메뉴 건너뛰기




Volumn 99, Issue 2, 2012, Pages 248-256

A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data

Author keywords

Bayseq; DEseq; Edger; False discovery rate; RNA seq; Statistical test; Two stage Poisson model

Indexed keywords

PLANT RNA;

EID: 84858606519     PISSN: 00029122     EISSN: None     Source Type: Journal    
DOI: 10.3732/ajb.1100340     Document Type: Article
Times cited : (210)

References (29)
  • 1
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders, S., and W. HUBER. 2010. Differential expression analysis for sequence count data. Genome Biology 11: R106.
    • (2010) Genome Biology , vol.11
    • Anders, S.1    Huber, W.2
  • 3
    • 13244298225 scopus 로고    scopus 로고
    • Overdispersed logistic regression for SAGE: Modeling multiple groups and covariates
    • BAGGERLY, K. A., L. DENG, J. S. MORRIS, and C. M. ALDAZ. 2004. Overdispersed logistic regression for SAGE: Modeling multiple groups and covariates. BMC Bioinformatics 5: 144.
    • (2004) BMC Bioinformatics , vol.5 , pp. 144
    • Baggerly, K.A.1    Deng, L.2    Morris, J.S.3    Aldaz, C.M.4
  • 4
    • 77949481052 scopus 로고    scopus 로고
    • Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments
    • BULLARD, J. H., E. PURDOM, K. D. HANSEN, and S. DUDOIT. 2010. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 11: 94.
    • (2010) BMC Bioinformatics , vol.11 , pp. 94
    • Bullard, J.H.1    Purdom, E.2    Hansen, K.D.3    Dudoit, S.4
  • 5
    • 24144445705 scopus 로고    scopus 로고
    • Improved statistical tests for differential gene expression by shrinking variance components estimates
    • CUI, X., J. T. G. HWANG, J. QIU, N. J. BLADES, and G. A. CHURCHILL. 2005. Improved statistical tests for differential gene expression by shrinking variance components estimates. Biostatistics 6: 59-75.
    • (2005) Biostatistics , vol.6 , pp. 59-75
    • Cui, X.1    Hwang, J.T.G.2    Qiu, J.3    Blades, N.J.4    Churchill, G.A.5
  • 8
    • 77955298482 scopus 로고    scopus 로고
    • Bayseq: Empirical Bayesian methods for identifying differential expression in sequence count data
    • HARDCASTLE, T. J., and K. A. KELLY. 2010. Bayseq: Empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics 11: 422.
    • (2010) BMC Bioinformatics , vol.11 , pp. 422
    • Hardcastle, T.J.1    Kelly, K.A.2
  • 9
    • 75949093653 scopus 로고    scopus 로고
    • Identifiability of isoform deconvolution from junction arrays and RNA-Seq
    • HILLER, D., H. JIANG, W. XU, and W. WONG. 2009. Identifiability of isoform deconvolution from junction arrays and RNA-Seq. Bioinformatics 25: 3056-3059.
    • (2009) Bioinformatics , vol.25 , pp. 3056-3059
    • Hiller, D.1    Jiang, H.2    Xu, W.3    Wong, W.4
  • 10
  • 12
    • 25444469952 scopus 로고    scopus 로고
    • Identify differential expression in multiple SAGE libraries: An overdispersed log-linear model approach
    • LU, J., J. K. TOMFOHR, and T. B. KEPLER. 2005. Identify differential expression in multiple SAGE libraries: An overdispersed log-linear model approach. BMC Bioinformatics 6: 165.
    • (2005) BMC Bioinformatics , vol.6 , pp. 165
    • Lu, J.1    Tomfohr, J.K.2    Kepler, T.B.3
  • 13
    • 77956277181 scopus 로고    scopus 로고
    • Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq
    • LU, T., G. LU, D. FAN, C. ZHU, W. LI, Q. ZHAO, Q. FENG, et al. 2010. Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq. Genome Research 20: 1238-1249.
    • (2010) Genome Research , vol.20 , pp. 1238-1249
    • Lu, T.1    Lu, G.2    Fan, D.3    Zhu, C.4    Li, W.5    Zhao, Q.6    Feng, Q.7
  • 14
    • 50649089207 scopus 로고    scopus 로고
    • RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays
    • MARIONI, J. C., C. E. MASON, S. M. MANE, M. STEPHENS, and Y. GILAD. 2008. RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays. Genome Research 18: 1509-1517.
    • (2008) Genome Research , vol.18 , pp. 1509-1517
    • Marioni, J.C.1    Mason, C.E.2    Mane, S.M.3    Stephens, M.4    Gilad, Y.5
  • 16
    • 38349182215 scopus 로고    scopus 로고
    • Identification of differentially expressed gene categories in microarray studies using nonparametric multivariate analysis
    • NETTLETON, D., J. RECKNOR, and J. M. REECY. 2008. Identification of differentially expressed gene categories in microarray studies using nonparametric multivariate analysis. Bioinformatics 24: 192-201.
    • (2008) Bioinformatics , vol.24 , pp. 192-201
    • Nettleton, D.1    Recknor, J.2    Reecy, J.M.3
  • 17
    • 78650539308 scopus 로고    scopus 로고
    • From RNA-seq reads to differential expression results
    • OSHLACK, A., M. D. ROBINSON, and M. D. YOUNG. 2010. From RNA-seq reads to differential expression results. Genome Biology 11: 220.
    • (2010) Genome Biology , vol.11 , pp. 220
    • Oshlack, A.1    Robinson, M.D.2    Young, M.D.3
  • 19
    • 75249087100 scopus 로고    scopus 로고
    • Edger: A Bioconductor package for differential expression analysis of digital gene expression data
    • ROBINSON, M. D., D. J. MCCARTHY, and G. K. SMYTH. 2010. Edger: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics (Oxford, England) 26: 139-140.
    • (2010) Bioinformatics (Oxford, England) , vol.26 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 20
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of RNA-seq data
    • ROBINSON, M. D., and A. OSHLACK. 2010. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology 11: R25.
    • (2010) Genome Biology , vol.11
    • Robinson, M.D.1    Oshlack, A.2
  • 21
    • 36448981743 scopus 로고    scopus 로고
    • Moderated statistical tests for assessing difference in tag abundance
    • ROBINSON, M. D., and G. K. SMYTH. 2007. Moderated statistical tests for assessing difference in tag abundance. Bioinformatics (Oxford, England) 23: 2881-2887.
    • (2007) Bioinformatics (Oxford, England) , vol.23 , pp. 2881-2887
    • Robinson, M.D.1    Smyth, G.K.2
  • 22
    • 41149085992 scopus 로고    scopus 로고
    • Small-sample estimation of negative binomial dispersion, with applications to SAGE data
    • ROBINSON, M. D., and G. K. SMYTH. 2008. Small-sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics 9: 321-332.
    • (2008) Biostatistics , vol.9 , pp. 321-332
    • Robinson, M.D.1    Smyth, G.K.2
  • 23
  • 25
    • 4544341015 scopus 로고    scopus 로고
    • Linear models and empirical Bayes methods for assessing differential expression in microarray experiments
    • SMYTH, G. K. 2004. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology 3: 3.
    • (2004) Statistical Applications In Genetics and Molecular Biology , vol.3 , pp. 3
    • Smyth, G.K.1
  • 26
    • 33644872577 scopus 로고    scopus 로고
    • Limma: Linear models for microarray data
    • R. Gentleman, V. Carey, S. Dudoit, R. Irizarry, and W. Huber [eds.], Springer, New York, New York, USA
    • SMYTH, G. K. 2005. Limma: Linear models for microarray data. In R. Gentleman, V. Carey, S. Dudoit, R. Irizarry, and W. Huber [eds.], Bioinformatics and computational biology solutions using r and bioconductor, 397-420. Springer, New York, New York, USA.
    • (2005) Bioinformatics and Computational Biology Solutions Using R and Bioconductor , pp. 397-420
    • Smyth, G.K.1
  • 27
    • 85052549687 scopus 로고    scopus 로고
    • A two-parameter generalized Poisson model to improve the analysis of RNA-seq data
    • SRIVASTAVA, S., and L. CHEN. 2010. A two-parameter generalized Poisson model to improve the analysis of RNA-seq data. Nucleic Acids Research 38: e170.
    • (2010) Nucleic Acids Research , vol.38
    • Srivastava, S.1    Chen, L.2
  • 28
    • 77951998724 scopus 로고    scopus 로고
    • Exploring plant transcriptomes using ultra high-throughput sequencing
    • WANG, L., P. L I, and T. P. BRUTNEL. 2010. Exploring plant transcriptomes using ultra high-throughput sequencing. Breifings in Functional Genomics 9: 118-128.
    • (2010) Breifings In Functional Genomics , vol.9 , pp. 118-128
    • Wang, L.1    Li, P.2    Brutnel, T.P.3
  • 29
    • 77951871117 scopus 로고    scopus 로고
    • Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome
    • ZHANG, G., G. GUO, X. HU, Y. ZHANG, Q. LI, R. LI, R. ZHUANG, et al. 2010. Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome. Genome Research 20: 646-654.
    • (2010) Genome Research , vol.20 , pp. 646-654
    • Zhang, G.1    Guo, G.2    Hu, X.3    Zhang, Y.4    Li, Q.5    Li, R.6    Zhuang, R.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.