    Yamagata, T.2    Fukagawa, T.3
  • 144
    • 0034636703 scopus 로고    scopus 로고
    • Replication timing of the human X-inactivation center (XIC) region: Correlation with chromosome bands
    • Watanabe Y., Tenzen T., Nagasaka Y., et al. 2000. Replication timing of the human X-inactivation center (XIC) region: Correlation with chromosome bands. Gene. 252, 163-172.
    • (2000) Gene. , vol.252 , pp. 163-172
    • Watanabe, Y.1    Tenzen, T.2    Nagasaka, Y.3
  • 145
    • 0030812754 scopus 로고    scopus 로고
    • High-resolution analysis of DNA replication domain organization across an R/G-band boundary
    • Strehl S., LaSalle J. M., Lalande M. 1997. High-resolution analysis of DNA replication domain organization across an R/G-band boundary. Mol. Cell. Biol. 17, 6157-6166.
    • (1997) Mol. Cell. Biol. , vol.17 , pp. 6157-6166
    • Strehl, S.1    LaSalle, J.M.2    Lalande, M.3
  • 146
    • 27944452746 scopus 로고    scopus 로고
    • Progressive activation of DNA replication initiation in large domains of the immunoglobulin heavy chain locus during B cell development
    • Norio P., Kosiyatrakul S., Yang Q., et al. 2005. Progressive activation of DNA replication initiation in large domains of the immunoglobulin heavy chain locus during B cell development. Mol. Cell. 20, 575-587.
    • (2005) Mol. Cell. , vol.20 , pp. 575-587
    • Norio, P.1    Kosiyatrakul, S.2    Yang, Q.3
  • 147
    • 74049163810 scopus 로고    scopus 로고
    • Decreased replication origin activity in temporal transition regions
    • Guan Z., Hughes C. M., Kosiyatrakul S., et al. 2009. Decreased replication origin activity in temporal transition regions. J. Cell Biol. 187, 623-635.
    • (2009) J. Cell Biol. , vol.187 , pp. 623-635
    • Guan, Z.1    Hughes, C.M.2    Kosiyatrakul, S.3
  • 148
    • 84855272663 scopus 로고    scopus 로고
    • Evidence for sequential and increasing activation of replication origins along replication timing gradients in the human genome
    • Guilbaud G., Rappailles A., Baker A., et al. 2011. Evidence for sequential and increasing activation of replication origins along replication timing gradients in the human genome. PLoS Comput. Biol. 7, e1002322.
    • (2011) PLoS Comput. Biol. , vol.7
    • Guilbaud, G.1    Rappailles, A.2    Baker, A.3
  • 149
    • 65449142884 scopus 로고    scopus 로고
    • Replication timing and transcriptional control: Beyond cause and effect? Part II
    • Hiratani I., Takebayashi S., Lu J., Gilbert D. M. 2009. Replication timing and transcriptional control: Beyond cause and effect? Part II. Curr. Opin. Genet. Dev. 19, 142-149.
    • (2009) Curr. Opin. Genet. Dev. , vol.19 , pp. 142-149
    • Hiratani, I.1    Takebayashi, S.2    Lu, J.3    Gilbert, D.M.4
  • 150
    • 17444425224 scopus 로고    scopus 로고
    • Replication timing of human chromosome 6
    • Woodfine K., Beare D. M., Ichimura K., et al. 2005. Replication timing of human chromosome 6. Cell Cycle. 4, 172-176.
    • (2005) Cell Cycle. , vol.4 , pp. 172-176
    • Woodfine, K.1    Beare, D.M.2    Ichimura, K.3
  • 151
    • 84855566916 scopus 로고    scopus 로고
    • Late replication domains in polytene and nonpolytene cells of Drosophila melanogaster
    • Belyaeva E. S., Goncharov F. P., Demakova O. V., et al. 2012. Late replication domains in polytene and nonpolytene cells of Drosophila melanogaster. PloS ONE. 7, e30035.
    • (2012) PloS ONE. , vol.7
    • Belyaeva, E.S.1    Goncharov, F.P.2    Demakova, O.V.3
  • 152
    • 77957369058 scopus 로고    scopus 로고
    • Comparative analysis of DNA replication timing reveals conserved large-scale chromosomal architecture
    • Yaffe E., Farkash-Amar S., Polten A., et al. 2010. Comparative analysis of DNA replication timing reveals conserved large-scale chromosomal architecture. PLoS Genet. 6, e1001011.
    • (2010) PLoS Genet. , vol.6
    • Yaffe, E.1    Farkash-Amar, S.2    Polten, A.3
  • 153
    • 80055086494 scopus 로고    scopus 로고
    • Replication timing: A fingerprint for cell identity and pluripotency
    • Ryba T., Hiratani I., Sasaki T., et al. 2011. Replication timing: A fingerprint for cell identity and pluripotency. PLoS Comput. Biol. 7, e1002225.
    • (2011) PLoS Comput. Biol. , vol.7
    • Ryba, T.1    Hiratani, I.2    Sasaki, T.3
  • 154
    • 2642570305 scopus 로고    scopus 로고
    • The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote
    • Schubeler D., MacAlpine D. M., Scalzo D., et al. 2004. The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev. 18, 1263-1271.
    • (2004) Genes Dev. , vol.18 , pp. 1263-1271
    • Schubeler, D.1    MacAlpine, D.M.2    Scalzo, D.3
  • 156
    • 0242439142 scopus 로고    scopus 로고
    • Nuclear localization and histone acetylation: A pathway for chromatin opening and transcriptional activation of the human beta-globin locus
    • Schubeler D., Francastel C., Cimbora D. M., et al. 2000. Nuclear localization and histone acetylation: A pathway for chromatin opening and transcriptional activation of the human beta-globin locus. Genes Dev. 14, 940-950.
    • (2000) Genes Dev. , vol.14 , pp. 940-950
    • Schubeler, D.1    Francastel, C.2    Cimbora, D.M.3
  • 157
    • 0343953085 scopus 로고    scopus 로고
    • Long-distance control of origin choice and replication timing in the human beta-globin locus are independent of the locus control region
    • Cimbora D. M., Schubeler D., Reik A., et al. 2000. Long-distance control of origin choice and replication timing in the human beta-globin locus are independent of the locus control region. Mol. Cell. Biol. 20, 5581-5591.
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 5581-5591
    • Cimbora, D.M.1    Schubeler, D.2    Reik, A.3
  • 158
    • 2642647114 scopus 로고    scopus 로고
    • Initiation of DNA replication at CpG islands in mammalian chromosomes
    • Delgado S., Gomez M., Bird A., Antequera F. 1998. Initiation of DNA replication at CpG islands in mammalian chromosomes. EMBO J. 17, 2426-2435.
    • (1998) EMBO J. , vol.17 , pp. 2426-2435
    • Delgado, S.1    Gomez, M.2    Bird, A.3    Antequera, F.4
  • 159
    • 0037314178 scopus 로고    scopus 로고
    • Earlyreplicating heterochromatin
    • Kim S. M., Dubey D. D., Huberman J. A. 2003. Earlyreplicating heterochromatin. Genes Dev. 17, 330-335.
    • (2003) Genes Dev. , vol.17 , pp. 330-335
    • Kim, S.M.1    Dubey, D.D.2    Huberman, J.A.3
  • 160
    • 77957337127 scopus 로고    scopus 로고
    • Epigenetically-inherited centromere and neocentromere DNA replicates earliest in S-phase
    • Koren A., Tsai H. J., Tirosh I., et al. 2010. Epigenetically-inherited centromere and neocentromere DNA replicates earliest in S-phase. PLoS Genet. 6, e1001068.
    • (2010) PLoS Genet. , vol.6
    • Koren, A.1    Tsai, H.J.2    Tirosh, I.3
  • 161
    • 30044434136 scopus 로고    scopus 로고
    • Replication of centromeric heterochromatin in mouse fibroblasts takes place in early, middle, and late S phase
    • Weidtkamp-Peters S., Rahn H. P., Cardoso M. C., Hemmerich P. 2006. Replication of centromeric heterochromatin in mouse fibroblasts takes place in early, middle, and late S phase. Histochem. Cell Biol. 125, 91-102.
    • (2006) Histochem. Cell Biol. , vol.125 , pp. 91-102
    • Weidtkamp-Peters, S.1    Rahn, H.P.2    Cardoso, M.C.3    Hemmerich, P.4
  • 162
    • 67649126836 scopus 로고    scopus 로고
    • Shifts in replication timing actively affect histone acetylation during nucleosome reassembly
    • Lande-Diner L., Zhang J., Cedar H. 2009. Shifts in replication timing actively affect histone acetylation during nucleosome reassembly. Mol. Cell. 34, 767-774.
    • (2009) Mol. Cell. , vol.34 , pp. 767-774
    • Lande-Diner, L.1    Zhang, J.2    Cedar, H.3
  • 163
    • 0027205671 scopus 로고
    • Allelespecific replication timing of imprinted gene regions
    • Kitsberg D., Selig S., Brandeis M., et al. 1993. Allelespecific replication timing of imprinted gene regions. Nature. 364, 459-463.
    • (1993) Nature. , vol.364 , pp. 459-463
    • Kitsberg, D.1    Selig, S.2    Brandeis, M.3
  • 164
  • 165
    • 0037078986 scopus 로고    scopus 로고
    • Establishment of transcriptional competence in early and late S phase
    • Zhang J., Xu F., Hashimshony T., Keshet I., Cedar H. 2002. Establishment of transcriptional competence in early and late S phase. Nature. 420, 198-202.
    • (2002) Nature. , vol.420 , pp. 198-202
    • Zhang, J.1    Xu, F.2    Hashimshony, T.3    Keshet, I.4    Cedar, H.5
  • 166
    • 80054948832 scopus 로고    scopus 로고
    • Genetic variation and DNA replication timing, or why is there late replicating DNA?
    • Herrick J. 2011. Genetic variation and DNA replication timing, or why is there late replicating DNA? Evol. Int. J. Organic Evol. 65, 3031-3047.
    • (2011) Evol. Int. J. Organic Evol. , vol.65 , pp. 3031-3047
    • Herrick, J.1
  • 167
    • 78650132334 scopus 로고    scopus 로고
    • Developmental control of late replication and S phase length
    • Shermoen A. W., McCleland M. L., O'Farrell P. H. 2010. Developmental control of late replication and S phase length. Curr. Biol.: CB. 20, 2067-2077.
    • (2010) Curr. Biol.: CB. , vol.20 , pp. 2067-2077
    • Shermoen, A.W.1    McCleland, M.L.2    O'Farrell, P.H.3
  • 168
    • 78649315607 scopus 로고    scopus 로고
    • Gene density profile reveals the marking of late replicated domains in the Drosophila melanogaster genome
    • Belyakin S. N., Babenko V. N., Maksimov D. A., et al. 2010. Gene density profile reveals the marking of late replicated domains in the Drosophila melanogaster genome. Chromosoma. 119, 589-600.
    • (2010) Chromosoma. , vol.119 , pp. 589-600
    • Belyakin, S.N.1    Babenko, V.N.2    Maksimov, D.A.3
  • 169
    • 77950661675 scopus 로고    scopus 로고
    • Impact of replication timing on non-CpG and CpG substitution rates in mammalian genomes
    • Chen C. L., Rappailles A., Duquenne L., et al. 2010. Impact of replication timing on non-CpG and CpG substitution rates in mammalian genomes. Genome Res. 20, 447-457.
    • (2010) Genome Res. , vol.20 , pp. 447-457
    • Chen, C.L.1    Rappailles, A.2    Duquenne, L.3
  • 170
    • 84855877053 scopus 로고    scopus 로고
    • Late-replicating domains have higher divergence and diversity in Drosophila melanogaster
    • Weber C. C., Pink C. J., Hurst L. D. 2012. Late-replicating domains have higher divergence and diversity in Drosophila melanogaster. Mol. Biol. Evol. 29, 873-882.
    • (2012) Mol. Biol. Evol. , vol.29 , pp. 873-882
    • Weber, C.C.1    Pink, C.J.2    Hurst, L.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.