메뉴 건너뛰기




Volumn 10, Issue , 2011, Pages 205-215

On differential gene expression using RNA-Seq data

Author keywords

Clustering; False discovery rate; Mixture models; Next generation sequencing

Indexed keywords

MESSENGER RNA;

EID: 80053580422     PISSN: None     EISSN: 11769351     Source Type: Journal    
DOI: 10.4137/CIN.S7473     Document Type: Article
Times cited : (11)

References (31)
  • 1
  • 2
    • 77951940273 scopus 로고    scopus 로고
    • Modeling non-uniformity in short-read rates in RNA-Seq data
    • Li J, Jiang H, Wong WH. Modeling non-uniformity in short-read rates in RNA-Seq data. Genome Biology. 2010b:11
    • (2010) Genome Biology , pp. 11
    • Li, J.1    Jiang, H.2    Wong, W.H.3
  • 3
    • 57149085481 scopus 로고    scopus 로고
    • Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms
    • e141
    • Hoen PAC, Ariyurek Y, Thygesen HH, et al. Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nucleic Acids Research. 2008; 36:e141
    • (2008) Nucleic Acids Research , pp. 36
    • Hoen, P.A.C.1    Ariyurek, Y.2    Thygesen, H.H.3
  • 4
    • 78650539308 scopus 로고    scopus 로고
    • From RNA-seq reads to differential expression results
    • Oshlack A, Robinson MD, Young MD. From RNA-seq reads to differential expression results. Genome Biology. 2010;11:12
    • (2010) Genome Biology , vol.11 , pp. 12
    • Oshlack, A.1    Robinson, M.D.2    Young, M.D.3
  • 5
    • 77950640840 scopus 로고    scopus 로고
    • Analyzing' omics data using hierarchical models
    • Ji H, Liu XS. Analyzing' omics data using hierarchical models. Nature Biotechnology. 2010
    • (2010) Nature Biotechnology
    • Ji, H.1    Liu, X.S.2
  • 6
    • 77955504378 scopus 로고    scopus 로고
    • Statistical design and analysis of RNA sequencing data
    • Auer PL, Doerge RW. Statistical design and analysis of RNA sequencing data. The Genetics Society of America. 2010;185:405-16.
    • (2010) The Genetics Society of America , vol.185 , pp. 405-416
    • Auer, P.L.1    Doerge, R.W.2
  • 8
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of RNA-seq data
    • Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology. 2010;11:3
    • (2010) Genome Biology , vol.11 , pp. 3
    • Robinson, M.D.1    Oshlack, A.2
  • 9
    • 68849123047 scopus 로고    scopus 로고
    • Methods for analyzing deep sequencing expression data: Constructing the human and mouse promoterome with deepCAGE data
    • Balwierz PJ, Carninci P, Daub CO, et al. Methods for analyzing deep sequencing expression data: constructing the human and mouse promoterome with deepCAGE data. Genome Biology. 2009;10:7
    • (2009) Genome Biology , vol.10 , pp. 7
    • Balwierz, P.J.1    Carninci, P.2    Daub, C.O.3
  • 10
    • 50649089207 scopus 로고    scopus 로고
    • RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays
    • Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Research. 2008;18:1509-17.
    • (2008) Genome Research , vol.18 , pp. 1509-1517
    • Marioni, J.C.1    Mason, C.E.2    Mane, S.M.3    Stephens, M.4    Gilad, Y.5
  • 11
    • 36448981743 scopus 로고    scopus 로고
    • Moderated statistical tests for assessing differences in tag abundance
    • Robinson MD, Smyth GK. Moderated statistical tests for assessing differences in tag abundance. Bioinformatics. 2007;23(21):2881-7.
    • (2007) Bioinformatics , vol.23 , Issue.21 , pp. 2881-2887
    • Robinson, M.D.1    Smyth, G.K.2
  • 12
    • 75249087100 scopus 로고    scopus 로고
    • edgeR: A Bioconductor package for differential expression analysis of digital gene expression data
    • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139-40.
    • (2010) Bioinformatics , vol.26 , Issue.1 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 13
    • 77949481052 scopus 로고    scopus 로고
    • Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments
    • Bullard JH, Purdom EHKD, Dudoit S. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics. 2010:11
    • (2010) BMC Bioinformatics , pp. 11
    • Bullard, J.H.1    Purdom, E.H.K.D.2    Dudoit, S.3
  • 14
    • 84891909553 scopus 로고    scopus 로고
    • Transcript length bias in RNA-seq data confounds systems biology
    • Oshlack A, Wakefield MJ. Transcript length bias in RNA-seq data confounds systems biology. Biology Direct. 2010:4
    • (2010) Biology Direct , pp. 4
    • Oshlack, A.1    Wakefield, M.J.2
  • 16
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biology. 2010;11:10
    • (2010) Genome Biology , vol.11 , pp. 10
    • Anders, S.1    Huber, W.2
  • 18
    • 78149495055 scopus 로고    scopus 로고
    • Empirical bayes analysis of sequencing-based transcriptional profiling without replicates
    • Wu Z, Jenkins BD, Rynearson TA, et al. Empirical bayes analysis of sequencing-based transcriptional profiling without replicates. BMC Bioinformatics. 2010:11
    • (2010) BMC Bioinformatics , pp. 11
    • Wu, Z.1    Jenkins, B.D.2    Rynearson, T.A.3
  • 19
    • 64549119707 scopus 로고    scopus 로고
    • Statistical inferences for isoform expression in RNASeq
    • Jian H, Wong WH. Statistical inferences for isoform expression in RNASeq. Bioinformatics. 2009;25:1026-32.
    • (2009) Bioinformatics , vol.25 , pp. 1026-1032
    • Jian, H.1    Wong, W.H.2
  • 21
    • 77949507153 scopus 로고    scopus 로고
    • RNA-Seq gene expression estimation with read mapping uncertainty
    • Li B, Ruotti V, Stewart R, Thomson J, Dewey C. RNA-Seq gene expression estimation with read mapping uncertainty. Bioinformatics. 2010a;26: 493-500.
    • (2010) Bioinformatics , vol.26 , pp. 493-500
    • Li, B.1    Ruotti, V.2    Stewart, R.3    Thomson, J.4    Dewey, C.5
  • 22
    • 62349130698 scopus 로고    scopus 로고
    • Ultrafast and memory-eficient alignment of short DNA sequences to the human genome
    • Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-eficient alignment of short DNA sequences to the human genome. Genome Biology. 2009;10:R25
    • (2009) Genome Biology , vol.10
    • Langmead, B.1    Trapnell, C.2    Pop, M.3    Salzberg, S.L.4
  • 23
    • 18744410117 scopus 로고    scopus 로고
    • Applications of beta-mixture models in bioinformatics
    • Ji Y, Wu C, Liu P, Coombes K. Applications of beta-mixture models in bioinformatics. Bioinformatics. 2005;21(9):2118-22.
    • (2005) Bioinformatics , vol.21 , Issue.9 , pp. 2118-2122
    • Ji, Y.1    Wu, C.2    Liu, P.3    Coombes, K.4
  • 25
    • 62549134121 scopus 로고    scopus 로고
    • Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling
    • Ingolia N, Ghaemmaghami S, Newman J, Weissman J. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science. 2009;324(5924):218-23.
    • (2009) Science , vol.324 , Issue.5924 , pp. 218-223
    • Ingolia, N.1    Ghaemmaghami, S.2    Newman, J.3    Weissman, J.4
  • 27
    • 4444235995 scopus 로고    scopus 로고
    • Detecting differential gene expression with a semiparametric hierarchical mixture method
    • Newton MA, Noueiry A, Sarkar D, Ahlquist P. detecting differential gene expression with a semiparametric hierarchical mixture method. Biostatistics. 2004;5:155-76.
    • (2004) Biostatistics , vol.5 , pp. 155-176
    • Newton, M.A.1    Noueiry, A.2    Sarkar, D.3    Ahlquist, P.4
  • 28
    • 75249095274 scopus 로고    scopus 로고
    • DEGseq: An R package for identifying differentially expressed genes from RNA-seq data
    • Wang L, Feng Z, Wang X, Wang X, Zhang X. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics. 2009a;26(1):136-8.
    • (2009) Bioinformatics , vol.26 , Issue.1 , pp. 136-138
    • Wang, L.1    Feng, Z.2    Wang, X.3    Wang, X.4    Zhang, X.5
  • 30
    • 80053590625 scopus 로고    scopus 로고
    • Incorporating biological information into linear models: A bayesian approach to the selection of pathways and genes
    • Stingo F, Chen Y, Tadesse M, Vannucci M. Incorporating biological information into linear models: a bayesian approach to the selection of pathways and genes. Annals of Applied Statistics. 2011
    • (2011) Annals of Applied Statistics
    • Stingo, F.1    Chen, Y.2    Tadesse, M.3    Vannucci, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.