메뉴 건너뛰기




Volumn 10, Issue 6, 2012, Pages

Volcano plots in analyzing differential expressions with mRNA microarrays

Author keywords

Microarray; regularization; signal to noise ratio; volcano plot

Indexed keywords

MESSENGER RNA;

EID: 84867625594     PISSN: 02197200     EISSN: 17576334     Source Type: Journal    
DOI: 10.1142/S0219720012310038     Document Type: Article
Times cited : (157)

References (143)
  • 2
    • 0034616912 scopus 로고    scopus 로고
    • Biomedical discovery with DNA arrays
    • Young RA, Biomedical discovery with DNA arrays, Cell 102:9-15, 2000.
    • (2000) Cell , vol.102 , pp. 9-15
    • Young, R.A.1
  • 3
    • 0036884167 scopus 로고    scopus 로고
    • The use and analysis of microarray data
    • Butte A, The use and analysis of microarray data, Nat Rev Drug Discov 1:951-960, 2002.
    • (2002) Nat Rev Drug Discov , vol.1 , pp. 951-960
    • Butte, A.1
  • 4
    • 0036899286 scopus 로고    scopus 로고
    • From patterns to pathways: Gene expression data analysis comes of age
    • Slonim DK, From patterns to pathways: Gene expression data analysis comes of age, Nat Genet 32(Suppl):502-508, 2002.
    • (2002) Nat Genet , vol.32 , pp. 502-508
    • Slonim, D.K.1
  • 5
    • 22244458625 scopus 로고    scopus 로고
    • Application of DNA microarrays in biology
    • Stoughton RB, Application of DNA microarrays in biology, Ann Rev Biochem 74:53-82, 2005.
    • (2005) Ann Rev Biochem , vol.74 , pp. 53-82
    • Stoughton, R.B.1
  • 6
    • 35348853238 scopus 로고    scopus 로고
    • DNA Microarrays a powerful genomic tool for biomedical and clinical research
    • Trevino V, Falciani F, Barrera-Saldana HA, DNA Microarrays: A powerful genomic tool for biomedical and clinical research, Mol Med 13:527-541, 2007.
    • (2007) Mol Med , vol.13 , pp. 527-541
    • Trevino, V.1    Falciani, F.2    Barrera-Saldana, H.A.3
  • 8
    • 1842422544 scopus 로고    scopus 로고
    • Comparison of mRNA gene expression by RT-PCA and DNA microarray
    • Etienne W, Meyer MH, Peppers J, Meyer Jr. RA, Comparison of mRNA gene expression by RT-PCA and DNA microarray, BioTechniques 36:618-626, 2004.
    • (2004) BioTechniques , vol.36 , pp. 618-626
    • Etienne, W.1    Meyer, M.H.2    Peppers, J.3    Meyer Jr., R.A.4
  • 10
    • 33845624887 scopus 로고    scopus 로고
    • Microarray validation: Factors in°uencing correlation between oligonucleotide microarrays and real-time PCR
    • Morey JS, Ryan JC, van Dolah FM, Microarray validation: Factors in°uencing correlation between oligonucleotide microarrays and real-time PCR, Biol Proced Online 8:175-193, 2006.
    • (2006) Biol Proced Online , vol.8 , pp. 175-193
    • Morey, J.S.1    Ryan, J.C.2    Van Dolah, F.M.3
  • 11
    • 4143151607 scopus 로고    scopus 로고
    • Current issues for DNA microarrays: Platform comparison, double linear amplication, and universal RNA reference
    • Park PJ, Cao YA, Lee SY, Kim JW, Chang MS, Hart R, Choi S, Current issues for DNA microarrays: Platform comparison, double linear amplication, and universal RNA reference, J Biotechnol 112:225-245, 2004.
    • (2004) J Biotechnol , vol.112 , pp. 225-245
    • Park, P.J.1    Cao, Y.A.2    Lee, S.Y.3    Kim, J.W.4    Chang, M.S.5    Hart, R.6    Choi, S.7
  • 13
    • 18244384210 scopus 로고    scopus 로고
    • Multiple-laboratory comparison of microarray platforms
    • Irizarry RA, Warren D, Spencer F et al., Multiple-laboratory comparison of microarray platforms, Nat Meth 2:345-350, 2005.
    • (2005) Nat Meth , vol.2 , pp. 345-350
    • Irizarry, R.A.1    Warren, D.2    Spencer, F.3
  • 14
    • 31444431754 scopus 로고    scopus 로고
    • Reliability and reproducibility issues in DNA microarray measurements
    • Draghici S, Khatri P, Eklund AC, Szallasi Z, Reliability and reproducibility issues in DNA microarray measurements, Trends Genet 22:101-109, 2006.
    • (2006) Trends Genet , vol.22 , pp. 101-109
    • Draghici, S.1    Khatri, P.2    Eklund, A.C.3    Szallasi, Z.4
  • 15
    • 33746108159 scopus 로고    scopus 로고
    • A sequence-oriented comparison of gene expression measurements across di®erent hybridization-based technologies
    • Kuo WP, Liu F, Trimarchi J et al., A sequence-oriented comparison of gene expression measurements across di®erent hybridization-based technologies, Nat Biotechnol 24:832-840, 2006.
    • (2006) Nat Biotechnol , vol.24 , pp. 832-840
    • Kuo, W.P.1    Liu, F.2    Trimarchi, J.3
  • 16
    • 33748491718 scopus 로고    scopus 로고
    • Performance comparison of one-color and two-color platforms within the Microarray Quality Control (MAQC) project
    • Patterson TA, Lobenhofer EK, Fulmer-Smentek SB et al., Performance comparison of one-color and two-color platforms within the Microarray Quality Control (MAQC) project, Nat Biotechnol 24:1140-1150, 2006.
    • (2006) Nat Biotechnol , vol.24 , pp. 1140-1150
    • Patterson, T.A.1    Lobenhofer, E.K.2    Fulmer-Smentek, S.B.3
  • 17
    • 38349088960 scopus 로고    scopus 로고
    • Reproducibility of microarray data: A further analysis of microarray quality control (MAQC) data
    • Chen JJ, Hsueh HM, Delongchamp RR, Lin CJ, Tsai CA, Reproducibility of microarray data: A further analysis of microarray quality control (MAQC) data, BMC Bioinformatics 8:412, 2007.
    • (2007) BMC Bioinformatics , vol.8 , pp. 412
    • Chen, J.J.1    Hsueh, H.M.2    Delongchamp, R.R.3    Lin, C.J.4    Tsai, C.A.5
  • 18
    • 84867900427 scopus 로고    scopus 로고
    • The MicroArray Quality Control (MAQC) project and cross-platform analysis of microarray data
    • in Horng-Shing H, Scholkopf B, Zhao H (eds. Verlag, , Springer Berlin, Heidelberg
    • Wen Z, Su Z, Liu J, Ning B, Guo L, Tong W, Shi L, The MicroArray Quality Control (MAQC) project and cross-platform analysis of microarray data, in Horng-Shing H, Scholkopf B, Zhao H (eds.), Handbook of Statistical Bioinformatics, Springer-Verlag, Berlin, Heidelberg, pp. 171-192, 2011.
    • (2011) , Handbook of Statistical Bioinformatics , pp. 171-192
    • Wen, Z.1    Su, Z.2    Liu, J.3    Ning, B.4    Guo, L.5    Tong, W.6    Shi, L.7
  • 19
    • 84555188289 scopus 로고    scopus 로고
    • Functional comparison of microarray data across multiple platforms using the method of percentage of overlapping functions
    • Li Z, Kwekel JC, Chen T, Functional comparison of microarray data across multiple platforms using the method of percentage of overlapping functions, Meth Mol Biol 802:123-139, 2012.
    • (2012) Meth Mol Biol , vol.802 , pp. 123-139
    • Li, Z.1    Kwekel, J.C.2    Chen, T.3
  • 21
    • 0036900895 scopus 로고    scopus 로고
    • Fundamentals of experimental design for cDNA microarrays
    • Churchill GA, Fundamentals of experimental design for cDNA microarrays, Nat Genet 32:490-495, 2002.
    • (2002) Nat Genet , vol.32 , pp. 490-495
    • Churchill, G.A.1
  • 22
    • 33845432928 scopus 로고    scopus 로고
    • Adjusting batch e®ects in microarray expression data using empirical Bayes methods
    • Li C, Rabinovic A, Adjusting batch e®ects in microarray expression data using empirical Bayes methods, Biostatistics 8:118-127, 2007.
    • (2007) Biostatistics , vol.8 , pp. 118-127
    • Li, C.1    Rabinovic, A.2
  • 23
    • 41949101394 scopus 로고    scopus 로고
    • Run batch e®ects potentially compromise the usefulness of genomic signatures for ovarian cancer
    • Baggerly KA, Coombes KR, Neeley ES, Run batch e®ects potentially compromise the usefulness of genomic signatures for ovarian cancer, J Clin Oncol 26:1186-1187, 2008.
    • (2008) J Clin Oncol , vol.26 , pp. 1186-1187
    • Baggerly, K.A.1    Coombes, K.R.2    Neeley, E.S.3
  • 25
    • 79952230540 scopus 로고    scopus 로고
    • Removing batch e®ects in analysis of expression microarray data: An evaluation of six batch adjustment methods
    • Chen C, Grennan K, Badner J, Zhang D, Gershon E, Jin L, Liu C, Removing batch e®ects in analysis of expression microarray data: An evaluation of six batch adjustment methods, PLoS ONE 6:e17238, 2011.
    • (2011) PLoS ONE , vol.6
    • Chen, C.1    Grennan, K.2    Badner, J.3    Zhang, D.4    Gershon, E.5    Jin, L.6    Liu, C.7
  • 26
    • 84862250978 scopus 로고    scopus 로고
    • Using control genes to correct for unwanted variation in microarray data
    • Gagnon-Bartsch JA, Speed TP, Using control genes to correct for unwanted variation in microarray data, Biostatistics 13:539-552, 2012.
    • (2012) Biostatistics , vol.13 , pp. 539-552
    • Gagnon-Bartsch, J.A.1    Speed, T.P.2
  • 27
    • 13444304216 scopus 로고    scopus 로고
    • Microarrays and molecular research: Noise discovery
    • Ioannidis JPA, Microarrays and molecular research: Noise discovery? Lancet 365:454-455, 2005.
    • (2005) Lancet , vol.365 , pp. 454-455
    • Ioannidis, J.P.A.1
  • 29
    • 33645825183 scopus 로고    scopus 로고
    • Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer
    • Ein-Dor L, Zuk O, Domany E, Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer, Proc Nat Acad Sci 103:5923-5928, 2006.
    • (2006) Proc Nat Acad Sci , vol.103 , pp. 5923-5928
    • Ein-Dor, L.1    Zuk, O.2    Domany, E.3
  • 30
    • 34347260600 scopus 로고    scopus 로고
    • Living with noisy genes: How cells function reliably with inherent variability in gene expression
    • Maheshri N, O'Shea EK, Living with noisy genes: How cells function reliably with inherent variability in gene expression, Annu Rev Biophy Biomol Struct 36:413-434, 2007.
    • (2007) Annu Rev Biophy Biomol Struct , vol.36 , pp. 413-434
    • Maheshri, N.1    O'Shea, E.K.2
  • 31
    • 77954871394 scopus 로고    scopus 로고
    • Intensity dependent estimation of noise in microarrays improves detection of di®erentially expressed genes
    • Zeisel A, Amir A, Kostler WJ, Domany E, Intensity dependent estimation of noise in microarrays improves detection of di®erentially expressed genes, BMC Bioinformatics 11:400, 2010.
    • (2010) BMC Bioinformatics , vol.11 , Issue.400
    • Zeisel, A.1    Amir, A.2    Kostler, W.J.3    Domany, E.4
  • 32
    • 78549252800 scopus 로고    scopus 로고
    • Validation and characterization of DNA microarray gene expression data distribution and associated moments
    • Thomas R, de la Torre L, Chang X, Mehrotra S, Validation and characterization of DNA microarray gene expression data distribution and associated moments, BMC Bioinformatics 11:576, 2010.
    • (2010) BMC Bioinformatics , vol.11 , Issue.576
    • Thomas, R.1    De La Torre, L.2    Chang, X.3    Mehrotra, S.4
  • 33
    • 82355186504 scopus 로고    scopus 로고
    • Relative impact of key sources of systematic noise in A®ymetrix and Illumina gene-expression microarray experiments
    • Kitchen RR, Sabine VS, Simen AA, Dixon JM, Bartlett JMS, Sims AH, Relative impact of key sources of systematic noise in A®ymetrix and Illumina gene-expression microarray experiments, BMC Genomics 12:589, 2011.
    • (2011) BMC Genomics , vol.12 , Issue.589
    • Kitchen, R.R.1    Sabine, V.S.2    Simen, A.A.3    Dixon, J.M.4    Bartlett, J.M.S.5    Sims, A.H.6
  • 34
    • 79952579286 scopus 로고    scopus 로고
    • Biological assessment of robust noise models in microarray data analysis
    • Posekany A, Felsenstein K, Sykacek P, Biological assessment of robust noise models in microarray data analysis, Bioinformatics 27:807-814, 2011.
    • (2011) Bioinformatics , vol.27 , pp. 807-814
    • Posekany, A.1    Felsenstein, K.2    Sykacek, P.3
  • 35
    • 84857579406 scopus 로고    scopus 로고
    • Noise reduction in microarray gene expression data based on spectral analysis
    • Tang VTY, Yan H, Noise reduction in microarray gene expression data based on spectral analysis, Int J Mach Learn & Cyber 3:51-57, 2012.
    • (2012) Int J Mach Learn & Cyber , vol.3 , pp. 51-57
    • Tang, V.T.Y.1    Yan, H.2
  • 37
    • 0036319960 scopus 로고    scopus 로고
    • Design issues for cDNA microarray experiments
    • Yang YH, Speed T, Design issues for cDNA microarray experiments, Nat Rev Genet 3:579-588, 2002.
    • (2002) Nat Rev Genet , vol.3 , pp. 579-588
    • Yang, Y.H.1    Speed, T.2
  • 39
    • 33748491517 scopus 로고    scopus 로고
    • Project shows inter- and intraplatform reproducibility of gene expression measurements
    • MAQC Consortium, The MicroArray Quality Control (MAQC)
    • Shi L, Reid LH, Jones WD et al., MAQC Consortium, The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements, Nat Biotechnol 24:1151-1161, 2006.
    • (2006) Nat Biotechnol , vol.24 , pp. 1151-1161
    • Shi, L.1    Reid, L.H.2    Jones, W.D.3
  • 41
    • 18344396568 scopus 로고    scopus 로고
    • Minimum information about a microarray experiment (MIAME) - toward standards for microarray data
    • Brazma A, Hingamp P, Quackenbush J et al., Minimum information about a microarray experiment (MIAME) - toward standards for microarray data, Nat Genet 29:365-371, 2001.
    • (2001) Nat Genet , vol.29 , pp. 365-371
    • Brazma, A.1    Hingamp, P.2    Quackenbush, J.3
  • 42
    • 59149088407 scopus 로고    scopus 로고
    • Repeatability of published microarray gene expression analyses
    • Ioannidis JPA, Allison DB, Ball CA et al., Repeatability of published microarray gene expression analyses, Nat Genet 41:149-155, 2009.
    • (2009) Nat Genet , vol.41 , pp. 149-155
    • Ioannidis, J.P.A.1    Allison, D.B.2    Ball, C.A.3
  • 43
    • 0036898577 scopus 로고    scopus 로고
    • Microarray data normalization and transformation
    • Quackenbush J, Microarray data normalization and transformation, Nat Genet 32:496-501, 2002.
    • (2002) Nat Genet , vol.32 , pp. 496-501
    • Quackenbush, J.1
  • 44
    • 0037129827 scopus 로고    scopus 로고
    • Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes
    • Vandesompele J, de Preter K, Pattyn F, Poppe B, van Roy N, de Paepe A, Speleman F, Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes, Genome Biol 3:34, 2002.
    • (2002) Genome Biol , vol.3 , pp. 34
    • Vandesompele, J.1    De Preter, K.2    Pattyn, F.3    Poppe, B.4    Van Roy, N.5    De Paepe, A.6    Speleman, F.7
  • 46
    • 33748445546 scopus 로고    scopus 로고
    • Normalization and quantication of di®erential expression in gene expression microarrays
    • Steinho C, Vingron M, Normalization and quantication of di®erential expression in gene expression microarrays, Brief Bioinform 7:166-177, 2006.
    • (2006) Brief Bioinform , vol.7 , pp. 166-177
    • Steinho, C.1    Vingron, M.2
  • 48
    • 60849113704 scopus 로고    scopus 로고
    • Comparison of A®ymetrix data normalization methods using 6,926 experiments across ve array generations
    • Autio R, Kilpinen S, Saarela M, Kallioniemi O, Hautaniemi S, Astola J, Comparison of A®ymetrix data normalization methods using 6,926 experiments across ve array generations, BMC Bioinform 10(Suppl 1): S24, 2009.
    • (2009) BMC Bioinform , vol.10 , Issue.SUPPL. 1
    • Autio, R.1    Kilpinen, S.2    Saarela, M.3    Kallioniemi, O.4    Hautaniemi, S.5    Astola, J.6
  • 49
    • 80053554605 scopus 로고    scopus 로고
    • Classication of microarrays; synergistic e®ects between normalization gene selection and machine learning
    • Önskog J, Freyhult E, Landfors M, Ryd-en P, Hvidsten TR, Classīcation of microarrays; synergistic e®ects between normalization, gene selection and machine learning, BMC Bioinform 12:390, 2011.
    • (2011) BMC Bioinform , vol.12 , Issue.390
    • Önskog, J.1    Freyhult, E.2    Landfors, M.3    Ryd-en, P.4    Hvidsten, T.R.5
  • 50
    • 84867897062 scopus 로고    scopus 로고
    • Robust unattended microarray analysis, Ingenuity Technical Report No. 2011-1
    • Halpert RL, Sanga S, Robust unattended microarray analysis, Ingenuity Technical Report No. 2011-1, Ingenuity Systems, Inc., 2012.
    • (2012) Ingenuity Systems, Inc.
    • Halpert, R.L.1    Sanga, S.2
  • 51
    • 70349999413 scopus 로고    scopus 로고
    • GRIMP: A web- and grid-based tool for high-speed analysis of large-scale genome-wide association using imputed data
    • Estrada K, Abuseiris A, Grosveld FG, Uitterlindern AG, Knoch TA, Rivadeneira F, GRIMP: A web- and grid-based tool for high-speed analysis of large-scale genome-wide association using imputed data, Bioinformatics 25:2750-2752, 2009.
    • (2009) Bioinformatics , vol.25 , pp. 2750-2752
    • Estrada, K.1    Abuseiris, A.2    Grosveld, F.G.3    Uitterlindern, A.G.4    Knoch, T.A.5    Rivadeneira, F.6
  • 54
    • 0042424602 scopus 로고    scopus 로고
    • Statistical signīcance for genomewide studies
    • Storey JD, Tibshirani R, Statistical signīcance for genomewide studies, Proc Nat Acad Sci 100:9440-9445, 2003.
    • (2003) Proc Nat Acad Sci , vol.100 , pp. 9440-9445
    • Storey, J.D.1    Tibshirani, R.2
  • 55
    • 0345822598 scopus 로고    scopus 로고
    • The positive false discovery rate: A Bayesian interpretation and the q-value
    • Storey JD, The positive false discovery rate: A Bayesian interpretation and the q-value, Ann Stat 31:2013-2035, 2003.
    • (2003) Ann Stat , vol.31 , pp. 2013-2035
    • Storey, J.D.1
  • 56
    • 0037433040 scopus 로고    scopus 로고
    • Identifying di®erentially expressed genes using false discovery rate controlling procedures
    • Reiner A, Yekutieli D, Benjamini Y, Identifying di®erentially expressed genes using false discovery rate controlling procedures, Bioinformatics 19:368-375, 2003.
    • (2003) Bioinformatics , vol.19 , pp. 368-375
    • Reiner, A.1    Yekutieli, D.2    Benjamini, Y.3
  • 57
  • 58
    • 79952159600 scopus 로고    scopus 로고
    • The e®ect of correlation in false discovery rate estimation
    • Schwwartzman A, Lin X, The e®ect of correlation in false discovery rate estimation, Biometrika 98:199-214, 2011.
    • (2011) Biometrika , vol.98 , pp. 199-214
    • Schwwartzman, A.1    Lin, X.2
  • 59
    • 0003076895 scopus 로고    scopus 로고
    • Feature selection for high-dimensional genomic microarray data, in Proc Eighteenth Int Conf Machine Learning (ICML 2001
    • Brodley CE, Danyluk AP (eds.
    • Xing EP, Jordan MI, Karp RM, Feature selection for high-dimensional genomic microarray data, in Proc Eighteenth Int Conf Machine Learning (ICML 2001), Brodley CE, Danyluk AP (eds.), Morgan Kau®mann, 2001, pp. 601-608.
    • (2001) Morgan Kau®mann , pp. 601-608
    • Xing, E.P.1    Jordan, M.I.2    Karp, R.M.3
  • 60
    • 0000984930 scopus 로고    scopus 로고
    • How many genes are needed for a discriminant microarray data analysis
    • Lin SM, Johnson KF (eds. Kluwer Academic, Dordrecht, The Netherlands
    • Li W, Yang Y, How many genes are needed for a discriminant microarray data analysis, in Methods of Microarray Data Analysis, Lin SM, Johnson KF (eds.), Kluwer Academic, Dordrecht, The Netherlands, 2002, pp. 137-150.
    • (2002) Methods of Microarray Data Analysis , pp. 137-150
    • Li, W.1    Yang, Y.2
  • 61
    • 0037076322 scopus 로고    scopus 로고
    • Selection bias in gene extraction on the basis of microarray gene-expression data
    • Ambroise C, McLachlan GJ, Selection bias in gene extraction on the basis of microarray gene-expression data, Proc Nat Acad Sci 99:6562-6566, 2002.
    • (2002) Proc Nat Acad Sci , vol.99 , pp. 6562-6566
    • Ambroise, C.1    McLachlan, G.J.2
  • 62
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I, Elissee A, An introduction to variable and feature selection, J Mach Learn Res 3:1157-1182, 2003.
    • (2003) J Mach Learn Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elissee, A.2
  • 63
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information criteria of maxdependency, max-relevance, and min-redundancy
    • Peng H, Long F, Ding C, Feature selection based on mutual information criteria of maxdependency, max-relevance, and min-redundancy, IEEE Trans Pattern Anal Mach Learn 27:1226-1238, 2005.
    • (2005) IEEE Trans Pattern Anal Mach Learn , vol.27 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 64
    • 33748702278 scopus 로고    scopus 로고
    • The-more-the-better and the-less-the-better
    • Li W, The-more-the-better and the-less-the-better, Bioinformatics 22:2187-2188, 2006.
    • (2006) Bioinformatics , vol.22 , pp. 2187-2188
    • Li, W.1
  • 65
    • 34548125448 scopus 로고    scopus 로고
    • Logistic regression for disease classīcation using microarray data: Model selection in a large p and small n case
    • Liao JG, Chin KV, Logistic regression for disease classīcation using microarray data: Model selection in a large p and small n case, Bioinformatics 23:1945-1951, 2007.
    • (2007) Bioinformatics , vol.23 , pp. 1945-1951
    • Liao, J.G.1    Chin, K.V.2
  • 66
    • 77952897266 scopus 로고    scopus 로고
    • Characterization of the e®ectiveness of reporting lists of small feature sets relative to the accuracy of the prior biological knowledge
    • Zhao C, Bittner ML, Chapkin RS, Dougherty ER, Characterization of the e®ectiveness of reporting lists of small feature sets relative to the accuracy of the prior biological knowledge, Cancer Inform 9:49-60, 2010.
    • (2010) Cancer Inform , vol.9 , pp. 49-60
    • Zhao, C.1    Bittner, M.L.2    Chapkin, R.S.3    Dougherty, E.R.4
  • 68
    • 0035931947 scopus 로고    scopus 로고
    • Gene-expression prōles in hereditary breast cancer
    • Hedenfalk I, Duggan D, Chen Y et al., Gene-expression prōles in hereditary breast cancer, New Engl J Med 344:539-548, 2001.
    • (2001) New Engl J Med , vol.344 , pp. 539-548
    • Hedenfalk, I.1    Duggan, D.2    Chen, Y.3
  • 71
    • 67649993411 scopus 로고    scopus 로고
    • Predictive biomarkers: Identīcation and verīcation
    • Yeatman TJ, Predictive biomarkers: Identīcation and verīcation, J Clin Oncol 27:2743-2744, 2009.
    • (2009) J Clin Oncol , vol.27 , pp. 2743-2744
    • Yeatman, T.J.1
  • 72
    • 0037165140 scopus 로고    scopus 로고
    • Prediction of central nervous system embryonal tumour outcome based on gene expression
    • Pomeroy SL, Tamayo P, Gaasenbeek M et al., Prediction of central nervous system embryonal tumour outcome based on gene expression, Nature 415:436-442, 2002.
    • (2002) Nature , vol.415 , pp. 436-442
    • Pomeroy, S.L.1    Tamayo, P.2    Gaasenbeek, M.3
  • 73
    • 0037137519 scopus 로고    scopus 로고
    • A gene-expression signature as a predictor of survival in breast cancer
    • van de Vijver MJ, He YD, van't Veer LJ et al., A gene-expression signature as a predictor of survival in breast cancer, New Engl J Med 347:1999-2009, 2002.
    • (2002) New Engl J Med , vol.347 , pp. 1999-2009
    • Van De Vijver, M.J.1    He, Y.D.2    Van't Veer, L.J.3
  • 74
    • 75749115909 scopus 로고    scopus 로고
    • A multigene predictor of outcome in glioblastoma
    • Colman H, Zhang L, Sulman EP et al., A multigene predictor of outcome in glioblastoma, Neuro-Oncology 12:49-57, 2010.
    • (2010) Neuro-Oncology , vol.12 , pp. 49-57
    • Colman, H.1    Zhang, L.2    Sulman, E.P.3
  • 75
    • 77953565979 scopus 로고    scopus 로고
    • Gene-expression-based prognostic assays for breast cancer
    • Kim C, Paik S, Gene-expression-based prognostic assays for breast cancer, Nat Rev Clin Oncol 7:340-347, 2010.
    • (2010) Nat Rev Clin Oncol , vol.7 , pp. 340-347
    • Kim, C.1    Paik, S.2
  • 76
    • 0142179210 scopus 로고    scopus 로고
    • Local-pooled-error test for identifying di®erentially expressed genes with a small number of replicated microarrays
    • Jain N, Thatte J, Braciale T, Ley K, O'Connell M, Lee JK, Local-pooled-error test for identifying di®erentially expressed genes with a small number of replicated microarrays, Bioinformatics 19:1945-1951, 2003.
    • (2003) Bioinformatics , vol.19 , pp. 1945-1951
    • Jain, N.1    Thatte, J.2    Braciale, T.3    Ley, K.4    O'Connell, M.5    Lee, J.K.6
  • 77
    • 0031246430 scopus 로고    scopus 로고
    • Ratio-based decisions and the quantitative analysis of cDNA microarray images
    • Chen Y, Dougherty ER, Bittner ML, Ratio-based decisions and the quantitative analysis of cDNA microarray images, J Biomed Opt 2:274-364, 1997.
    • (1997) J Biomed Opt , vol.2 , pp. 274-364
    • Chen, Y.1    Dougherty, E.R.2    Bittner, M.L.3
  • 78
    • 0034948896 scopus 로고    scopus 로고
    • A Bayesian framework for the analysis of microarray expression data: Regularized t-test and statistical inferences of gene changes
    • Baldi P, Long AD, A Bayesian framework for the analysis of microarray expression data: Regularized t-test and statistical inferences of gene changes, Bioinformatics 17:509-519, 2001.
    • (2001) Bioinformatics , vol.17 , pp. 509-519
    • Baldi, P.1    Long, A.D.2
  • 82
    • 67649205714 scopus 로고    scopus 로고
    • Evaluating reproducibility of di®erential expression discoveries in microarray studies by considering correlated molecular changes
    • Zhang M, Zhang L, Zou J, Yao C, Xiao H, Liu Q, Wang J, Wang D, Wang C, Guo Z, Evaluating reproducibility of di®erential expression discoveries in microarray studies by considering correlated molecular changes, Bioinformatics 25:1662-1668, 2009.
    • (2009) Bioinformatics , vol.25 , pp. 1662-1668
    • Zhang, M.1    Zhang, L.2    Zou, J.3    Yao, C.4    Xiao, H.5    Liu, Q.6    Wang, J.7    Wang, D.8    Wang, C.9    Guo, Z.10
  • 83
    • 69249085408 scopus 로고    scopus 로고
    • Stability and aggregation of ranked gene lists
    • Boulesteix AL, Slawski M, Stability and aggregation of ranked gene lists, Brief Bioinform 10:556-568, 2009.
    • (2009) Brief Bioinform , vol.10 , pp. 556-568
    • Boulesteix, A.L.1    Slawski, M.2
  • 84
    • 77749308502 scopus 로고    scopus 로고
    • A comparison of fold-change and the t-statistic for microarray data analysis
    • Stanford University Technical Report
    • Witten DM, Tibshirani R, A comparison of fold-change and the t-statistic for microarray data analysis, Department of Statistics, Stanford University Technical Report, 2007.
    • (2007) Department of Statistics
    • Witten, D.M.1    Tibshirani, R.2
  • 85
    • 78650219529 scopus 로고    scopus 로고
    • Do not log-transform count data
    • O'Hara RB, Kotze DJ, Do not log-transform count data, Math Ecol Evol 1:118-122, 2010.
    • (2010) Math Ecol Evol , vol.1 , pp. 118-122
    • O'Hara, R.B.1    Kotze, D.J.2
  • 87
    • 84857218267 scopus 로고    scopus 로고
    • Di®erential expression - The next generation and beyond
    • Auer PL, Srivastava S, Doerge RW, Di®erential expression - the next generation and beyond, Brief Bioinform 11:57-62, 2011.
    • (2011) Brief Bioinform , vol.11 , pp. 57-62
    • Auer, P.L.1    Srivastava, S.2    Doerge, R.W.3
  • 88
    • 75249087100 scopus 로고    scopus 로고
    • Edger: A Bioconductor package for di®erential expression analysis of digital gene expression data
    • Robinson MD, McCarthy DJ, Smyth GK, edgeR: A Bioconductor package for di®erential expression analysis of digital gene expression data, Bioinformatics 26:139-140, 2010.
    • (2010) Bioinformatics , vol.26 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 89
    • 78650539308 scopus 로고    scopus 로고
    • From RNA-seq reads to di®erential expression results
    • Oshlack A, Robinson MD, Young MD, From RNA-seq reads to di®erential expression results, Genome Biol 11:220, 2010.
    • (2010) Genome Biol , vol.11 , pp. 220
    • Oshlack, A.1    Robinson, M.D.2    Young, M.D.3
  • 90
    • 77958471357 scopus 로고    scopus 로고
    • Di®erential expression analysis for sequence count data
    • Anders S, Huber W, Di®erential expression analysis for sequence count data, Genome Biol 11:R106, 2010.
    • (2010) Genome Biol , vol.11
    • Anders, S.1    Huber, W.2
  • 91
    • 77955298482 scopus 로고    scopus 로고
    • Bayseq: Empirical Bayesian methods for identifying di®erential expression in sequence count data
    • Hardcastle TJ, Kelly KA, baySeq: Empirical Bayesian methods for identifying di®erential expression in sequence count data, BMC Bioinform 11:422, 2010.
    • BMC Bioinform , vol.11 , Issue.422 , pp. 2010
    • Hardcastle, T.J.1    Kelly, K.A.2
  • 92
    • 75249095274 scopus 로고    scopus 로고
    • DEGseq: An R package for identifying di®erentially expressed genes from RNA-seq data
    • Wang L, Feng Z, Wang X, Wang X, Zhang X, DEGseq: An R package for identifying di®erentially expressed genes from RNA-seq data, Bioinformatics 26:136-138, 2010.
    • (2010) Bioinformatics , vol.26 , pp. 136-138
    • Wang, L.1    Feng, Z.2    Wang, X.3    Wang, X.4    Zhang, X.5
  • 94
    • 80053580422 scopus 로고    scopus 로고
    • On di®erential gene expression using RNA-Seq data
    • Lee J, Ji Y, Liang S, Cai G, Müller P, On di®erential gene expression using RNA-Seq data, Cancer Inform 10:205-215, 2011.
    • (2011) Cancer Inform , vol.10 , pp. 205-215
    • Lee, J.1    Ji, Y.2    Liang, S.3    Cai, G.4    Müller, P.5
  • 97
    • 84867897914 scopus 로고    scopus 로고
    • Classīcation and clustering of sequencing data using a Poisson model
    • Witten DM, Classīcation and clustering of sequencing data using a Poisson model, Ann Appl Stat 5:2493-2518, 2011.
    • (2011) Ann Appl Stat , vol.5 , pp. 2493-2518
    • Witten, D.M.1
  • 98
    • 84858606519 scopus 로고    scopus 로고
    • A comparison of statistical methods for detecting di®erentially expressed genes from RNA-seq data
    • Kvam VM, Liu P, Si Y, A comparison of statistical methods for detecting di®erentially expressed genes from RNA-seq data, Am J Botany 99:248-256, 2012.
    • (2012) Am J Botany , vol.99 , pp. 248-256
    • Kvam, V.M.1    Liu, P.2    Si, Y.3
  • 99
    • 84863562292 scopus 로고    scopus 로고
    • Normalization, testing, and false discovery rate estimation for RNA-sequencing data
    • Li J, Witten DM, Johnsone IM, Tibshirani R, Normalization, testing, and false discovery rate estimation for RNA-sequencing data, Biostatistics 13:523-538, 2010.
    • (2010) Biostatistics , vol.13 , pp. 523-538
    • Li, J.1    Witten, D.M.2    Johnsone, I.M.3    Tibshirani, R.4
  • 101
    • 84870267223 scopus 로고
    • The generalization of student's problem when several di®erent population variances are involved
    • Welsh BL, The generalization of student's problem when several di®erent population variances are involved, Biometrika 34:28-35, 1947.
    • (1947) Biometrika , vol.34 , pp. 28-35
    • Welsh, B.L.1
  • 103
    • 0037195138 scopus 로고    scopus 로고
    • Quantitative noise analysis for gene expression microarray experiments
    • Tu Y, Stolovitzky G, Klein U, Quantitative noise analysis for gene expression microarray experiments, Proc Nat Acad Sci 99:14031-14036, 2002.
    • (2002) Proc Nat Acad Sci , vol.99 , pp. 14031-14036
    • Tu, Y.1    Stolovitzky, G.2    Klein, U.3
  • 104
    • 0037276175 scopus 로고    scopus 로고
    • Statistical tests for di®erential expression in cDNA microarray experiments
    • Cui X, Churchill GA, Statistical tests for di®erential expression in cDNA microarray experiments, Genome Biol 4:210, 2003.
    • (2003) Genome Biol , vol.4 , pp. 210
    • Cui, X.1    Churchill, G.A.2
  • 105
    • 0035733752 scopus 로고    scopus 로고
    • The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster
    • Jin W, Riley RM, Wol̄nger RD, White KP, Passador-Gurgel G, Gibson G, The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster, Nat Genet 29:389-395, 2001.
    • (2001) Nat Genet , vol.29 , pp. 389-395
    • Jin, W.1    Riley, R.M.2    Wolnger, R.D.3    White, K.P.4    Passador-Gurgel, G.5    Gibson, G.6
  • 106
    • 36549052737 scopus 로고    scopus 로고
    • A microarray analysis for differential gene expression in the soybean genome using Bioconductor and R
    • Alvord WG, Roayaei JA, Quiñones OA, Schneider KT, A microarray analysis for differential gene expression in the soybean genome using Bioconductor and R, Brief Bioinform 8:1-13, 2007.
    • (2007) Brief Bioinform , vol.8 , pp. 1-13
    • Alvord, W.G.1    Roayaei, J.A.2    Quiñones, O.A.3    Schneider, K.T.4
  • 107
    • 0035999977 scopus 로고    scopus 로고
    • A comparative review of statistical methods for discovering di®erentially expressed genes in replicated microarray experiments
    • Pan W, A comparative review of statistical methods for discovering di®erentially expressed genes in replicated microarray experiments, Bioinformatics 18:546-554, 2002.
    • (2002) Bioinformatics , vol.18 , pp. 546-554
    • Pan, W.1
  • 108
    • 74049104875 scopus 로고    scopus 로고
    • A close examination of double ̄ltering with fold change and t-test in microarray analysis
    • Zhang S, Cao J, A close examination of double ̄ltering with fold change and t-test in microarray analysis, BMC Bioinformatics 10:402, 2009.
    • (2009) BMC Bioinformatics , vol.10 , pp. 402
    • Zhang, S.1    Cao, J.2
  • 110
    • 84255175726 scopus 로고    scopus 로고
    • A gene selection method for GeneChip array data with small sample sizes
    • Chen Z, Liu Q, McGee M, Kong M, Huang X, Deng Y, A gene selection method for GeneChip array data with small sample sizes, BMC Genomics 12(Suppl 5):S7, 2011.
    • (2011) BMC Genomics , vol.12 , Issue.SUPPL. 5
    • Chen, Z.1    Liu, Q.2    McGee, M.3    Kong, M.4    Huang, X.5    Deng, Y.6
  • 111
    • 71049170436 scopus 로고    scopus 로고
    • Internal standard-based analysis of microarray data. Part 1: Analysis of di®erential gene expressions
    • Dozmorov I, Lefkovits I, Internal standard-based analysis of microarray data. Part 1: Analysis of di®erential gene expressions, Nucleic Acids Res 37:6323-6339, 2009.
    • (2009) Nucleic Acids Res , vol.37 , pp. 6323-6339
    • Dozmorov, I.1    Lefkovits, I.2
  • 112
    • 1342330535 scopus 로고    scopus 로고
    • Is cross-validation valid for small-sample microarray classīcation
    • Braga-Neto UM, Dougherty ER, Is cross-validation valid for small-sample microarray classīcation? Bioinformatics 20:374-380, 2004.
    • (2004) Bioinformatics , vol.20 , pp. 374-380
    • Braga-Neto, U.M.1    Dougherty, E.R.2
  • 113
    • 24144445705 scopus 로고    scopus 로고
    • Improved statistical tests for di®erential gene expression by shrinking variance components estimates
    • Cui X, Hwang JTG, Qiu J, Blades NJ, Churchill GA, Improved statistical tests for di®erential gene expression by shrinking variance components estimates, Biostatistics 6:59-75, 2005.
    • (2005) Biostatistics , vol.6 , pp. 59-75
    • Cui, X.1    Hwang, J.T.G.2    Qiu, J.3    Blades, N.J.4    Churchill, G.A.5
  • 114
    • 0348143180 scopus 로고    scopus 로고
    • A random variance model for detection of di®erential gene expression in small microarray experiments
    • Wright GW, Simon RM, A random variance model for detection of di®erential gene expression in small microarray experiments, Bioinformatics 19:2448-2455, 2003.
    • (2003) Bioinformatics , vol.19 , pp. 2448-2455
    • Wright, G.W.1    Simon, R.M.2
  • 115
    • 0035942271 scopus 로고    scopus 로고
    • Signīcance analysis of microarrays applied to the ionizing radiation response
    • Tusher VG, Tibshirani R, Chu G, Signīcance analysis of microarrays applied to the ionizing radiation response, Proc Nat Acad Sci 98:5116-5121, 2001.
    • (2001) Proc Nat Acad Sci , vol.98 , pp. 5116-5121
    • Tusher, V.G.1    Tibshirani, R.2    Chu, G.3
  • 117
    • 42549103231 scopus 로고    scopus 로고
    • Identifying interesting genes with siggenes
    • Schwender H, Krause A, Ickstadt K, Identifying interesting genes with siggenes, RNews 6:45-50, 2006.
    • (2006) RNews , vol.6 , pp. 45-50
    • Schwender, H.1    Krause, A.2    Ickstadt, K.3
  • 120
    • 28744458859 scopus 로고    scopus 로고
    • Bioconductor: Open software development for computational biology and bioinformatics
    • Gentleman RC, Carey VJ, Bates DM et al., Bioconductor: Open software development for computational biology and bioinformatics, Genome Biol 5:R80, 2004.
    • (2004) Genome Biol , vol.5
    • Gentleman, R.C.1    Carey, V.J.2    Bates, D.M.3
  • 122
    • 16344371755 scopus 로고    scopus 로고
    • Identifying di®erentially expressed genes from microarray experiments via statistic syn thesis
    • Yang YH, Xiao Y, Segal MR, Identifying di®erentially expressed genes from microarray experiments via statistic synthesis, Bioinformatics 21:1084-1093, 2005.
    • (2005) Bioinformatics , vol.21 , pp. 1084-1093
    • Yang, Y.H.1    Xiao, Y.2    Segal, M.R.3
  • 123
    • 0034069495 scopus 로고    scopus 로고
    • Gene ontology: Tool for the unication of biology
    • Ashburner M, Ball CA, Blake JA et al., Gene ontology: Tool for the unīcation of biology, Nat Genet 25:25-29, 2000.
    • (2000) Nat Genet , vol.25 , pp. 25-29
    • Ashburner, M.1    Ball, C.A.2    Blake, J.A.3
  • 125
    • 38049161952 scopus 로고    scopus 로고
    • Three lectures on case-control genetic association analysis
    • Li W, Three lectures on case-control genetic association analysis, Brief Bioinform 9:1-13, 2008.
    • (2008) Brief Bioinform , vol.9 , pp. 1-13
    • Li, W.1
  • 128
  • 129
    • 1342294092 scopus 로고    scopus 로고
    • Normalization for cDNA microarray data: A robust composite method addressing single and multiple slide systematic variation
    • Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngal J, Speed TP, Normalization for cDNA microarray data: A robust composite method addressing single and multiple slide systematic variation, Nucleic Acids Res 30:e15, 2002.
    • (2002) Nucleic Acids Res , vol.30
    • Yang, Y.H.1    Dudoit, S.2    Luu, P.3    Lin, D.M.4    Peng, V.5    Ngal, J.6    Speed, T.P.7
  • 132
    • 0037317182 scopus 로고    scopus 로고
    • An associative analysis of gene expression array data
    • Dozmorov I, Centola M, An associative analysis of gene expression array data, Bioinformatics 19:204-211, 2003.
    • (2003) Bioinformatics , vol.19 , pp. 204-211
    • Dozmorov, I.1    Centola, M.2
  • 133
    • 4544341015 scopus 로고    scopus 로고
    • Linear models and empirical Bayes methods for assessing di®erential expression in microarray experiments
    • Smyth GK, Linear models and empirical Bayes methods for assessing di®erential expression in microarray experiments, Stat Appl Genet Mol Biol 3:3, 2004.
    • (2004) Stat Appl Genet Mol Biol , vol.3 , pp. 3
    • Smyth, G.K.1
  • 134
    • 0242291496 scopus 로고    scopus 로고
    • MAANOVA: A software package for the analysis of spotted cDNA microarray experiments
    • , Parmigiani G, Garrett E, Irizarry R, Zeger S (eds. Springer, Berlin
    • Wu H, Kerr M, Cui X, Churchill G, MAANOVA: A software package for the analysis of spotted cDNA microarray experiments, in The Analysis of Gene Expression Data Methods and Software, Parmigiani G, Garrett E, Irizarry R, Zeger S (eds.), Springer, Berlin, 2003, pp. 313-341.
    • (2003) Analysis of Gene Expression Data Methods and Software , pp. 313-341
    • Wu, H.1    Kerr, M.2    Cui, X.3    Churchill, G.4
  • 135
    • 25444500666 scopus 로고    scopus 로고
    • Normal uniform mixture di®erential gene expression detection for cDNA microarrays
    • Dean N, Raftery AE, Normal uniform mixture di®erential gene expression detection for cDNA microarrays, BMC Bioinformatics 6:173, 2005.
    • (2005) BMC Bioinformatics , vol.6 , pp. 173
    • Dean, N.1    Raftery, A.E.2
  • 136
    • 0142236715 scopus 로고    scopus 로고
    • Adaptive geen picking with microarray data: Detecting important low abundance signals
    • Parmigiani G, Garrett E, Irizarry R, Zeger S (eds. Springer, Berlin
    • Lin Y, Nadler ST, Lan H, Attie AD, Yandell BS, Adaptive geen picking with microarray data: Detecting important low abundance signals, in The Analysis of Gene Expression Data Methods and Software, Parmigiani G, Garrett E, Irizarry R, Zeger S (eds.), Springer, Berlin, 2003, pp. 291-312.
    • (2003) Analysis of Gene Expression Data Methods and Software , pp. 291-312
    • Lin, Y.1    Nadler, S.T.2    Lan, H.3    Attie, A.D.4    Yandell, B.S.5
  • 138
    • 35648996400 scopus 로고    scopus 로고
    • Statistical identīcation of di®erentially labelled peptides from liquid chromatography tandem mass spectrometry
    • Cho H, Smalley DM, Ross MM, Theodorescu D, Ley K, Lee JK, Statistical identīcation of di®erentially labelled peptides from liquid chromatography tandem mass spectrometry, Proteomics 7:3681-3692, 2007.
    • (2007) Proteomics , vol.7 , pp. 3681-3692
    • Cho, H.1    Smalley, D.M.2    Ross, M.M.3    Theodorescu, D.4    Ley, K.5    Lee, J.K.6
  • 139
    • 84867901424 scopus 로고    scopus 로고
    • Normalization and di®erential gene expression analysis of microarray data
    • Department of Mathematics, Chalmers University of Technology and Goteborg University
    • Åstrand M, Normalization and di®erential gene expression analysis of microarray data, Ph.D. Thesis, Department of Mathematics, Chalmers University of Technology and Goteborg University, 2008.
    • (2008) Ph.D. Thesis
    • Åstrand, M.1
  • 141
    • 4344571581 scopus 로고    scopus 로고
    • Rank products: A simple, yet powerful new method to detect di®erentially regulated genes in replicated microarray experiments
    • Breitling R, Armengaul P, Amtmann A, Herzyk P, Rank products: A simple, yet powerful new method to detect di®erentially regulated genes in replicated microarray experiments, FEBS Lett 573:83-92, 2004.
    • (2004) FEBS Lett , vol.573 , pp. 83-92
    • Breitling, R.1    Armengaul, P.2    Amtmann, A.3    Herzyk, P.4
  • 142
    • 0038238080 scopus 로고    scopus 로고
    • Statistical methods for ranking di®erentially expressed genes
    • Broberg P, Statistical methods for ranking di®erentially expressed genes, Genome Biol 4:R41, 2004.
    • (2004) Genome Biol , vol.4
    • Broberg, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.