메뉴 건너뛰기




Volumn 11, Issue 10, 2010, Pages 673-684

Evaluating genome-scale approaches to eukaryotic DNA replication

Author keywords

[No Author keywords available]

Indexed keywords

DNA FRAGMENT;

EID: 77956879643     PISSN: 14710056     EISSN: 14710064     Source Type: Journal    
DOI: 10.1038/nrg2830     Document Type: Review
Times cited : (141)

References (121)
  • 2
    • 33747432986 scopus 로고    scopus 로고
    • Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress
    • Woodward, A. M., et al. Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress. J. Cell Biol. 173, 673-683 (2006).
    • (2006) J. Cell Biol. , vol.173 , pp. 673-683
    • Woodward, A.M.1
  • 3
    • 48249084972 scopus 로고    scopus 로고
    • Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication
    • Ibarra, A., Schwob, E. & Mendez, J. Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication. Proc. Natl Acad. Sci. USA 105, 8956-8961 (2008).
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 8956-8961
    • Ibarra, A.1    Schwob, E.2    Mendez, J.3
  • 4
    • 64249120749 scopus 로고    scopus 로고
    • Replicon dynamics, dormant origin firing, and terminal fork integrity after double-strand break formation
    • Doksani, Y., Bermejo, R., Fiorani, S., Haber, J. E. & Foiani, M. Replicon dynamics, dormant origin firing, and terminal fork integrity after double-strand break formation. Cell 137, 247-258 (2009).
    • (2009) Cell , vol.137 , pp. 247-258
    • Doksani, Y.1    Bermejo, R.2    Fiorani, S.3    Haber, J.E.4    Foiani, M.5
  • 5
    • 77953011587 scopus 로고    scopus 로고
    • MRC1-dependent scaling of the budding yeast DNA replication timing program
    • Koren, A., Soifer, I. & Barkai, N. MRC1-dependent scaling of the budding yeast DNA replication timing program. Genome Res. 20, 781-790 (2010).
    • (2010) Genome Res. , vol.20 , pp. 781-790
    • Koren, A.1    Soifer, I.2    Barkai, N.3
  • 6
    • 77649233017 scopus 로고    scopus 로고
    • Molecular analysis of the replication program in unicellular model organisms
    • Raghuraman, M. K. & Brewer, B. J. Molecular analysis of the replication program in unicellular model organisms. Chromosome Res. 18, 19-34 (2010).
    • (2010) Chromosome Res. , vol.18 , pp. 19-34
    • Raghuraman, M.K.1    Brewer, B.J.2
  • 7
    • 0027243268 scopus 로고
    • Autonomous replication in human cells of multimers of specific human and bacterial DNA sequences
    • Krysan, P. J., Smith, J. G. & Calos, M. P. Autonomous replication in human cells of multimers of specific human and bacterial DNA sequences. Mol. Cell. Biol. 13, 2688-2696 (1993).
    • (1993) Mol. Cell. Biol. , vol.13 , pp. 2688-2696
    • Krysan, P.J.1    Smith, J.G.2    Calos, M.P.3
  • 8
    • 34447565003 scopus 로고    scopus 로고
    • Replication in context: Dynamic regulation of DNA replication patterns in metazoans
    • Aladjem, M. I. Replication in context: dynamic regulation of DNA replication patterns in metazoans. Nature Rev. Genet. 8, 588-600 (2007).
    • (2007) Nature Rev. Genet. , vol.8 , pp. 588-600
    • Aladjem, M.I.1
  • 9
    • 54849417379 scopus 로고    scopus 로고
    • A revisionist replicon model for higher eukaryotic genomes
    • Hamlin, J. L., et al. A revisionist replicon model for higher eukaryotic genomes. J. Cell. Biochem. 105, 321-329 (2008).
    • (2008) J. Cell. Biochem. , vol.105 , pp. 321-329
    • Hamlin, J.L.1
  • 10
    • 77950962157 scopus 로고    scopus 로고
    • Conserved nucleosome positioning defines replication origins
    • Eaton, M. L., Galani, K., Kang, S., Bell, S. P. & MacAlpine, D. M. Conserved nucleosome positioning defines replication origins. Genes Dev. 24, 748-753 (2010).
    • (2010) Genes Dev. , vol.24 , pp. 748-753
    • Eaton, M.L.1    Galani, K.2    Kang, S.3    Bell, S.P.4    MacAlpine, D.M.5
  • 11
    • 75649109712 scopus 로고    scopus 로고
    • Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading
    • MacAlpine, H. K., Gordan, R., Powell, S. K., Hartemink, A. J. & MacAlpine, D. M. Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading. Genome Res. 20, 201-211 (2010).
    • (2010) Genome Res. , vol.20 , pp. 201-211
    • MacAlpine, H.K.1    Gordan, R.2    Powell, S.K.3    Hartemink, A.J.4    MacAlpine, D.M.5
  • 12
    • 77952996319 scopus 로고    scopus 로고
    • Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones
    • Deal, R. B., Henikoff, J. G. & Henikoff, S. Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones. Science 328, 1161-1164 (2010).
    • (2010) Science , vol.328 , pp. 1161-1164
    • Deal, R.B.1    Henikoff, J.G.2    Henikoff, S.3
  • 13
    • 3042717854 scopus 로고    scopus 로고
    • Prediction of Saccharomyces cerevisiae replication origins
    • Breier, A. M., Chatterji, S. & Cozzarelli, N. R. Prediction of Saccharomyces cerevisiae replication origins. Genome Biol. 5, R22 (2004).
    • (2004) Genome Biol. , vol.5
    • Breier, A.M.1    Chatterji, S.2    Cozzarelli, N.R.3
  • 14
    • 0035861492 scopus 로고    scopus 로고
    • Genome-wide distribution of ORC and MCM proteins in S. cerevisiae: High-resolution mapping of replication origins
    • Wyrick, J. J., et al. Genome-wide distribution of ORC and MCM proteins in S. cerevisiae: high-resolution mapping of replication origins. Science 294, 2357-2360 (2001).
    • (2001) Science , vol.294 , pp. 2357-2360
    • Wyrick, J.J.1
  • 15
    • 34547236841 scopus 로고    scopus 로고
    • Genome-wide mapping of ORC and Mcm2p binding sites on tiling arrays and identification of essential ARS consensus sequences in S. cerevisiae
    • Xu, W., Aparicio, J. G., Aparicio, O. M. & Tavare, S. Genome-wide mapping of ORC and Mcm2p binding sites on tiling arrays and identification of essential ARS consensus sequences in S. cerevisiae. BMC Genomics 7, 276 (2006).
    • (2006) BMC Genomics , vol.7 , pp. 276
    • Xu, W.1    Aparicio, J.G.2    Aparicio, O.M.3    Tavare, S.4
  • 16
    • 23444434202 scopus 로고    scopus 로고
    • A genomic view of eukaryotic DNA replication
    • MacAlpine, D. M. & Bell, S. P. A genomic view of eukaryotic DNA replication. Chromosome Res. 13, 309-326 (2005).
    • (2005) Chromosome Res. , vol.13 , pp. 309-326
    • MacAlpine, D.M.1    Bell, S.P.2
  • 17
    • 33947110984 scopus 로고    scopus 로고
    • Genome-wide localization of pre-RC sites and identification of replication origins in fission yeast
    • Hayashi, M., et al. Genome-wide localization of pre-RC sites and identification of replication origins in fission yeast. EMBO J. 26, 1327-1339 (2007).
    • (2007) EMBO J. , vol.26 , pp. 1327-1339
    • Hayashi, M.1
  • 18
    • 33746101049 scopus 로고    scopus 로고
    • Genome-wide identification of replication origins in yeast by comparative genomics
    • Nieduszynski, C. A., Knox, Y. & Donaldson, A. D. Genome-wide identification of replication origins in yeast by comparative genomics. Genes Dev. 20, 1874-1879 (2006).
    • (2006) Genes Dev. , vol.20 , pp. 1874-1879
    • Nieduszynski, C.A.1    Knox, Y.2    Donaldson, A.D.3
  • 19
    • 12244265093 scopus 로고    scopus 로고
    • DNA replication origins in the Schizosaccharomyces pombe genome
    • Dai, J., Chuang, R. Y. & Kelly, T. J. DNA replication origins in the Schizosaccharomyces pombe genome. Proc. Natl Acad. Sci. USA 102, 337-342 (2005).
    • (2005) Proc. Natl Acad. Sci. USA , vol.102 , pp. 337-342
    • Dai, J.1    Chuang, R.Y.2    Kelly, T.J.3
  • 20
    • 77649320197 scopus 로고    scopus 로고
    • Structural diversity and dynamics of genomic replication origins in Schizosaccharomyces pombe
    • Cotobal, C., Segurado, M. & Antequera, F. Structural diversity and dynamics of genomic replication origins in Schizosaccharomyces pombe. EMBO J. 29, 934-942 (2010).
    • (2010) EMBO J. , vol.29 , pp. 934-942
    • Cotobal, C.1    Segurado, M.2    Antequera, F.3
  • 21
    • 0033055057 scopus 로고    scopus 로고
    • The fission yeast homologue of Orc4p binds to replication origin DNA via multiple AT-hooks
    • Chuang, R. Y. & Kelly, T. J. The fission yeast homologue of Orc4p binds to replication origin DNA via multiple AT-hooks. Proc. Natl Acad. Sci. USA 96, 2656-2661 (1999).
    • (1999) Proc. Natl Acad. Sci. USA , vol.96 , pp. 2656-2661
    • Chuang, R.Y.1    Kelly, T.J.2
  • 22
    • 76349103252 scopus 로고    scopus 로고
    • Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae
    • Lantermann, A. B., et al. Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae. Nature Struct. Mol. Biol. 17, 251-257 (2010).
    • (2010) Nature Struct. Mol. Biol. , vol.17 , pp. 251-257
    • Lantermann, A.B.1
  • 23
    • 5044226154 scopus 로고    scopus 로고
    • In search of the holy replicator
    • Gilbert, D. M. In search of the holy replicator. Nature Rev. Mol. Cell Biol. 5, 848-855 (2004).
    • (2004) Nature Rev. Mol. Cell Biol. , vol.5 , pp. 848-855
    • Gilbert, D.M.1
  • 24
    • 12144287048 scopus 로고    scopus 로고
    • Modular structure of the human lamin B2 replicator
    • Paixao, S., et al. Modular structure of the human lamin B2 replicator. Mol. Cell. Biol. 24, 2958-2967 (2004).
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 2958-2967
    • Paixao, S.1
  • 25
    • 2942628210 scopus 로고    scopus 로고
    • Defined sequence modules and an architectural element cooperate to promote initiation at an ectopic mammalian chromosomal replication origin
    • Altman, A. L. & Fanning, E. Defined sequence modules and an architectural element cooperate to promote initiation at an ectopic mammalian chromosomal replication origin. Mol. Cell. Biol. 24, 4138-4150 (2004).
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 4138-4150
    • Altman, A.L.1    Fanning, E.2
  • 26
    • 0037371705 scopus 로고    scopus 로고
    • Multiple functional elements comprise a mammalian chromosomal replicator
    • Liu, G., Malott, M. & Leffak, M. Multiple functional elements comprise a mammalian chromosomal replicator. Mol. Cell. Biol. 23, 1832-1842 (2003).
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 1832-1842
    • Liu, G.1    Malott, M.2    Leffak, M.3
  • 27
    • 74049163810 scopus 로고    scopus 로고
    • Decreased replication origin activity in temporal transition regions
    • Guan, Z., et al. Decreased replication origin activity in temporal transition regions. J. Cell Biol. 187, 623-635 (2009).
    • (2009) J. Cell Biol. , vol.187 , pp. 623-635
    • Guan, Z.1
  • 28
    • 22144465137 scopus 로고    scopus 로고
    • Promiscuous initiation on mammalian chromosomal DNA templates and its possible suppression by transcription
    • Lin, H. B., Dijkwel, P. A. & Hamlin, J. L. Promiscuous initiation on mammalian chromosomal DNA templates and its possible suppression by transcription. Exp. Cell Res. 308, 53-64 (2005).
    • (2005) Exp. Cell Res. , vol.308 , pp. 53-64
    • Lin, H.B.1    Dijkwel, P.A.2    Hamlin, J.L.3
  • 29
    • 0042125189 scopus 로고    scopus 로고
    • Sequence-independent DNA binding and replication initiation by the human origin recognition complex
    • Vashee, S., et al. Sequence-independent DNA binding and replication initiation by the human origin recognition complex. Genes Dev. 17, 1894-1908 (2003).
    • (2003) Genes Dev. , vol.17 , pp. 1894-1908
    • Vashee, S.1
  • 30
    • 1842509904 scopus 로고    scopus 로고
    • DNA topology, not DNA sequence, is a critical determinant for Drosophila ORC-DNA binding
    • Remus, D., Beall, E. L. & Botchan, M. R. DNA topology, not DNA sequence, is a critical determinant for Drosophila ORC-DNA binding. EMBO J. 23, 897-907 (2004).
    • (2004) EMBO J. , vol.23 , pp. 897-907
    • Remus, D.1    Beall, E.L.2    Botchan, M.R.3
  • 31
    • 50949096918 scopus 로고    scopus 로고
    • Predicting human nucleosome occupancy from primary sequence
    • Gupta, S., et al. Predicting human nucleosome occupancy from primary sequence. PLoS Comput. Biol. 4, e1000134 (2008).
    • (2008) PLoS Comput. Biol. , vol.4
    • Gupta, S.1
  • 32
    • 77649236880 scopus 로고    scopus 로고
    • Why are we where we are? Understanding replication origins and initiation sites in eukaryotes using ChIP-approaches
    • Schepers, A. & Papior, P. Why are we where we are? Understanding replication origins and initiation sites in eukaryotes using ChIP-approaches. Chromosome Res. 18, 63-77 (2010).
    • (2010) Chromosome Res. , vol.18 , pp. 63-77
    • Schepers, A.1    Papior, P.2
  • 33
    • 0031265756 scopus 로고    scopus 로고
    • Replication profile of Saccharomyces cerevisiae chromosome VI
    • Friedman, K. L., Brewer, B. J. & Fangman, W. L. Replication profile of Saccharomyces cerevisiae chromosome VI. Genes Cells 2, 667-678 (1997).
    • (1997) Genes Cells , vol.2 , pp. 667-678
    • Friedman, K.L.1    Brewer, B.J.2    Fangman, W.L.3
  • 34
    • 0035197623 scopus 로고    scopus 로고
    • Completion of replication map of Saccharomyces cerevisiae chromosome III
    • Poloumienko, A., Dershowitz, A., De, J. & Newlon, C. S. Completion of replication map of Saccharomyces cerevisiae chromosome III. Mol. Biol. Cell 12, 3317-3327 (2001).
    • (2001) Mol. Biol. Cell , vol.12 , pp. 3317-3327
    • Poloumienko, A.1    J. De, D.A.2    Newlon, C.S.3
  • 35
    • 33750438774 scopus 로고    scopus 로고
    • Genome-wide characterization of fission yeast DNA replication origins
    • Heichinger, C., Penkett, C. J., Bahler, J. & Nurse, P. Genome-wide characterization of fission yeast DNA replication origins. EMBO J. 25, 5171-5179 (2006).
    • (2006) EMBO J. , vol.25 , pp. 5171-5179
    • Heichinger, C.1    Penkett, C.J.2    Bahler, J.3    Nurse, P.4
  • 36
    • 61349201535 scopus 로고    scopus 로고
    • Establishing the program of origin firing during S phase in fission yeast
    • Wu, P. Y. & Nurse, P. Establishing the program of origin firing during S phase in fission yeast. Cell 136, 852-864 (2009).
    • (2009) Cell , vol.136 , pp. 852-864
    • Wu, P.Y.1    Nurse, P.2
  • 38
    • 27944452746 scopus 로고    scopus 로고
    • Progressive activation of DNA replication initiation in large domains of the immunoglobulin heavy chain locus during B cell development
    • Norio, P., et al. Progressive activation of DNA replication initiation in large domains of the immunoglobulin heavy chain locus during B cell development. Mol. Cell 20, 575-587 (2005).
    • (2005) Mol. Cell , vol.20 , pp. 575-587
    • Norio, P.1
  • 39
    • 16644394727 scopus 로고    scopus 로고
    • Plasticity of DNA replication initiation in epstein-barr virus episomes
    • Norio, P. & Schildkraut, C. L. Plasticity of DNA replication initiation in epstein-barr virus episomes. PLoS Biol. 2, e152 (2004).
    • (2004) PLoS Biol. , vol.2
    • Norio, P.1    Schildkraut, C.L.2
  • 40
    • 33845405316 scopus 로고    scopus 로고
    • DNA replication origin interference increases the spacing between initiation events in human cells
    • Lebofsky, R., Heilig, R., Sonnleitner, M., Weissenbach, J. & Bensimon, A. DNA replication origin interference increases the spacing between initiation events in human cells. Mol. Biol. Cell 17, 5337-5345 (2006).
    • (2006) Mol. Biol. Cell , vol.17 , pp. 5337-5345
    • Lebofsky, R.1    Heilig, R.2    Sonnleitner, M.3    Weissenbach, J.4    Bensimon, A.5
  • 41
    • 33344470620 scopus 로고    scopus 로고
    • Isolating apparently pure libraries of replication origins from complex genomes
    • Mesner, L. D., Crawford, E. L. & Hamlin, J. L. Isolating apparently pure libraries of replication origins from complex genomes. Mol. Cell 21, 719-726 (2006).
    • (2006) Mol. Cell , vol.21 , pp. 719-726
    • Mesner, L.D.1    Crawford, E.L.2    Hamlin, J.L.3
  • 42
    • 0042743766 scopus 로고    scopus 로고
    • Dynamics of DNA replication in mammalian somatic cells: Nucleotide pool modulates origin choice and interorigin spacing
    • Anglana, M., Apiou, F., Bensimon, A. & Debatisse, M. Dynamics of DNA replication in mammalian somatic cells: nucleotide pool modulates origin choice and interorigin spacing. Cell 114, 385-394 (2003).
    • (2003) Cell , vol.114 , pp. 385-394
    • Anglana, M.1    Apiou, F.2    Bensimon, A.3    Debatisse, M.4
  • 43
    • 0036668464 scopus 로고    scopus 로고
    • Mapping of early firing origins on a replication profile of budding yeast
    • Yabuki, N., Terashima, H. & Kitada, K. Mapping of early firing origins on a replication profile of budding yeast. Genes Cells 7, 781-789 (2002).
    • (2002) Genes Cells , vol.7 , pp. 781-789
    • Yabuki, N.1    Terashima, H.2    Kitada, K.3
  • 44
    • 0042865938 scopus 로고    scopus 로고
    • S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex
    • Katou, Y., et al. S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex. Nature 424, 1078-1083 (2003).
    • (2003) Nature , vol.424 , pp. 1078-1083
    • Katou, Y.1
  • 45
    • 77956272541 scopus 로고    scopus 로고
    • Genome-wide analysis of DNA synthesis by BrdU immunoprecipitation on tiling microarrays (BrdU-IP-chip) in Saccharomyces cerevisiae
    • pdb.prot5385 2010
    • Viggiani, C. J., Knott, S. R. & Aparicio, O. M. Genome-wide analysis of DNA synthesis by BrdU immunoprecipitation on tiling microarrays (BrdU-IP-chip) in Saccharomyces cerevisiae. Cold Spring Harb. Protoc. 2010, pdb.prot5385 (2010).
    • (2010) Cold Spring Harb. Protoc.
    • Viggiani, C.J.1    Knott, S.R.2    Aparicio, O.M.3
  • 46
    • 33645152790 scopus 로고    scopus 로고
    • Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication
    • Feng, W., et al. Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication. Nature Cell Biol. 8, 148-155 (2006).
    • (2006) Nature Cell Biol. , vol.8 , pp. 148-155
    • Feng, W.1
  • 47
    • 31344457971 scopus 로고    scopus 로고
    • The Chinese hamster dihydrofolate reductase replication origin decision point follows activation of transcription and suppresses initiation of replication within transcription units
    • Sasaki, T., et al. The Chinese hamster dihydrofolate reductase replication origin decision point follows activation of transcription and suppresses initiation of replication within transcription units. Mol. Cell. Biol. 26, 1051-1062 (2006).
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 1051-1062
    • Sasaki, T.1
  • 48
    • 34548789595 scopus 로고    scopus 로고
    • Replication in hydroxyurea: Its a matter of time
    • Alvino, G. M., et al. Replication in hydroxyurea: its a matter of time. Mol. Cell. Biol. 27, 6396-6406 (2007).
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 6396-6406
    • Alvino, G.M.1
  • 49
    • 39049159302 scopus 로고    scopus 로고
    • Checkpoint independence of most DNA replication origins in fission yeast
    • Mickle, K. L., et al. Checkpoint independence of most DNA replication origins in fission yeast. BMC Mol. Biol. 8, 112 (2007).
    • (2007) BMC Mol. Biol. , vol.8 , pp. 112
    • Mickle, K.L.1
  • 50
    • 34347240954 scopus 로고    scopus 로고
    • Replication origin plasticity, Taylor-made: Inhibition vs recruitment of origins under conditions of replication stress
    • Gilbert, D. M. Replication origin plasticity, Taylor-made: inhibition vs recruitment of origins under conditions of replication stress. Chromosoma 116, 341-347 (2007).
    • (2007) Chromosoma , vol.116 , pp. 341-347
    • Gilbert, D.M.1
  • 51
    • 52949092763 scopus 로고    scopus 로고
    • Replication fork movement sets chromatin loop size and origin choice in mammalian cells
    • Courbet, S., et al. Replication fork movement sets chromatin loop size and origin choice in mammalian cells. Nature 455, 557-560 (2008).
    • (2008) Nature , vol.455 , pp. 557-560
    • Courbet, S.1
  • 52
    • 65449160972 scopus 로고    scopus 로고
    • Genome-wide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic loci of Rpd3 function in Saccharomyces cerevisiae
    • Knott, S. R., Viggiani, C. J., Tavare, S. & Aparicio, O. M. Genome-wide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic loci of Rpd3 function in Saccharomyces cerevisiae. Genes Dev. 23, 1077-1090 (2009).
    • (2009) Genes Dev. , vol.23 , pp. 1077-1090
    • Knott, S.R.1    Viggiani, C.J.2    Tavare, S.3    Aparicio, O.M.4
  • 53
    • 77649231877 scopus 로고    scopus 로고
    • Genome-wide approaches to determining origin distribution
    • Cadoret, J. C. & Prioleau, M. N. Genome-wide approaches to determining origin distribution. Chromosome Res. 18, 79-89 (2010).
    • (2010) Chromosome Res. , vol.18 , pp. 79-89
    • Cadoret, J.C.1    Prioleau, M.N.2
  • 54
    • 57349149434 scopus 로고    scopus 로고
    • Genome-wide studies highlight indirect links between human replication origins and gene regulation
    • Cadoret, J. C., et al. Genome-wide studies highlight indirect links between human replication origins and gene regulation. Proc. Natl Acad. Sci. USA 105, 15837-15842 (2008).
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 15837-15842
    • Cadoret, J.C.1
  • 55
    • 0031278995 scopus 로고    scopus 로고
    • Replication initiation point mapping
    • Gerbi, S. A. & Bielinsky, A. K. Replication initiation point mapping. Methods 13, 271-280 (1997).
    • (1997) Methods , vol.13 , pp. 271-280
    • Gerbi, S.A.1    Bielinsky, A.K.2
  • 56
    • 68349138319 scopus 로고    scopus 로고
    • Replication initiation point mapping: Approach and implications
    • Das-Bradoo, S. & Bielinsky, A. K. Replication initiation point mapping: approach and implications. Methods Mol. Biol. 521, 105-120 (2009).
    • (2009) Methods Mol. Biol. , vol.521 , pp. 105-120
    • Das-Bradoo, S.1    Bielinsky, A.K.2
  • 57
    • 34547637896 scopus 로고    scopus 로고
    • High-throughput mapping of origins of replication in human cells
    • Lucas, I., et al. High-throughput mapping of origins of replication in human cells. EMBO Rep. 8, 770-777 (2007).
    • (2007) EMBO Rep. , vol.8 , pp. 770-777
    • Lucas, I.1
  • 58
    • 76049105950 scopus 로고    scopus 로고
    • Genomic study of replication initiation in human chromosomes reveals the influence of transcription regulation and chromatin structure on origin selection
    • Karnani, N., Taylor, C. M., Malhotra, A. & Dutta, A. Genomic study of replication initiation in human chromosomes reveals the influence of transcription regulation and chromatin structure on origin selection. Mol. Biol. Cell 21, 393-404 (2010).
    • (2010) Mol. Biol. Cell , vol.21 , pp. 393-404
    • Karnani, N.1    Taylor, C.M.2    Malhotra, A.3    Dutta, A.4
  • 59
    • 66149138883 scopus 로고    scopus 로고
    • Transcription initiation activity sets replication origin efficiency in mammalian cells
    • Sequeira-Mendes, J., et al. Transcription initiation activity sets replication origin efficiency in mammalian cells. PLoS Genet 5, e1000446 (2009).
    • (2009) PLoS Genet , vol.5
    • Sequeira-Mendes, J.1
  • 60
    • 77954814325 scopus 로고    scopus 로고
    • Interplay between DNA replication and gene expression: A harmonious coexistence
    • Maric, C. & Prioleau, M. N. Interplay between DNA replication and gene expression: a harmonious coexistence. Curr. Opin. Cell Biol. 22, 277-283 (2010).
    • (2010) Curr. Opin. Cell Biol. , vol.22 , pp. 277-283
    • Maric, C.1    Prioleau, M.N.2
  • 61
    • 68349125910 scopus 로고    scopus 로고
    • Isolation of restriction fragments containing origins of replication from complex genomes
    • Mesner, L. D. & Hamlin, J. L. Isolation of restriction fragments containing origins of replication from complex genomes. Methods Mol. Biol. 521, 315-328 (2009).
    • (2009) Methods Mol. Biol. , vol.521 , pp. 315-328
    • Mesner, L.D.1    Hamlin, J.L.2
  • 62
    • 61849173573 scopus 로고    scopus 로고
    • Incorporation into the prereplicative complex activates the Mcm2-7 helicase for Cdc7-Dbf4 phosphorylation
    • Francis, L. I., Randell, J. C., Takara, T. J., Uchima, L. & Bell, S. P. Incorporation into the prereplicative complex activates the Mcm2-7 helicase for Cdc7-Dbf4 phosphorylation. Genes Dev. 23, 643-654 (2009).
    • (2009) Genes Dev. , vol.23 , pp. 643-654
    • Francis, L.I.1    Randell, J.C.2    Takara, T.J.3    Uchima, L.4    Bell, S.P.5
  • 63
    • 17444373568 scopus 로고    scopus 로고
    • Genome-wide identification of Isw2 chromatin-remodeling targets by localization of a catalytically inactive mutant
    • Gelbart, M. E., Bachman, N., Delrow, J., Boeke, J. D. & Tsukiyama, T. Genome-wide identification of Isw2 chromatin-remodeling targets by localization of a catalytically inactive mutant. Genes Dev. 19, 942-954 (2005).
    • (2005) Genes Dev. , vol.19 , pp. 942-954
    • Gelbart, M.E.1    Bachman, N.2    Delrow, J.3    Boeke, J.D.4    Tsukiyama, T.5
  • 64
    • 46449117951 scopus 로고    scopus 로고
    • Asymmetric bidirectional replication at the human DBF4 origin
    • Romero, J. & Lee, H. Asymmetric bidirectional replication at the human DBF4 origin. Nature Struct. Mol. Biol. 15, 722-729 (2008).
    • (2008) Nature Struct. Mol. Biol. , vol.15 , pp. 722-729
    • Romero, J.1    Lee, H.2
  • 65
    • 77649231570 scopus 로고    scopus 로고
    • Defining replication origin efficiency using DNA fiber assays
    • Tuduri, S., Tourriere, H. & Pasero, P. Defining replication origin efficiency using DNA fiber assays. Chromosome Res. 18, 91-102 (2010).
    • (2010) Chromosome Res. , vol.18 , pp. 91-102
    • Tuduri, S.1    Tourriere, H.2    Pasero, P.3
  • 66
    • 77956885676 scopus 로고    scopus 로고
    • BRG1 co-localizes with DNA replication factors and is required for efficient replication fork progression
    • 22 Jun 2010 (doi:10.1093/nar/gkq559)
    • Cohen, S. M., et al. BRG1 co-localizes with DNA replication factors and is required for efficient replication fork progression. Nucleic Acids Res. 22 Jun 2010 (doi:10.1093/nar/gkq559).
    • Nucleic Acids Res.
    • Cohen, S.M.1
  • 67
    • 7544227521 scopus 로고    scopus 로고
    • Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin
    • Sullivan, B. A. & Karpen, G. H. Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nature Struct. Mol. Biol. 11, 1076-1083 (2004).
    • (2004) Nature Struct. Mol. Biol. , vol.11 , pp. 1076-1083
    • Sullivan, B.A.1    Karpen, G.H.2
  • 68
    • 77949860250 scopus 로고    scopus 로고
    • Single molecule epigenetic analysis in a nanofluidic channel
    • Cipriany, B. R., et al. Single molecule epigenetic analysis in a nanofluidic channel. Anal. Chem. 82, 2480-2487 (2010).
    • (2010) Anal. Chem. , vol.82 , pp. 2480-2487
    • Cipriany, B.R.1
  • 69
    • 0035812742 scopus 로고    scopus 로고
    • Making sense of eukaryotic DNA replication origins
    • Gilbert, D. M. Making sense of eukaryotic DNA replication origins. Science 294, 96-100 (2001).
    • (2001) Science , vol.294 , pp. 96-100
    • Gilbert, D.M.1
  • 70
    • 73449135479 scopus 로고    scopus 로고
    • To promote and protect: Coordinating DNA replication and transcription for genome stability
    • Knott, S. R., Viggiani, C. J. & Aparicio, O. M. To promote and protect: coordinating DNA replication and transcription for genome stability. Epigenetics 4, 362-365 (2009).
    • (2009) Epigenetics , vol.4 , pp. 362-365
    • Knott, S.R.1    Viggiani, C.J.2    Aparicio, O.M.3
  • 71
    • 34548396264 scopus 로고    scopus 로고
    • Human gene organization driven by the coordination of replication and transcription
    • Huvet, M., et al. Human gene organization driven by the coordination of replication and transcription. Genome Res. 17, 1278-1285 (2007).
    • (2007) Genome Res. , vol.17 , pp. 1278-1285
    • Huvet, M.1
  • 72
    • 70450153952 scopus 로고    scopus 로고
    • Increased rate of human mutations where DNA and RNA polymerases collide
    • Jorgensen, F. G. & Schierup, M. H. Increased rate of human mutations where DNA and RNA polymerases collide. Trends Genet. 25, 523-527 (2009).
    • (2009) Trends Genet. , vol.25 , pp. 523-527
    • Jorgensen, F.G.1    Schierup, M.H.2
  • 73
    • 69449108384 scopus 로고    scopus 로고
    • Genome-organizing factors Top2 and Hmo1 prevent chromosome fragility at sites of S phase transcription
    • Bermejo, R., et al. Genome-organizing factors Top2 and Hmo1 prevent chromosome fragility at sites of S phase transcription. Cell 138, 870-884 (2009).
    • (2009) Cell , vol.138 , pp. 870-884
    • Bermejo, R.1
  • 74
    • 70449522304 scopus 로고    scopus 로고
    • Topoisomerase i suppresses genomic instability by preventing interference between replication and transcription
    • Tuduri, S., et al. Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription. Nature Cell Biol. 11, 1315-1324 (2009).
    • (2009) Nature Cell Biol. , vol.11 , pp. 1315-1324
    • Tuduri, S.1
  • 76
    • 67449113551 scopus 로고    scopus 로고
    • Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae
    • Azvolinsky, A., Giresi, P. G., Lieb, J. D. & Zakian, V. A. Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae. Mol. Cell 34, 722-734 (2009).
    • (2009) Mol. Cell , vol.34 , pp. 722-734
    • Azvolinsky, A.1    Giresi, P.G.2    Lieb, J.D.3    Zakian, V.A.4
  • 77
    • 77953208022 scopus 로고    scopus 로고
    • A comprehensive genome-wide map of autonomously replicating sequences in a naive genome
    • Liachko, I., et al. A comprehensive genome-wide map of autonomously replicating sequences in a naive genome. PLoS Genet 6, e1000946 (2010).
    • (2010) PLoS Genet , vol.6
    • Liachko, I.1
  • 78
    • 0036135617 scopus 로고    scopus 로고
    • Replication initiation patterns in the β-globin loci of totipotent and differentiated murine cells: Evidence for multiple initiation regions
    • Aladjem, M. I., et al. Replication initiation patterns in the β-globin loci of totipotent and differentiated murine cells: evidence for multiple initiation regions. Mol. Cell. Biol. 22, 442-452 (2002).
    • (2002) Mol. Cell. Biol. , vol.22 , pp. 442-452
    • Aladjem, M.I.1
  • 79
    • 79959752287 scopus 로고    scopus 로고
    • (eds Meshorer, E. & Plath, K.) Landes and Springer, Austin, Texas
    • Hiratani, I. & Gilbert, D. M. in The Cell Biology of Stem Cells (eds Meshorer, E. & Plath, K.) 41-58 (Landes and Springer, Austin, Texas, 2010).
    • (2010) The Cell Biology of Stem Cells , pp. 41-58
    • Hiratani, I.1    Gilbert, D.M.2
  • 80
    • 70349572957 scopus 로고    scopus 로고
    • Microarray analysis of DNA replication timing
    • Karnani, N., Taylor, C. M. & Dutta, A. Microarray analysis of DNA replication timing. Methods Mol. Biol. 556, 191-203 (2009).
    • (2009) Methods Mol. Biol. , vol.556 , pp. 191-203
    • Karnani, N.1    Taylor, C.M.2    Dutta, A.3
  • 81
    • 77649231571 scopus 로고    scopus 로고
    • Genome-wide analysis of the replication program in mammals
    • Farkash-Amar, S. & Simon, I. Genome-wide analysis of the replication program in mammals. Chromosome Res. 18, 115-125 (2009).
    • (2009) Chromosome Res. , vol.18 , pp. 115-125
    • Farkash-Amar, S.1    Simon, I.2
  • 82
    • 0023643109 scopus 로고
    • Bovine papilloma virus plasmids replicate randomly in mouse fibroblasts throughout S-phase of the cell cycle
    • Gilbert, D. M. & Cohen, S. N. Bovine papilloma virus plasmids replicate randomly in mouse fibroblasts throughout S-phase of the cell cycle. Cell 50, 59-68 (1987).
    • (1987) Cell , vol.50 , pp. 59-68
    • Gilbert, D.M.1    Cohen, S.N.2
  • 83
    • 0022481322 scopus 로고
    • Temporal order of replication of Xenopus laevis 5S ribosomal RNA genes in somatic cells
    • Gilbert, D. M. Temporal order of replication of Xenopus laevis 5S ribosomal RNA genes in somatic cells. Proc. Natl Acad. Sci. USA 83, 2924-2928 (1986).
    • (1986) Proc. Natl Acad. Sci. USA , vol.83 , pp. 2924-2928
    • Gilbert, D.M.1
  • 84
    • 0027176828 scopus 로고
    • Association of fragile X syndrome with delayed replication of the FMR1 gene
    • Hansen, R., Canfield, T., Lamb, M., Gartler, S. & Laird, C. Association of fragile X syndrome with delayed replication of the FMR1 gene. Cell 73, 1403-1409 (1993).
    • (1993) Cell , vol.73 , pp. 1403-1409
    • Hansen, R.1    Canfield, T.2    Lamb, M.3    Gartler, S.4    Laird, C.5
  • 85
    • 0036842221 scopus 로고    scopus 로고
    • Genome-wide DNA replication profile for Drosophila melanogaster: A link between transcription and replication timing
    • Schubeler, D., et al. Genome-wide DNA replication profile for Drosophila melanogaster: a link between transcription and replication timing. Nature Genet. 32, 438-442 (2002).
    • (2002) Nature Genet. , vol.32 , pp. 438-442
    • Schubeler, D.1
  • 86
    • 61849177618 scopus 로고    scopus 로고
    • Chromatin state marks cell-typeand gender-specific replication of the Drosophila genome
    • Schwaiger, M., et al. Chromatin state marks cell-typeand gender-specific replication of the Drosophila genome. Genes Dev. 23, 589-601 (2009).
    • (2009) Genes Dev. , vol.23 , pp. 589-601
    • Schwaiger, M.1
  • 87
    • 77953004689 scopus 로고    scopus 로고
    • Heterochromatin protein 1 (HP1) modulates replication timing of the Drosophila genome
    • Schwaiger, M., Kohler, H., Oakeley, E. J., Stadler, M. B. & Schubeler, D. Heterochromatin protein 1 (HP1) modulates replication timing of the Drosophila genome. Genome Res. 20, 771-780 (2010).
    • (2010) Genome Res. , vol.20 , pp. 771-780
    • Schwaiger, M.1    Kohler, H.2    Oakeley, E.J.3    Stadler, M.B.4    Schubeler, D.5
  • 88
    • 76349123622 scopus 로고    scopus 로고
    • Sequencing newly replicated DNA reveals widespread plasticity in human replication timing
    • Hansen, R. S., et al. Sequencing newly replicated DNA reveals widespread plasticity in human replication timing. Proc. Natl Acad. Sci. USA 107, 139-144 (2010).
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 139-144
    • Hansen, R.S.1
  • 89
    • 75649092667 scopus 로고    scopus 로고
    • Genome-wide dynamics of replication timing revealed by in vitro models of mouse embryogenesis
    • Hiratani, I., et al. Genome-wide dynamics of replication timing revealed by in vitro models of mouse embryogenesis. Genome Res. 20, 155-169 (2010).
    • (2010) Genome Res. , vol.20 , pp. 155-169
    • Hiratani, I.1
  • 90
    • 77952994784 scopus 로고    scopus 로고
    • Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types
    • Ryba, T., et al. Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Res. 20, 761-770 (2010).
    • (2010) Genome Res. , vol.20 , pp. 761-770
    • Ryba, T.1
  • 91
    • 73249147619 scopus 로고    scopus 로고
    • Predictable dynamic program of timing of DNA replication in human cells
    • Desprat, R., et al. Predictable dynamic program of timing of DNA replication in human cells. Genome Res. 19, 2288-2299 (2009).
    • (2009) Genome Res. , vol.19 , pp. 2288-2299
    • Desprat, R.1
  • 92
    • 73349139918 scopus 로고    scopus 로고
    • G9a selectively represses a class of late-replicating genes at the nuclear periphery
    • Yokochi, T., et al. G9a selectively represses a class of late-replicating genes at the nuclear periphery. Proc. Natl Acad. Sci. USA 106, 19363-19368 (2009).
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 19363-19368
    • Yokochi, T.1
  • 93
    • 54949085778 scopus 로고    scopus 로고
    • Global reorganization of replication domains during embryonic stem cell differentiation
    • Hiratani, I., et al. Global reorganization of replication domains during embryonic stem cell differentiation. PLoS Biol. 6, e245 (2008).
    • (2008) PLoS Biol. , vol.6
    • Hiratani, I.1
  • 94
    • 53549118586 scopus 로고    scopus 로고
    • Global organization of replication time zones of the mouse genome
    • Farkash-Amar, S., et al. Global organization of replication time zones of the mouse genome. Genome Res. 18, 1562-1570 (2008).
    • (2008) Genome Res. , vol.18 , pp. 1562-1570
    • Farkash-Amar, S.1
  • 95
    • 17444425224 scopus 로고    scopus 로고
    • Replication timing of human chromosome 6
    • Woodfine, K., et al. Replication timing of human chromosome 6. Cell Cycle 4, 172-176 (2005).
    • (2005) Cell Cycle , vol.4 , pp. 172-176
    • Woodfine, K.1
  • 96
    • 1642514822 scopus 로고    scopus 로고
    • Replication timing of the human genome
    • Woodfine, K., et al. Replication timing of the human genome. Hum. Mol. Genet. 13, 191-202 (2004).
    • (2004) Hum. Mol. Genet. , vol.13 , pp. 191-202
    • Woodfine, K.1
  • 97
    • 77954155284 scopus 로고    scopus 로고
    • Arabidopsis thaliana chromosome 4 replicates in two phases that correlate with chromatin state
    • Lee, T. J., et al. Arabidopsis thaliana chromosome 4 replicates in two phases that correlate with chromatin state. PLoS Genet 6, e1000982 (2010).
    • (2010) PLoS Genet , vol.6
    • Lee, T.J.1
  • 98
    • 0025279875 scopus 로고
    • Position effects on the timing of replication of chromosomally integrated simian virus 40 molecules in Chinese hamster cells
    • Gilbert, D. M. & Cohen, S. N. Position effects on the timing of replication of chromosomally integrated simian virus 40 molecules in Chinese hamster cells. Mol. Cell. Biol. 10, 4345-4355 (1990).
    • (1990) Mol. Cell. Biol. , vol.10 , pp. 4345-4355
    • Gilbert, D.M.1    Cohen, S.N.2
  • 99
    • 34250327950 scopus 로고    scopus 로고
    • Pan-S replication patterns and chromosomal domains defined by genome-tiling arrays of ENCODE genomic areas
    • Karnani, N., Taylor, C., Malhotra, A. & Dutta, A. Pan-S replication patterns and chromosomal domains defined by genome-tiling arrays of ENCODE genomic areas. Genome Res. 17, 865-876 (2007).
    • (2007) Genome Res. , vol.17 , pp. 865-876
    • Karnani, N.1    Taylor, C.2    Malhotra, A.3    Dutta, A.4
  • 100
    • 77953569966 scopus 로고    scopus 로고
    • G2 phase chromatin lacks determinants of replication timing
    • Lu, J., Li, F., Murphy, C. S., Davidson, M. W. & Gilbert, D. M. G2 phase chromatin lacks determinants of replication timing. J. Cell Biol. 189, 967-980 (2010).
    • (2010) J. Cell Biol. , vol.189 , pp. 967-980
    • Lu, J.1    Li, F.2    Murphy, C.S.3    Davidson, M.W.4    Gilbert, D.M.5
  • 101
    • 65449142884 scopus 로고    scopus 로고
    • Replication timing and transcriptional control: Beyond cause and effect - Part II
    • Hiratani, I., Takebayashi, S., Lu, J. & Gilbert, D. M. Replication timing and transcriptional control: beyond cause and effect - part II. Curr. Opin. Genet. Dev. 19, 142-149 (2009).
    • (2009) Curr. Opin. Genet. Dev. , vol.19 , pp. 142-149
    • Hiratani, I.1    Takebayashi, S.2    Lu, J.3    Gilbert, D.M.4
  • 102
    • 65449178609 scopus 로고    scopus 로고
    • Replication timing as an epigenetic mark
    • Hiratani, I. & Gilbert, D. M. Replication timing as an epigenetic mark. Epigenetics 4, 93-97 (2009).
    • (2009) Epigenetics , vol.4 , pp. 93-97
    • Hiratani, I.1    Gilbert, D.M.2
  • 103
    • 77649236302 scopus 로고    scopus 로고
    • Domain-wide regulation of DNA replication timing during mammalian development
    • Pope, B. D., Hiratani, I. & Gilbert, D. M. Domain-wide regulation of DNA replication timing during mammalian development. Chromosome Res. 18, 127-136 (2010).
    • (2010) Chromosome Res. , vol.18 , pp. 127-136
    • Pope, B.D.1    Hiratani, I.2    Gilbert, D.M.3
  • 104
    • 70349897734 scopus 로고    scopus 로고
    • Temporal regulation of DNA replication in mammalian cells
    • Mendez, J. Temporal regulation of DNA replication in mammalian cells. Crit. Rev. Biochem. Mol. Biol. 44, 343-351 (2009).
    • (2009) Crit. Rev. Biochem. Mol. Biol. , vol.44 , pp. 343-351
    • Mendez, J.1
  • 105
    • 61849083545 scopus 로고    scopus 로고
    • The temporal program of chromosome replication: Genomewide replication in clb5 δ Saccharomyces cerevisiae
    • McCune, H. J., et al. The temporal program of chromosome replication: genomewide replication in clb5 δ Saccharomyces cerevisiae. Genetics 180, 1833-1847 (2008).
    • (2008) Genetics , vol.180 , pp. 1833-1847
    • McCune, H.J.1
  • 106
    • 10644297436 scopus 로고    scopus 로고
    • Coordination of replication and transcription along a Drosophila chromosome
    • MacAlpine, D. M., Rodriguez, H. K. & Bell, S. P. Coordination of replication and transcription along a Drosophila chromosome. Genes Dev. 18, 3094-3105 (2004).
    • (2004) Genes Dev. , vol.18 , pp. 3094-3105
    • MacAlpine, D.M.1    Rodriguez, H.K.2    Bell, S.P.3
  • 107
    • 77957369058 scopus 로고    scopus 로고
    • Comparative analysis of DNA replication timing reveals conserved large-scale chromosomal architecture
    • Yaffe, E., et al. Comparative analysis of DNA replication timing reveals conserved large-scale chromosomal architecture. PLoS Genet 6, e1001011 (2010).
    • (2010) PLoS Genet , vol.6
    • Yaffe, E.1
  • 108
    • 39749176602 scopus 로고    scopus 로고
    • The impact of chromatin modifiers on the timing of locus replication in mouse embryonic stem cells
    • Jorgensen, H. F., et al. The impact of chromatin modifiers on the timing of locus replication in mouse embryonic stem cells. Genome Biol. 8, R169 (2007).
    • (2007) Genome Biol. , vol.8
    • Jorgensen, H.F.1
  • 109
    • 13244277994 scopus 로고    scopus 로고
    • The chromatin remodeling complex NoRC controls replication timing of rRNA genes
    • Li, J., Santoro, R., Koberna, K. & Grummt, I. The chromatin remodeling complex NoRC controls replication timing of rRNA genes. EMBO J. 24, 120-127 (2004).
    • (2004) EMBO J. , vol.24 , pp. 120-127
    • Li, J.1    Santoro, R.2    Koberna, K.3    Grummt, I.4
  • 110
    • 33746082480 scopus 로고    scopus 로고
    • Uncoupling global and fine-tuning replication timing determinants for mouse pericentric heterochromatin
    • Wu, R., Singh, P. B. & Gilbert, D. M. Uncoupling global and fine-tuning replication timing determinants for mouse pericentric heterochromatin. J. Cell Biol. 174, 185-194 (2006).
    • (2006) J. Cell Biol. , vol.174 , pp. 185-194
    • Wu, R.1    Singh, P.B.2    Gilbert, D.M.3
  • 111
    • 61849184077 scopus 로고    scopus 로고
    • The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-type locus
    • Hayashi, M. T., Takahashi, T. S., Nakagawa, T., Nakayama, J. I. & Masukata, H. The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-type locus. Nature Cell Biol. 11, 357-362 (2009).
    • (2009) Nature Cell Biol. , vol.11 , pp. 357-362
    • Hayashi, M.T.1    Takahashi, T.S.2    Nakagawa, T.3    Nakayama, J.I.4    Masukata, H.5
  • 112
    • 77952744854 scopus 로고    scopus 로고
    • A three-dimensional model of the yeast genome
    • Duan, Z., et al. A three-dimensional model of the yeast genome. Nature 465, 363-367 (2010).
    • (2010) Nature , vol.465 , pp. 363-367
    • Duan, Z.1
  • 113
    • 0038387866 scopus 로고    scopus 로고
    • Heritable gene silencing in lymphocytes delays chromatid resolution without affecting the timing of DNA replication
    • Azuara, V., et al. Heritable gene silencing in lymphocytes delays chromatid resolution without affecting the timing of DNA replication. Nature Cell Biol. 5, 668-674 (2003).
    • (2003) Nature Cell Biol. , vol.5 , pp. 668-674
    • Azuara, V.1
  • 114
    • 67649126836 scopus 로고    scopus 로고
    • Shifts in replication timing actively affect histone acetylation during nucleosome reassembly
    • Lande-Diner, L., Zhang, J. & Cedar, H. Shifts in replication timing actively affect histone acetylation during nucleosome reassembly. Mol. Cell 34, 767-774 (2009).
    • (2009) Mol. Cell , vol.34 , pp. 767-774
    • Lande-Diner, L.1    Zhang, J.2    Cedar, H.3
  • 115
    • 77951539351 scopus 로고    scopus 로고
    • Timing of replication is a determinant of neutral substitution rates but does not explain slow y chromosome evolution in rodents
    • Pink, C. J. & Hurst, L. D. Timing of replication is a determinant of neutral substitution rates but does not explain slow Y chromosome evolution in rodents. Mol. Biol. Evol. 27, 1077-1086 (2010).
    • (2010) Mol. Biol. Evol. , vol.27 , pp. 1077-1086
    • Pink, C.J.1    Hurst, L.D.2
  • 116
    • 77950661675 scopus 로고    scopus 로고
    • Impact of replication timing on non-CpG and CpG substitution rates in mammalian genomes
    • Chen, C. L., et al. Impact of replication timing on non-CpG and CpG substitution rates in mammalian genomes. Genome Res. 20, 447-457 (2010).
    • (2010) Genome Res. , vol.20 , pp. 447-457
    • Chen, C.L.1
  • 117
    • 77649231526 scopus 로고    scopus 로고
    • Mathematical modelling of eukaryotic DNA replication
    • Hyrien, O. & Goldar, A. Mathematical modelling of eukaryotic DNA replication. Chromosome Res. 18, 147-161 (2010).
    • (2010) Chromosome Res. , vol.18 , pp. 147-161
    • Hyrien, O.1    Goldar, A.2
  • 118
    • 0013887376 scopus 로고
    • Autoradiography of chromosomal DNA fibers from Chinese hamster cells
    • Huberman, J. A. & Riggs, A. D. Autoradiography of chromosomal DNA fibers from Chinese hamster cells. Proc. Natl Acad. Sci. USA 55, 599-606 (1966).
    • (1966) Proc. Natl Acad. Sci. USA , vol.55 , pp. 599-606
    • Huberman, J.A.1    Riggs, A.D.2
  • 119
    • 0035842404 scopus 로고    scopus 로고
    • Mapping sites where replication initiates in mammalian cells using DNA fibers
    • Takebayashi, S. I., Manders, E. M., Kimura, H., Taguchi, H. & Okumura, K. Mapping sites where replication initiates in mammalian cells using DNA fibers. Exp. Cell Res. 271, 263-268 (2001).
    • (2001) Exp. Cell Res. , vol.271 , pp. 263-268
    • Takebayashi, S.I.1    Manders, E.M.2    Kimura, H.3    Taguchi, H.4    Okumura, K.5
  • 120
    • 29444450737 scopus 로고    scopus 로고
    • Generating highly ordered DNA nanostrand arrays
    • Guan, J. & Lee, L. J. Generating highly ordered DNA nanostrand arrays. Proc. Natl Acad. Sci. USA 102, 18321-18325 (2005).
    • (2005) Proc. Natl Acad. Sci. USA , vol.102 , pp. 18321-18325
    • Guan, J.1    Lee, L.J.2
  • 121
    • 55349114734 scopus 로고    scopus 로고
    • Multiplexed lipid dip-pen nanolithography on subcellular scales for the templating of functional proteins and cell culture
    • Sekula, S., et al. Multiplexed lipid dip-pen nanolithography on subcellular scales for the templating of functional proteins and cell culture. Small 4, 1785-1793 (2008).
    • (2008) Small , vol.4 , pp. 1785-1793
    • Sekula, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.