메뉴 건너뛰기




Volumn 12, Issue , 2011, Pages

Classification of microarrays; synergistic effects between normalization, gene selection and machine learning

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION PERFORMANCE; COMPARATIVE STUDIES; MACHINE LEARNING METHODS; MICROARRAY DATA SETS; NORMALIZATION METHODS; POLYNOMIAL KERNELS; RELATIVE PERFORMANCE; SYNERGISTIC EFFECT;

EID: 80053554605     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-12-390     Document Type: Article
Times cited : (30)

References (46)
  • 2
    • 35748949257 scopus 로고    scopus 로고
    • A comparison of background correction methods for two-colour microarrays
    • 10.1093/bioinformatics/btm412, 17720982
    • Ritchie ME, Silver J, Oshlack A, Holmes M, Diyagama D, Holloway A, Smyth GK. A comparison of background correction methods for two-colour microarrays. Bioinformatics 2007, 23(20):2700-2707. 10.1093/bioinformatics/btm412, 17720982.
    • (2007) Bioinformatics , vol.23 , Issue.20 , pp. 2700-2707
    • Ritchie, M.E.1    Silver, J.2    Oshlack, A.3    Holmes, M.4    Diyagama, D.5    Holloway, A.6    Smyth, G.K.7
  • 3
    • 0036898577 scopus 로고    scopus 로고
    • Microarray data normalization and transformation
    • Quackenbush J. Microarray data normalization and transformation. Nat Genet 2002, 32(Suppl):496-501.
    • (2002) Nat Genet , vol.32 , Issue.SUPPL , pp. 496-501
    • Quackenbush, J.1
  • 4
    • 33746994071 scopus 로고    scopus 로고
    • Evaluation of microarray data normalization procedures using spike-in experiments
    • 10.1186/1471-2105-7-300, 1526761, 16774679
    • Ryden P, Andersson H, Landfors M, Naslund L, Hartmanova B, Noppa L, Sjostedt A. Evaluation of microarray data normalization procedures using spike-in experiments. BMC Bioinformatics 2006, 7:300. 10.1186/1471-2105-7-300, 1526761, 16774679.
    • (2006) BMC Bioinformatics , vol.7 , pp. 300
    • Ryden, P.1    Andersson, H.2    Landfors, M.3    Naslund, L.4    Hartmanova, B.5    Noppa, L.6    Sjostedt, A.7
  • 5
    • 9144268360 scopus 로고    scopus 로고
    • Empirical evaluation of data transformations and ranking statistics for microarray analysis
    • 10.1093/nar/gkh866, 524279, 15479783
    • Qin LX, Kerr KF. Empirical evaluation of data transformations and ranking statistics for microarray analysis. Nucleic Acids Res 2004, 32(18):5471-5479. 10.1093/nar/gkh866, 524279, 15479783.
    • (2004) Nucleic Acids Res , vol.32 , Issue.18 , pp. 5471-5479
    • Qin, L.X.1    Kerr, K.F.2
  • 6
    • 33645552696 scopus 로고    scopus 로고
    • Effect of data normalization on fuzzy clustering of DNA microarray data
    • 10.1186/1471-2105-7-134, 1431564, 16533412
    • Kim SY, Lee JW, Bae JS. Effect of data normalization on fuzzy clustering of DNA microarray data. BMC Bioinformatics 2006, 7:134. 10.1186/1471-2105-7-134, 1431564, 16533412.
    • (2006) BMC Bioinformatics , vol.7 , pp. 134
    • Kim, S.Y.1    Lee, J.W.2    Bae, J.S.3
  • 7
    • 77957674888 scopus 로고    scopus 로고
    • Challenges in microarray class discovery: a comprehensive examination of normalization, gene selection and clustering
    • Freyhult E, Landfors M, Onskog J, Hvidsten TR, Ryden P. Challenges in microarray class discovery: a comprehensive examination of normalization, gene selection and clustering. BMC Bioinformatics 11:503.
    • BMC Bioinformatics , vol.11 , pp. 503
    • Freyhult, E.1    Landfors, M.2    Onskog, J.3    Hvidsten, T.R.4    Ryden, P.5
  • 8
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • 10.1093/bioinformatics/btm344, 17720704
    • Saeys Y, Inza I, Larranaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23(19):2507-2517. 10.1093/bioinformatics/btm344, 17720704.
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 9
    • 77950356812 scopus 로고    scopus 로고
    • Advances in metaheuristics for gene selection and classification of microarray data
    • Duval B, Hao JK. Advances in metaheuristics for gene selection and classification of microarray data. Brief Bioinform 11(1):127-141.
    • Brief Bioinform , vol.11 , Issue.1 , pp. 127-141
    • Duval, B.1    Hao, J.K.2
  • 11
    • 44449145580 scopus 로고    scopus 로고
    • A comparative study of different machine learning methods on microarray gene expression data
    • 10.1186/1471-2164-9-S1-S13, 2559877, 18831778
    • Pirooznia M, Yang JY, Yang MQ, Deng Y. A comparative study of different machine learning methods on microarray gene expression data. BMC Genomics 2008, 9(Suppl 1):S13. 10.1186/1471-2164-9-S1-S13, 2559877, 18831778.
    • (2008) BMC Genomics , vol.9 , Issue.SUPPL. 1
    • Pirooznia, M.1    Yang, J.Y.2    Yang, M.Q.3    Deng, Y.4
  • 12
    • 0037447386 scopus 로고    scopus 로고
    • Pattern recognition in gene expression profiling using DNA array: a comparative study of different statistical methods applied to cancer classification
    • 10.1093/hmg/ddg093, 12668606
    • Romualdi C, Campanaro S, Campagna D, Celegato B, Cannata N, Toppo S, Valle G, Lanfranchi G. Pattern recognition in gene expression profiling using DNA array: a comparative study of different statistical methods applied to cancer classification. Hum Mol Genet 2003, 12(8):823-836. 10.1093/hmg/ddg093, 12668606.
    • (2003) Hum Mol Genet , vol.12 , Issue.8 , pp. 823-836
    • Romualdi, C.1    Campanaro, S.2    Campagna, D.3    Celegato, B.4    Cannata, N.5    Toppo, S.6    Valle, G.7    Lanfranchi, G.8
  • 13
    • 10444280144 scopus 로고    scopus 로고
    • An extensive comparison of recent classification tools applied to microarray data
    • 10.1016/j.csda.2004.03.017, 3186933, 22013401
    • Lee JW, Lee JB, Park M, Song SH. An extensive comparison of recent classification tools applied to microarray data. Computational Statistics & Data Analysis 2005, 48(4):869-885. 10.1016/j.csda.2004.03.017, 3186933, 22013401.
    • (2005) Computational Statistics & Data Analysis , vol.48 , Issue.4 , pp. 869-885
    • Lee, J.W.1    Lee, J.B.2    Park, M.3    Song, S.H.4
  • 14
    • 7244248755 scopus 로고    scopus 로고
    • A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression
    • 10.1093/bioinformatics/bth267, 15087314
    • Li T, Zhang C, Ogihara M. A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics 2004, 20(15):2429-2437. 10.1093/bioinformatics/bth267, 15087314.
    • (2004) Bioinformatics , vol.20 , Issue.15 , pp. 2429-2437
    • Li, T.1    Zhang, C.2    Ogihara, M.3
  • 15
    • 15844413351 scopus 로고    scopus 로고
    • A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis
    • 10.1093/bioinformatics/bti033, 15374862
    • Statnikov A, Aliferis CF, Tsamardinos I, Hardin D, Levy S. A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics 2005, 21(5):631-643. 10.1093/bioinformatics/bti033, 15374862.
    • (2005) Bioinformatics , vol.21 , Issue.5 , pp. 631-643
    • Statnikov, A.1    Aliferis, C.F.2    Tsamardinos, I.3    Hardin, D.4    Levy, S.5
  • 16
    • 50349090268 scopus 로고    scopus 로고
    • Cross-validation and bootstrapping are unreliable in small sample classification
    • Isaksson A, Wallman M, Goransson H, Gustafsson M. Cross-validation and bootstrapping are unreliable in small sample classification. Pattern Recognition Letters 2008, 29(14):1960-1965.
    • (2008) Pattern Recognition Letters , vol.29 , Issue.14 , pp. 1960-1965
    • Isaksson, A.1    Wallman, M.2    Goransson, H.3    Gustafsson, M.4
  • 17
    • 67049095607 scopus 로고    scopus 로고
    • Impossibility of successful classification when useful features are rare and weak
    • 10.1073/pnas.0903931106, 2682944, 19447927
    • Jin J. Impossibility of successful classification when useful features are rare and weak. Proc Natl Acad Sci USA 2009, 106(22):8859-8864. 10.1073/pnas.0903931106, 2682944, 19447927.
    • (2009) Proc Natl Acad Sci USA , vol.106 , Issue.22 , pp. 8859-8864
    • Jin, J.1
  • 18
    • 1842420581 scopus 로고    scopus 로고
    • General conditions for predictivity in learning theory
    • 10.1038/nature02341, 15042089
    • Poggio T, Rifkin R, Mukherjee S, Niyogi P. General conditions for predictivity in learning theory. Nature 2004, 428(6981):419-422. 10.1038/nature02341, 15042089.
    • (2004) Nature , vol.428 , Issue.6981 , pp. 419-422
    • Poggio, T.1    Rifkin, R.2    Mukherjee, S.3    Niyogi, P.4
  • 19
    • 64549112122 scopus 로고    scopus 로고
    • Outcome prediction based on microarray analysis: a critical perspective on methods
    • 10.1186/1471-2105-10-53, 2667512, 19200394
    • Zervakis M, Blazadonakis ME, Tsiliki G, Danilatou V, Tsiknakis M, Kafetzopoulos D. Outcome prediction based on microarray analysis: a critical perspective on methods. BMC Bioinformatics 2009, 10:53. 10.1186/1471-2105-10-53, 2667512, 19200394.
    • (2009) BMC Bioinformatics , vol.10 , pp. 53
    • Zervakis, M.1    Blazadonakis, M.E.2    Tsiliki, G.3    Danilatou, V.4    Tsiknakis, M.5    Kafetzopoulos, D.6
  • 21
    • 0004255908 scopus 로고    scopus 로고
    • Machine learning
    • Singapore: McGraw-Hill, First
    • Mitchell TM. Machine learning. 1997, Singapore: McGraw-Hill, First.
    • (1997)
    • Mitchell, T.M.1
  • 22
    • 0037076322 scopus 로고    scopus 로고
    • Selection bias in gene extraction on the basis of microarray gene-expression data
    • 10.1073/pnas.102102699, 124442, 11983868
    • Ambroise C, McLachlan GJ. Selection bias in gene extraction on the basis of microarray gene-expression data. Proc Natl Acad Sci USA 2002, 99(10):6562-6566. 10.1073/pnas.102102699, 124442, 11983868.
    • (2002) Proc Natl Acad Sci USA , vol.99 , Issue.10 , pp. 6562-6566
    • Ambroise, C.1    McLachlan, G.J.2
  • 23
    • 0036855402 scopus 로고    scopus 로고
    • Comparison of microarray designs for class comparison and class discovery
    • 10.1093/bioinformatics/18.11.1438, 12424114
    • Dobbin K, Simon R. Comparison of microarray designs for class comparison and class discovery. Bioinformatics 2002, 18(11):1438-1445. 10.1093/bioinformatics/18.11.1438, 12424114.
    • (2002) Bioinformatics , vol.18 , Issue.11 , pp. 1438-1445
    • Dobbin, K.1    Simon, R.2
  • 28
    • 1542375346 scopus 로고    scopus 로고
    • Two prognostically significant subtypes of high-grade lung neuroendocrine tumours independent of small-cell and large-cell neuroendocrine carcinomas identified by gene expression profiles
    • 10.1016/S0140-6736(04)15693-6, 15016488
    • Jones MH, Virtanen C, Honjoh D, Miyoshi T, Satoh Y, Okumura S, Nakagawa K, Nomura H, Ishikawa Y. Two prognostically significant subtypes of high-grade lung neuroendocrine tumours independent of small-cell and large-cell neuroendocrine carcinomas identified by gene expression profiles. Lancet 2004, 363(9411):775-781. 10.1016/S0140-6736(04)15693-6, 15016488.
    • (2004) Lancet , vol.363 , Issue.9411 , pp. 775-781
    • Jones, M.H.1    Virtanen, C.2    Honjoh, D.3    Miyoshi, T.4    Satoh, Y.5    Okumura, S.6    Nakagawa, K.7    Nomura, H.8    Ishikawa, Y.9
  • 30
    • 0037391756 scopus 로고    scopus 로고
    • Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning
    • 10.1038/nm843, 12640447
    • Ye QH, Qin LX, Forgues M, He P, Kim JW, Peng AC, Simon R, Li Y, Robles AI, Chen Y, et al. Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nat Med 2003, 9(4):416-423. 10.1038/nm843, 12640447.
    • (2003) Nat Med , vol.9 , Issue.4 , pp. 416-423
    • Ye, Q.H.1    Qin, L.X.2    Forgues, M.3    He, P.4    Kim, J.W.5    Peng, A.C.6    Simon, R.7    Li, Y.8    Robles, A.I.9    Chen, Y.10
  • 31
    • 0036376993 scopus 로고    scopus 로고
    • Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments
    • Dudoit S, Yang YH, Callow MJ, Speed TP. Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Statistica Sinica 2002, 12:111-140.
    • (2002) Statistica Sinica , vol.12 , pp. 111-140
    • Dudoit, S.1    Yang, Y.H.2    Callow, M.J.3    Speed, T.P.4
  • 32
    • 1342294092 scopus 로고    scopus 로고
    • Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation
    • 10.1093/nar/30.4.e15, 100354, 11842121
    • Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 2002, 30(4):e15. 10.1093/nar/30.4.e15, 100354, 11842121.
    • (2002) Nucleic Acids Res , vol.30 , Issue.4
    • Yang, Y.H.1    Dudoit, S.2    Luu, P.3    Lin, D.M.4    Peng, V.5    Ngai, J.6    Speed, T.P.7
  • 33
    • 0004278772 scopus 로고    scopus 로고
    • ScanAlyze. User manual
    • Eisen MB. ScanAlyze. User manual. 1999,
    • (1999)
    • Eisen, M.B.1
  • 34
    • 82555167236 scopus 로고    scopus 로고
    • Bioinformatic Strategies for cDNA-Microarray Data Processing
    • John Wiley & Sons, Ltd, (ed.)
    • Scherer A, . (ed.) Bioinformatic Strategies for cDNA-Microarray Data Processing. 2009, John Wiley & Sons, Ltd, (ed.).
    • (2009)
    • Scherer, A.1
  • 35
    • 77950949307 scopus 로고    scopus 로고
    • Dealing with missing values in large-scale studies: microarray data imputation and beyond
    • Aittokallio T. Dealing with missing values in large-scale studies: microarray data imputation and beyond. Brief Bioinform 11(2):253-264.
    • Brief Bioinform , vol.11 , Issue.2 , pp. 253-264
    • Aittokallio, T.1
  • 37
    • 0004172718 scopus 로고    scopus 로고
    • Pattern recognition
    • San Diego, Calif.: Academic Press
    • Theodoridis S, Koutroumbas K. Pattern recognition. 1999, San Diego, Calif.: Academic Press.
    • (1999)
    • Theodoridis, S.1    Koutroumbas, K.2
  • 38
    • 0003684449 scopus 로고    scopus 로고
    • The elements of statistical learning: data mining, inference, and prediction
    • New York: Springer
    • Hastie T, Tibshirani R, Friedman JH. The elements of statistical learning: data mining, inference, and prediction. 2001, New York: Springer.
    • (2001)
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.H.3
  • 39
    • 0003594381 scopus 로고    scopus 로고
    • Statistical inference
    • Pacific Grove, Calif.: Duxbury, 2
    • Casella G, Berger RL. Statistical inference. 2002, Pacific Grove, Calif.: Duxbury, 2.
    • (2002)
    • Casella, G.1    Berger, R.L.2
  • 41
    • 55449125185 scopus 로고    scopus 로고
    • Support vector machines and kernels for computational biology
    • 10.1371/journal.pcbi.1000173, 2547983, 18974822
    • Ben-Hur A, Ong CS, Sonnenburg S, Scholkopf B, Ratsch G. Support vector machines and kernels for computational biology. PLoS Comput Biol 2008, 4(10):e1000173. 10.1371/journal.pcbi.1000173, 2547983, 18974822.
    • (2008) PLoS Comput Biol , vol.4 , Issue.10
    • Ben-Hur, A.1    Ong, C.S.2    Sonnenburg, S.3    Scholkopf, B.4    Ratsch, G.5
  • 43
    • 33846148245 scopus 로고    scopus 로고
    • Extending the linear model with R: generalized linear, mixed effects and nonparametric regression models
    • Boca Raton: Chapman & Hall/CRC
    • Faraway JJ. Extending the linear model with R: generalized linear, mixed effects and nonparametric regression models. 2006, Boca Raton: Chapman & Hall/CRC.
    • (2006)
    • Faraway, J.J.1
  • 44
    • 0004255908 scopus 로고    scopus 로고
    • Machine learning
    • New York: McGraw-Hill
    • Mitchell TM. Machine learning. 1997, New York: McGraw-Hill.
    • (1997)
    • Mitchell, T.M.1
  • 45
    • 33846148245 scopus 로고    scopus 로고
    • Extending the Linear Model with R
    • United State of America: Chapman & Hall/CRC, First
    • Faraway JJ. Extending the Linear Model with R. 2006, United State of America: Chapman & Hall/CRC, First.
    • (2006)
    • Faraway, J.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.