메뉴 건너뛰기




Volumn 10, Issue 5, 2009, Pages 556-568

Stability and aggregation of ranked gene lists

Author keywords

Bootstrap; Differential expression; Ranking; Top list; Univariate analysis; Variability

Indexed keywords

COMPUTER PROGRAM; GENE EXPRESSION; GENE STRUCTURE; GENETIC DATABASE; GENETIC STABILITY; LEUKEMIA; MATHEMATICAL COMPUTING; RELIABILITY; REPRODUCIBILITY; REVIEW; STATISTICAL ANALYSIS;

EID: 69249085408     PISSN: 14675463     EISSN: 14774054     Source Type: Journal    
DOI: 10.1093/bib/bbp034     Document Type: Review
Times cited : (145)

References (61)
  • 1
    • 23244447197 scopus 로고    scopus 로고
    • Significance testing for small microarray experiments
    • Kooperberg C, Aragaki A, Strand AD, et al. Significance testing for small microarray experiments. Stat Med 2005; 24:2281-98.
    • (2005) Stat Med , vol.24 , pp. 2281-2298
    • Kooperberg, C.1    Aragaki, A.2    Strand, A.D.3
  • 2
    • 33747344944 scopus 로고    scopus 로고
    • Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data
    • Jeffery IB, Higgins DG, Culhane AC. Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data. BMC Bioinformatics 2006;7:359.
    • (2006) BMC Bioinformatics , vol.7 , pp. 359
    • Jeffery, I.B.1    Higgins, D.G.2    Culhane, A.C.3
  • 3
    • 33847302479 scopus 로고    scopus 로고
    • Accurate ranking of differentially expressed genes by a distribution-free shrinkage approach
    • Opgen-Rhein R, Strimmer K. Accurate ranking of differentially expressed genes by a distribution-free shrinkage approach. Stat Appl GenetMol Biol 2007;6:9.
    • (2007) Stat Appl GenetMol Biol , vol.6 , pp. 9
    • Opgen-Rhein, R.1    Strimmer, K.2
  • 5
    • 33646568805 scopus 로고    scopus 로고
    • Gene priorization through genomic data fusion
    • Aerts S, Lambrechts D, Maity S, et al. Gene priorization through genomic data fusion. Nat Biotechnol 2006;24: 537-44.
    • (2006) Nat Biotechnol , vol.24 , pp. 537-544
    • Aerts, S.1    Lambrechts, D.2    Maity, S.3
  • 6
    • 0043203327 scopus 로고    scopus 로고
    • Multiple hypothesis testing in microarray experiments
    • Dudoit S, Shaffer JP, Boldrick JC. Multiple hypothesis testing in microarray experiments. Stat Sci 2003;18:71-103.
    • (2003) Stat Sci , vol.18 , pp. 71-103
    • Dudoit, S.1    Shaffer, J.P.2    Boldrick, J.C.3
  • 7
    • 33747840464 scopus 로고    scopus 로고
    • Estimation and control of multiple testing error rates for microarray studies
    • Pounds S. Estimation and control of multiple testing error rates for microarray studies. Brief Bioinform 2006;7:25-36.
    • (2006) Brief Bioinform , vol.7 , pp. 25-36
    • Pounds, S.1
  • 8
    • 47749156020 scopus 로고    scopus 로고
    • A unified approach to false discovery rate estimation
    • Strimmer K. A unified approach to false discovery rate estimation. BMC Bioinformatics 2008;9:303.
    • (2008) BMC Bioinformatics , vol.9 , pp. 303
    • Strimmer, K.1
  • 9
    • 1642317557 scopus 로고    scopus 로고
    • Gene expression profile of adult T-cell acute lymphocytic leukemia identifies distinct subsets of patients with different response to therapy and survival
    • Chiaretti S, Li X, Gentleman R, et al. Gene expression profile of adult T-cell acute lymphocytic leukemia identifies distinct subsets of patients with different response to therapy and survival. Blood 2004;103:2771-8.
    • (2004) Blood , vol.103 , pp. 2771-2778
    • Chiaretti, S.1    Li, X.2    Gentleman, R.3
  • 10
    • 69249138316 scopus 로고    scopus 로고
    • Li X. ALL. Bioconductor R package version 1.4.4:, 2008, 24 June 2009, date last accessed
    • Li X. ALL. Bioconductor R package version 1.4.4:, 2008. http://www.bioconductor.org/packages/release/data/experiment/html/ ALL.html (24 June 2009, date last accessed).
  • 11
    • 69249110518 scopus 로고    scopus 로고
    • Slawski M, Boulesteix AL. Geneselector. Bioconductor, 2008. R package version 2.0.3:, 24 June 2009, date last accessed
    • Slawski M, Boulesteix AL. Geneselector. Bioconductor, 2008. R package version 2.0.3: http://www.bioconductor.org/packages/devel/bioc/ html/GeneSelector.html (24 June 2009, date last accessed).
  • 12
    • 0035942271 scopus 로고    scopus 로고
    • Significance analysis of microarrays applied to the ionizing radiation response
    • Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci 2001;98:5116-21.
    • (2001) Proc Natl Acad Sci , vol.98 , pp. 5116-5121
    • Tusher, V.G.1    Tibshirani, R.2    Chu, G.3
  • 13
    • 1542784653 scopus 로고    scopus 로고
    • Empirical Bayes analysis of a microarray experiment
    • Efron B, Tibshirani R, Storey JD, et al. Empirical Bayes analysis of a microarray experiment. J Am Stat Assoc 2001; 96:1151-60.
    • (2001) J Am Stat Assoc , vol.96 , pp. 1151-1160
    • Efron, B.1    Tibshirani, R.2    Storey, J.D.3
  • 14
    • 0034948896 scopus 로고    scopus 로고
    • A Bayesian framework for the analysis of microarray expression data: Regularized t-test and statistical inferences of gene changes
    • Baldi P, Long AD. A Bayesian framework for the analysis of microarray expression data: Regularized t-test and statistical inferences of gene changes. Bioinformatics 2001;17:509-19.
    • (2001) Bioinformatics , vol.17 , pp. 509-519
    • Baldi, P.1    Long, A.D.2
  • 15
    • 0036012343 scopus 로고    scopus 로고
    • Replicated microarray data
    • Lönnstedt I, Speed T. Replicated microarray data. Stat Sin 2002;12:31-46.
    • (2002) Stat Sin , vol.12 , pp. 31-46
    • Lönnstedt, I.1    Speed, T.2
  • 16
    • 4544341015 scopus 로고    scopus 로고
    • Linear models and empirical Bayes methods for assessing differential expression in microarray experiments
    • Smyth GK. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004;3:3.
    • (2004) Stat Appl Genet Mol Biol , vol.3 , pp. 3
    • Smyth, G.K.1
  • 17
    • 33645643565 scopus 로고    scopus 로고
    • A two sample Bayesian t-test for microarray data
    • Fox RJ, Dimmic MW. A two sample Bayesian t-test for microarray data. BMC Bioinformatics 2006;7:126.
    • (2006) BMC Bioinformatics , vol.7 , pp. 126
    • Fox, R.J.1    Dimmic, M.W.2
  • 18
    • 33846563409 scopus 로고    scopus 로고
    • Why most published research findings are false
    • Ioannidis JPA. Why most published research findings are false. PLoS Med 2005;2:e124.
    • (2005) PLoS Med , vol.2
    • Ioannidis, J.P.A.1
  • 19
    • 69249084514 scopus 로고    scopus 로고
    • Optimal classifier selection and negative bias in error rate estimation: An empirical study on high-dimensional prediction
    • Technical Report 58, Department of Statistics, University of Munich, 24 June 2009, date last accessed
    • Boulesteix A-L, Strobl C. Optimal classifier selection and negative bias in error rate estimation: An empirical study on high-dimensional prediction. Technical Report 58, Department of Statistics, University of Munich, 2009. http://epub.ub.uni-muenchen.de/10606/ (24 June 2009, date last accessed).
    • (2009)
    • Boulesteix, A.-L.1    Strobl, C.2
  • 22
    • 0037368548 scopus 로고    scopus 로고
    • Selecting differentially expressed genes from microarray experiments
    • Pepe MS, Longton G, Anderson GL, et al. Selecting differentially expressed genes from microarray experiments. Biometrics 2003;59 133-42.
    • (2003) Biometrics , vol.59 , pp. 133-142
    • Pepe, M.S.1    Longton, G.2    Anderson, G.L.3
  • 23
    • 0141626917 scopus 로고    scopus 로고
    • The effect of replication on gene expression microarray experiments
    • Pavlidis P, Li Q, Noble WS. The effect of replication on gene expression microarray experiments. Bioinformatics 2003;19:1620-7.
    • (2003) Bioinformatics , vol.19 , pp. 1620-1627
    • Pavlidis, P.1    Li, Q.2    Noble, W.S.3
  • 24
    • 0038494587 scopus 로고    scopus 로고
    • A comparison of parametric versus permutation methods with applications to general and temporal microarray gene expression data
    • Xu R, Li X. A comparison of parametric versus permutation methods with applications to general and temporal microarray gene expression data. Bioinformatics 2003;19: 1284-9.
    • (2003) Bioinformatics , vol.19 , pp. 1284-1289
    • Xu, R.1    Li, X.2
  • 25
    • 2542491957 scopus 로고    scopus 로고
    • Improving the statistical detection of regulated genes from microarray data using intensity-based variance estimation
    • Comander J, Natarajan S, Gimbrone MA, et al. Improving the statistical detection of regulated genes from microarray data using intensity-based variance estimation. BMC Genomics 2005;5:17.
    • (2005) BMC Genomics , vol.5 , pp. 17
    • Comander, J.1    Natarajan, S.2    Gimbrone, M.A.3
  • 26
    • 29244448340 scopus 로고    scopus 로고
    • Microarray data analysis: From disarray to consolidation and consensus
    • Allison DB, Cui X, Page GP, Sabripour M. Microarray data analysis: From disarray to consolidation and consensus. Nat Rev Genet 2006;7 55-65.
    • (2006) Nat Rev Genet , vol.7 , pp. 55-65
    • Allison, D.B.1    Cui, X.2    Page, G.P.3    Sabripour, M.4
  • 27
    • 35448932757 scopus 로고    scopus 로고
    • Derivation of stable microarray cancer-differentiating signatures using consensus scoring of multiple random sampling and gene-ranking consistency evaluation
    • Tang ZQ, Han LY, Lin HH, et al. Derivation of stable microarray cancer-differentiating signatures using consensus scoring of multiple random sampling and gene-ranking consistency evaluation. Cancer Res 2006;67:9996-10003.
    • (2006) Cancer Res , vol.67 , pp. 9996-10003
    • Tang, Z.Q.1    Han, L.Y.2    Lin, H.H.3
  • 28
    • 33645024314 scopus 로고    scopus 로고
    • Assessing stability of gene selection in microarray data analysis
    • Qiu X, Xiao Y, Gordon A, et al. Assessing stability of gene selection in microarray data analysis. BMC Bioinformatics 2006; 7:50.
    • (2006) BMC Bioinformatics , vol.7 , pp. 50
    • Qiu, X.1    Xiao, Y.2    Gordon, A.3
  • 29
    • 38349106729 scopus 로고    scopus 로고
    • Algebraic stability indicators for ranked lists in molecular profiling
    • Jurman G, Merler S, Barla A, et al. Algebraic stability indicators for ranked lists in molecular profiling. Bioinformatics 2008;24 258-64.
    • (2008) Bioinformatics , vol.24 , pp. 258-264
    • Jurman, G.1    Merler, S.2    Barla, A.3
  • 30
    • 32844462163 scopus 로고    scopus 로고
    • Evaluation of reference genes for studies of gene expression in human adipose tissue
    • Gabrielsson BG, Olofsson LE, Sjögren A, et al. Evaluation of reference genes for studies of gene expression in human adipose tissue. Obes Res 2005;13:649-52.
    • (2005) Obes Res , vol.13 , pp. 649-652
    • Gabrielsson, B.G.1    Olofsson, L.E.2    Sjögren, A.3
  • 31
    • 33745957993 scopus 로고    scopus 로고
    • Gene expression profiling of adult acute myeloid leukemia identifies novel biologic clusters for risk classification and outcome prediction
    • Wilson CS, Davidson GS, Martin SB, et al. Gene expression profiling of adult acute myeloid leukemia identifies novel biologic clusters for risk classification and outcome prediction. Blood 2006;108:685-96.
    • (2006) Blood , vol.108 , pp. 685-696
    • Wilson, C.S.1    Davidson, G.S.2    Martin, S.B.3
  • 32
    • 33751006151 scopus 로고    scopus 로고
    • RankProd: A bioconductor package for detecting differentially expressed genes in meta-analysis
    • Hong F, Breitling R, McEntee CW, et al. RankProd: A bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics 2006;22: 2825-7.
    • (2006) Bioinformatics , vol.22 , pp. 2825-2827
    • Hong, F.1    Breitling, R.2    McEntee, C.W.3
  • 33
    • 85047234321 scopus 로고    scopus 로고
    • Combining results of microarray experiments: A rank aggregation approach
    • DeConde RP, Hawley S, Falcon S, et al. Combining results of microarray experiments: A rank aggregation approach. Stat Appl Genet Mol Biol 2006;5:15.
    • (2006) Stat Appl Genet Mol Biol , vol.5 , pp. 15
    • DeConde, R.P.1    Hawley, S.2    Falcon, S.3
  • 34
    • 37648998741 scopus 로고    scopus 로고
    • Meta-analysis for ranked discovery datasets: Theoretical framework and empirical demonstration for microarrays
    • Zintzaras E, Ioannidis JPA. Meta-analysis for ranked discovery datasets: theoretical framework and empirical demonstration for microarrays. Comput Biol Chem 2008;32: 38-46.
    • (2008) Comput Biol Chem , vol.32 , pp. 38-46
    • Zintzaras, E.1    Ioannidis, J.P.A.2
  • 35
    • 38849106351 scopus 로고    scopus 로고
    • A comparison of meta-analysis methods for detecting differentially expressed genes in microarray experiments
    • Hong F, Breitling R. A comparison of meta-analysis methods for detecting differentially expressed genes in microarray experiments. Bioinformatics 2008;24:374-82.
    • (2008) Bioinformatics , vol.24 , pp. 374-382
    • Hong, F.1    Breitling, R.2
  • 36
    • 0037494667 scopus 로고    scopus 로고
    • Gene selection in microarray data: The elephant, the blind men and our algorithms
    • Stolovitzky G. Gene selection in microarray data: The elephant, the blind men and our algorithms. Curr Opin Struct Biol 2003;13 370-6.
    • (2003) Curr Opin Struct Biol , vol.13 , pp. 370-376
    • Stolovitzky, G.1
  • 37
    • 67649205714 scopus 로고    scopus 로고
    • Evaluating reproducibility of differential expression discoveries in microarray studies by considering correlated molecular changes
    • doi:10.1093/ bioinformatics/btp295 [Epub ahead of print 5 May
    • Zhang M, Zhang L, Zou J, et al. Evaluating reproducibility of differential expression discoveries in microarray studies by considering correlated molecular changes. Bioinformatics 2009;25, doi:10.1093/ bioinformatics/btp295 [Epub ahead of print 5 May 2009].
    • (2009) Bioinformatics 2009 , pp. 25
    • Zhang, M.1    Zhang, L.2    Zou, J.3
  • 38
    • 33645825183 scopus 로고    scopus 로고
    • Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer
    • Ein-Dor L, Zuk O, Domany E. Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc Natl Acad Sci 2006;103:5923-8.
    • (2006) Proc Natl Acad Sci , vol.103 , pp. 5923-5928
    • Ein-Dor, L.1    Zuk, O.2    Domany, E.3
  • 39
    • 41649108521 scopus 로고    scopus 로고
    • Comparing the characteristics of gene expression profiles derived by univariate and multivariate classification methods
    • Zucknick M, Richardson S, Stronach EA. Comparing the characteristics of gene expression profiles derived by univariate and multivariate classification methods. Stat Appl Genet Mol Biol 2008;8:7.
    • (2008) Stat Appl Genet Mol Biol , vol.8 , pp. 7
    • Zucknick, M.1    Richardson, S.2    Stronach, E.A.3
  • 40
    • 18244384210 scopus 로고    scopus 로고
    • Multiple-laboratory comparison of microarray platforms
    • Irizarry RA, Warren D, Spencer F, et al. Multiple-laboratory comparison of microarray platforms. Nat Methods 2005;2: 345-50.
    • (2005) Nat Methods , vol.2 , pp. 345-350
    • Irizarry, R.A.1    Warren, D.2    Spencer, F.3
  • 42
    • 33748711623 scopus 로고    scopus 로고
    • OrderedList - a bioconductor package for detecting similarity in ordered gene lists
    • Lottaz C, Yang X, Scheid S, et al. OrderedList - a bioconductor package for detecting similarity in ordered gene lists. Bioinformatics 2006;22:2315-16.
    • (2006) Bioinformatics , vol.22 , pp. 2315-2316
    • Lottaz, C.1    Yang, X.2    Scheid, S.3
  • 43
    • 34047118042 scopus 로고    scopus 로고
    • Overlapping probabilities of top ranking gene lists, hypergeometric distribution, and stringency of gene selection criterion
    • USA: IEEE Engineering in Medicine and Biology Society
    • Fury W, Batliwalla F, Gregersen PK, et al. Overlapping probabilities of top ranking gene lists, hypergeometric distribution, and stringency of gene selection criterion. In: 28th Annual International Conference of the IEEE. USA: IEEE Engineering in Medicine and Biology Society, 2007, 5531-34.
    • (2007) 28th Annual International Conference of the IEEE , pp. 5531-5534
    • Fury, W.1    Batliwalla, F.2    Gregersen, P.K.3
  • 44
    • 2942549112 scopus 로고    scopus 로고
    • Iterative Group Analysis (iGA): A simple tool to enhance sensitivity and facilitate interpretation of microarray experiments
    • Breitling R, Amtmann A, Herzyk P. Iterative Group Analysis (iGA): A simple tool to enhance sensitivity and facilitate interpretation of microarray experiments. BMC Bioinformatics 2004;5:34.
    • (2004) BMC Bioinformatics , vol.5 , pp. 34
    • Breitling, R.1    Amtmann, A.2    Herzyk, P.3
  • 46
    • 62749123448 scopus 로고    scopus 로고
    • Integration of ranked lists via cross entropy Monte Carlo with applications to mRNA and microRNA studies
    • Lin S, Ding J. Integration of ranked lists via cross entropy Monte Carlo with applications to mRNA and microRNA studies. Biometrics 2009; 65:9-18.
    • (2009) Biometrics , vol.65 , pp. 9-18
    • Lin, S.1    Ding, J.2
  • 48
    • 51749123784 scopus 로고    scopus 로고
    • Apparently low reproducibility of true differential expression discoveries in microarray studies
    • Zhang M, Yao C, Guo Z, et al. Apparently low reproducibility of true differential expression discoveries in microarray studies. Bioinformatics 2008;24:2057-63.
    • (2008) Bioinformatics , vol.24 , pp. 2057-2063
    • Zhang, M.1    Yao, C.2    Guo, Z.3
  • 50
    • 49249093918 scopus 로고    scopus 로고
    • Elo LL, Filen S, Lahesmaa R, et al. Reproducibility-optimized test statistic for ranking genes in microarray studies. IEEE/ACM Trans Comput Biol Bioinform 2008;5: 423-31.
    • Elo LL, Filen S, Lahesmaa R, et al. Reproducibility-optimized test statistic for ranking genes in microarray studies. IEEE/ACM Trans Comput Biol Bioinform 2008;5: 423-31.
  • 51
    • 48249114165 scopus 로고    scopus 로고
    • Evaluating microarray-based classifiers: An overview
    • Boulesteix A-L, Strobl C, Augustin T, et al. Evaluating microarray-based classifiers: An overview. Cancer Inform 2008;6 77-97.
    • (2008) Cancer Inform , vol.6 , pp. 77-97
    • Boulesteix, A.-L.1    Strobl, C.2    Augustin, T.3
  • 52
    • 69949182157 scopus 로고    scopus 로고
    • Stability Selection, 2008
    • 24 June, date last accessed
    • Meinshausen N, Bühlmann P. Stability Selection, 2008. http://arxiv.org/abs/0809.2932 (24 June 2009, date last accessed).
    • (2009)
    • Meinshausen, N.1    Bühlmann, P.2
  • 53
    • 33846572884 scopus 로고    scopus 로고
    • Empirical study of supervised gene screening
    • Ma S. Empirical study of supervised gene screening. BMC Bioinformatics 2006;7:537.
    • (2006) BMC Bioinformatics , vol.7 , pp. 537
    • Ma, S.1
  • 55
    • 1342309217 scopus 로고    scopus 로고
    • Advanced significance analysis of microarray data based on weighted resampling: A comparative study and application to gene deletions in Mycobacterium bovis
    • Kutalik Z, Inwald J, Gordon SV, et al. Advanced significance analysis of microarray data based on weighted resampling: A comparative study and application to gene deletions in Mycobacterium bovis. Bioinformatics 2004;20: 357-63.
    • (2004) Bioinformatics , vol.20 , pp. 357-363
    • Kutalik, Z.1    Inwald, J.2    Gordon, S.V.3
  • 56
    • 69249100941 scopus 로고    scopus 로고
    • Bickel PJ, Ren JJ. The bootstrap in hypothesis testing. In: State of the Art in Probability and Statistics, Festschrift for Willem R. van Zwet, IMS Lecture Notes Monograph Series, 36. Beachwood, OH, USA: Inst of Mathematical Statistics, 2001, 91-112.
    • Bickel PJ, Ren JJ. The bootstrap in hypothesis testing. In: State of the Art in Probability and Statistics, Festschrift for Willem R. van Zwet, IMS Lecture Notes Monograph Series, vol. 36. Beachwood, OH, USA: Inst of Mathematical Statistics, 2001, 91-112.
  • 57
    • 33847096395 scopus 로고    scopus 로고
    • Bias in random forest importance measures: Illustration, sources and a solution
    • Strobl C, Boulesteix AL, Zeileis A, et al. Bias in random forest importance measures: Illustration, sources and a solution. BMC Bioinformatics 2007;8:25.
    • (2007) BMC Bioinformatics , vol.8 , pp. 25
    • Strobl, C.1    Boulesteix, A.L.2    Zeileis, A.3
  • 58
    • 13444282534 scopus 로고    scopus 로고
    • Outcome signature genes in breast cancer: Is there a unique set?
    • Ein-Dor L, Kela I, Getz G, et al. Outcome signature genes in breast cancer: Is there a unique set? Bioinformatics 2005;21 171-8.
    • (2005) Bioinformatics , vol.21 , pp. 171-178
    • Ein-Dor, L.1    Kela, I.2    Getz, G.3
  • 59
    • 42049118310 scopus 로고    scopus 로고
    • Machine learning methods for predictive proteomics
    • Barla A, Jurman G, Riccadonna S, et al. Machine learning methods for predictive proteomics. Brief Bioinform 2008;9: 119-28.
    • (2008) Brief Bioinform , vol.9 , pp. 119-128
    • Barla, A.1    Jurman, G.2    Riccadonna, S.3
  • 60
    • 69249159556 scopus 로고    scopus 로고
    • Development of biomarker classifiers from high-dimensional data
    • doi:10:10.1093/bib/, Epub ahead of print 3 April
    • Baek S, Tsai CA, Chen JJ. Development of biomarker classifiers from high-dimensional data. Brief Bioinform 2009;doi:10:10.1093/bib/ bbp016 [Epub ahead of print 3 April 2009].
    • (2009) Brief Bioinform 2009
    • Baek, S.1    Tsai, C.A.2    Chen, J.J.3
  • 61
    • 33750009273 scopus 로고    scopus 로고
    • Reliable gene signatures for microarray classication: Assessment of stability and performance
    • Davis CA, Gerick F, Hintermair V, et al. Reliable gene signatures for microarray classication: Assessment of stability and performance. Bioinformatics 2006;22:2356-63.
    • (2006) Bioinformatics , vol.22 , pp. 2356-2363
    • Davis, C.A.1    Gerick, F.2    Hintermair, V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.