메뉴 건너뛰기




Volumn 9, Issue , 2010, Pages 49-60

Characterization of the effectiveness of reporting lists of small feature sets relative to the accuracy of the prior biological knowledge

Author keywords

Classification; Feature ranking; Ranking power

Indexed keywords

ACCURACY; ALGORITHM; ARTICLE; BIOINFORMATICS; CLINICAL EFFECTIVENESS; DATA ANALYSIS; INFORMATION PROCESSING; KERNEL METHOD; KNOWLEDGE; MATHEMATICAL MODEL; METHODOLOGY; PROBABILITY; PROCESS OPTIMIZATION;

EID: 77952897266     PISSN: 11769351     EISSN: 11769351     Source Type: Journal    
DOI: 10.4137/cin.s4020     Document Type: Article
Times cited : (9)

References (25)
  • 2
    • 0033640901 scopus 로고    scopus 로고
    • Comparison of Algorithms that Select Features for Pattern Classifiers
    • Kudo M, Sklansky J. Comparison of Algorithms that Select Features for Pattern Classifiers. Pattern Recognition. 2000;33:25-41.
    • (2000) Pattern Recognition , vol.33 , pp. 25-41
    • Kudo, M.1    Sklansky, J.2
  • 3
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y, Inza I, Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinformatics. 2007;23:2507-17.
    • (2007) Bioinformatics , vol.23 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3
  • 4
    • 49949090353 scopus 로고    scopus 로고
    • Penalized feature selection and classification in bioinformatics
    • Ma S, Huang J. Penalized feature selection and classification in bioinformatics. Brief Bioinformatics. 2008;9:392-403.
    • (2008) Brief Bioinformatics , vol.9 , pp. 392-403
    • Ma, S.1    Huang, J.2
  • 6
    • 77957741951 scopus 로고
    • On the Mean Accuracy of Statistical Pattern Recognizers
    • Hughes GF. On the Mean Accuracy of Statistical Pattern Recognizers. IEEE Trans. Information Theory. 1968;14:55-63.
    • (1968) IEEE Trans. Information Theory , vol.14 , pp. 55-63
    • Hughes, G.F.1
  • 7
    • 0018253340 scopus 로고
    • On the Optimal Number of Features in the Classification of Multivariate Gaussian Data
    • Jain AK, Waller WG. On the Optimal Number of Features in the Classification of Multivariate Gaussian Data. Pattern Recognition. 1978;10:365-74.
    • (1978) Pattern Recognition , vol.10 , pp. 365-374
    • Jain, A.K.1    Waller, W.G.2
  • 8
    • 10044276174 scopus 로고    scopus 로고
    • Determination of the Optimal Number of Features for Quadratic Discriminant Analysis Via the Normal Approximation to the Discriminant Distribution
    • Hua J, Xiong Z, Dougherty ER. Determination of the Optimal Number of Features for Quadratic Discriminant Analysis Via the Normal Approximation to the Discriminant Distribution. Pattern Recognition. 2005a;38:403-21.
    • (2005) Pattern Recognition , vol.38 , pp. 403-421
    • Hua, J.1    Xiong, Z.2    Dougherty, E.R.3
  • 9
    • 17544364191 scopus 로고    scopus 로고
    • Optimal number of features as a function of sample size for various classification rules
    • Hua J, Xiong Z, Lowey J, Suh E, Dougherty ER. Optimal number of features as a function of sample size for various classification rules. Bioinformatics. 2005b;21:1509-15.
    • (2005) Bioinformatics , vol.21 , pp. 1509-1515
    • Hua, J.1    Xiong, Z.2    Lowey, J.3    Suh, E.4    Dougherty, E.R.5
  • 10
    • 45449112561 scopus 로고    scopus 로고
    • The Peaking Phenomenon in the Presence of Feature Selection
    • Sima C, Dougherty ER. The Peaking Phenomenon in the Presence of Feature Selection. Pattern Recognition Letters. 2008;29(11):1667-74.
    • (2008) Pattern Recognition Letters , vol.29 , Issue.11 , pp. 1667-1674
    • Sima, C.1    Dougherty, E.R.2
  • 11
    • 54549099006 scopus 로고    scopus 로고
    • Performance of Feature Selection Methods in the Classification of High-Dimensional Data
    • Hua J, Waibhav T, Dougherty ER. Performance of Feature Selection Methods in the Classification of High-Dimensional Data. Pattern Recognition. 2009;42(3):409-424.
    • (2009) Pattern Recognition , vol.42 , Issue.3 , pp. 409-424
    • Hua, J.1    Waibhav, T.2    Dougherty, E.R.3
  • 12
    • 33750052587 scopus 로고    scopus 로고
    • What should be expected from feature selection in small-sample settings
    • Sima C, Dougherty ER. What should be expected from feature selection in small-sample settings. Bioinformatics. 2006;22:2430-6.
    • (2006) Bioinformatics , vol.22 , pp. 2430-2436
    • Sima, C.1    Dougherty, E.R.2
  • 13
    • 1342330535 scopus 로고    scopus 로고
    • Is cross-validation valid for small-sample microarray classification?
    • Braga-Neto UM, Dougherty ER. Is cross-validation valid for small-sample microarray classification? Bioinformatics. 2004;20:374-80.
    • (2004) Bioinformatics , vol.20 , pp. 374-380
    • Braga-Neto, U.M.1    Dougherty, E.R.2
  • 14
    • 25144494760 scopus 로고    scopus 로고
    • Prediction error estimation: A comparison of resampling methods
    • Molinaro AM, Simon R, Pfeiffer RM. Prediction error estimation: a comparison of resampling methods. Bioinformatics. 2005;21:3301-7.
    • (2005) Bioinformatics , vol.21 , pp. 3301-3307
    • Molinaro, A.M.1    Simon, R.2    Pfeiffer, R.M.3
  • 15
    • 34247224322 scopus 로고    scopus 로고
    • Quantification of the impact of feature selection on the variance of cross-validation error estimation
    • Xiao Y, Hua J, Dougherty ER. Quantification of the impact of feature selection on the variance of cross-validation error estimation. EURASIP J Bioinform Syst Biol. 2007;16354.
    • (2007) EURASIP J Bioinform Syst Biol , pp. 16354
    • Xiao, Y.1    Hua, J.2    Dougherty, E.R.3
  • 16
    • 37649015028 scopus 로고    scopus 로고
    • Decorrelation of the true and estimated classifier errors in high-dimensional settings
    • Hanczar B, Hua J, Dougherty ER. Decorrelation of the true and estimated classifier errors in high-dimensional settings. EURASIP J Bioinform Syst Biol. 2007;38473.
    • (2007) EURASIP J Bioinform Syst Biol , pp. 38473
    • Hanczar, B.1    Hua, J.2    Dougherty, E.R.3
  • 17
    • 25444497730 scopus 로고    scopus 로고
    • Many accurate small-discriminatory feature subsets exist in microarray transcript data: Biomarker discovery
    • Grate LR. Many accurate small-discriminatory feature subsets exist in microarray transcript data: biomarker discovery. BMC Bioinformatics. 2005;6:97.
    • (2005) BMC Bioinformatics , vol.6 , pp. 97
    • Grate, L.R.1
  • 18
    • 85032751958 scopus 로고    scopus 로고
    • Fads and Fallacies in the Name of Small-Sample Microarray Classification
    • Braga-Neto UM. Fads and Fallacies in the Name of Small-Sample Microarray Classification. IEEE Signal Processing Magazine. 2007;24(1):91-9.
    • (2007) IEEE Signal Processing Magazine , vol.24 , Issue.1 , pp. 91-99
    • Braga-Neto, U.M.1
  • 19
    • 16344388210 scopus 로고    scopus 로고
    • Superior feature-set ranking for small samples using bolstered error estimation
    • Sima C, Braga-Neto U, Dougherty ER. Superior feature-set ranking for small samples using bolstered error estimation. Bioinformatics. 2005; 21:1046-54.
    • (2005) Bioinformatics , vol.21 , pp. 1046-1054
    • Sima, C.1    Braga-Neto, U.2    Dougherty, E.R.3
  • 20
    • 0742299049 scopus 로고    scopus 로고
    • Identification of combination gene sets for glioma classification
    • Kim S, Dougherty ER, Shmulevich I, et al. Identification of combination gene sets for glioma classification. Mol Cancer Ther. 2002;1:1229-36.
    • (2002) Mol Cancer Ther , vol.1 , pp. 1229-1236
    • Kim, S.1    Dougherty, E.R.2    Shmulevich, I.3
  • 21
    • 18844403496 scopus 로고    scopus 로고
    • Identification of signature genes by microarray for acute myeloid leukemia without maturation and acute promyelocytic leukemia with t(15;17)(q22;q12)(PML/RARalpha)
    • Morikawa J, Li H, Kim S, et al. Identification of signature genes by microarray for acute myeloid leukemia without maturation and acute promyelocytic leukemia with t(15;17)(q22;q12)(PML/RARalpha). Int J Oncol. 2003;23:617-25.
    • (2003) Int J Oncol , vol.23 , pp. 617-625
    • Morikawa, J.1    Li, H.2    Kim, S.3
  • 22
    • 0037229674 scopus 로고    scopus 로고
    • + and CD5-Diffuse Large B-cell Lymphoma and Mantle Cell Lymphoma
    • + and CD5-Diffuse Large B-cell Lymphoma and Mantle Cell Lymphoma. Cancer Research. 2003;63:60-6.
    • (2003) Cancer Research , vol.63 , pp. 60-66
    • Kobayashi, T.1    Yamaguchi, M.2    Kim, S.3
  • 23
    • 68949183225 scopus 로고    scopus 로고
    • Non-invasive Detection of Candidate Molecular Biomarkers in Subjects with a History of Insulin Resistance and Colorectal Adenomas
    • Zhao C, Ivanov I, Dougherty ER, et al. Non-invasive Detection of Candidate Molecular Biomarkers in Subjects with a History of Insulin Resistance and Colorectal Adenomas. Cancer Prevention Research. 2009;2(6):590-7.
    • (2009) Cancer Prevention Research , vol.2 , Issue.6 , pp. 590-597
    • Zhao, C.1    Ivanov, I.2    Dougherty, E.R.3
  • 24
    • 1642295096 scopus 로고    scopus 로고
    • Assessing the probability that a positive report is false: An approach for molecular epidemiology studies
    • Wacholder S, Chanock S, Garcia-Closas M, El Ghormli L, Rothman N. Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst. 2004;96:434-42.
    • (2004) J Natl Cancer Inst , vol.96 , pp. 434-442
    • Wacholder, S.1    Chanock, S.2    Garcia-Closas, M.3    El Ghormli, L.4    Rothman, N.5
  • 25
    • 34247144499 scopus 로고    scopus 로고
    • Nonvalidation of reported genetic risk factors for acute coronary syndrome in a large-scale replication study
    • Morgan TM, Krumholz HM, Lifton RP, Spertus JA. Nonvalidation of reported genetic risk factors for acute coronary syndrome in a large-scale replication study. JAMA. 2007;297:1551-61.
    • (2007) JAMA , vol.297 , pp. 1551-1561
    • Morgan, T.M.1    Krumholz, H.M.2    Lifton, R.P.3    Spertus, J.A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.