-
2
-
-
0033640901
-
Comparison of Algorithms that Select Features for Pattern Classifiers
-
Kudo M, Sklansky J. Comparison of Algorithms that Select Features for Pattern Classifiers. Pattern Recognition. 2000;33:25-41.
-
(2000)
Pattern Recognition
, vol.33
, pp. 25-41
-
-
Kudo, M.1
Sklansky, J.2
-
3
-
-
35748932917
-
A review of feature selection techniques in bioinformatics
-
Saeys Y, Inza I, Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinformatics. 2007;23:2507-17.
-
(2007)
Bioinformatics
, vol.23
, pp. 2507-2517
-
-
Saeys, Y.1
Inza, I.2
Larrañaga, P.3
-
4
-
-
49949090353
-
Penalized feature selection and classification in bioinformatics
-
Ma S, Huang J. Penalized feature selection and classification in bioinformatics. Brief Bioinformatics. 2008;9:392-403.
-
(2008)
Brief Bioinformatics
, vol.9
, pp. 392-403
-
-
Ma, S.1
Huang, J.2
-
6
-
-
77957741951
-
On the Mean Accuracy of Statistical Pattern Recognizers
-
Hughes GF. On the Mean Accuracy of Statistical Pattern Recognizers. IEEE Trans. Information Theory. 1968;14:55-63.
-
(1968)
IEEE Trans. Information Theory
, vol.14
, pp. 55-63
-
-
Hughes, G.F.1
-
7
-
-
0018253340
-
On the Optimal Number of Features in the Classification of Multivariate Gaussian Data
-
Jain AK, Waller WG. On the Optimal Number of Features in the Classification of Multivariate Gaussian Data. Pattern Recognition. 1978;10:365-74.
-
(1978)
Pattern Recognition
, vol.10
, pp. 365-374
-
-
Jain, A.K.1
Waller, W.G.2
-
8
-
-
10044276174
-
Determination of the Optimal Number of Features for Quadratic Discriminant Analysis Via the Normal Approximation to the Discriminant Distribution
-
Hua J, Xiong Z, Dougherty ER. Determination of the Optimal Number of Features for Quadratic Discriminant Analysis Via the Normal Approximation to the Discriminant Distribution. Pattern Recognition. 2005a;38:403-21.
-
(2005)
Pattern Recognition
, vol.38
, pp. 403-421
-
-
Hua, J.1
Xiong, Z.2
Dougherty, E.R.3
-
9
-
-
17544364191
-
Optimal number of features as a function of sample size for various classification rules
-
Hua J, Xiong Z, Lowey J, Suh E, Dougherty ER. Optimal number of features as a function of sample size for various classification rules. Bioinformatics. 2005b;21:1509-15.
-
(2005)
Bioinformatics
, vol.21
, pp. 1509-1515
-
-
Hua, J.1
Xiong, Z.2
Lowey, J.3
Suh, E.4
Dougherty, E.R.5
-
10
-
-
45449112561
-
The Peaking Phenomenon in the Presence of Feature Selection
-
Sima C, Dougherty ER. The Peaking Phenomenon in the Presence of Feature Selection. Pattern Recognition Letters. 2008;29(11):1667-74.
-
(2008)
Pattern Recognition Letters
, vol.29
, Issue.11
, pp. 1667-1674
-
-
Sima, C.1
Dougherty, E.R.2
-
11
-
-
54549099006
-
Performance of Feature Selection Methods in the Classification of High-Dimensional Data
-
Hua J, Waibhav T, Dougherty ER. Performance of Feature Selection Methods in the Classification of High-Dimensional Data. Pattern Recognition. 2009;42(3):409-424.
-
(2009)
Pattern Recognition
, vol.42
, Issue.3
, pp. 409-424
-
-
Hua, J.1
Waibhav, T.2
Dougherty, E.R.3
-
12
-
-
33750052587
-
What should be expected from feature selection in small-sample settings
-
Sima C, Dougherty ER. What should be expected from feature selection in small-sample settings. Bioinformatics. 2006;22:2430-6.
-
(2006)
Bioinformatics
, vol.22
, pp. 2430-2436
-
-
Sima, C.1
Dougherty, E.R.2
-
13
-
-
1342330535
-
Is cross-validation valid for small-sample microarray classification?
-
Braga-Neto UM, Dougherty ER. Is cross-validation valid for small-sample microarray classification? Bioinformatics. 2004;20:374-80.
-
(2004)
Bioinformatics
, vol.20
, pp. 374-380
-
-
Braga-Neto, U.M.1
Dougherty, E.R.2
-
14
-
-
25144494760
-
Prediction error estimation: A comparison of resampling methods
-
Molinaro AM, Simon R, Pfeiffer RM. Prediction error estimation: a comparison of resampling methods. Bioinformatics. 2005;21:3301-7.
-
(2005)
Bioinformatics
, vol.21
, pp. 3301-3307
-
-
Molinaro, A.M.1
Simon, R.2
Pfeiffer, R.M.3
-
15
-
-
34247224322
-
Quantification of the impact of feature selection on the variance of cross-validation error estimation
-
Xiao Y, Hua J, Dougherty ER. Quantification of the impact of feature selection on the variance of cross-validation error estimation. EURASIP J Bioinform Syst Biol. 2007;16354.
-
(2007)
EURASIP J Bioinform Syst Biol
, pp. 16354
-
-
Xiao, Y.1
Hua, J.2
Dougherty, E.R.3
-
16
-
-
37649015028
-
Decorrelation of the true and estimated classifier errors in high-dimensional settings
-
Hanczar B, Hua J, Dougherty ER. Decorrelation of the true and estimated classifier errors in high-dimensional settings. EURASIP J Bioinform Syst Biol. 2007;38473.
-
(2007)
EURASIP J Bioinform Syst Biol
, pp. 38473
-
-
Hanczar, B.1
Hua, J.2
Dougherty, E.R.3
-
17
-
-
25444497730
-
Many accurate small-discriminatory feature subsets exist in microarray transcript data: Biomarker discovery
-
Grate LR. Many accurate small-discriminatory feature subsets exist in microarray transcript data: biomarker discovery. BMC Bioinformatics. 2005;6:97.
-
(2005)
BMC Bioinformatics
, vol.6
, pp. 97
-
-
Grate, L.R.1
-
18
-
-
85032751958
-
Fads and Fallacies in the Name of Small-Sample Microarray Classification
-
Braga-Neto UM. Fads and Fallacies in the Name of Small-Sample Microarray Classification. IEEE Signal Processing Magazine. 2007;24(1):91-9.
-
(2007)
IEEE Signal Processing Magazine
, vol.24
, Issue.1
, pp. 91-99
-
-
Braga-Neto, U.M.1
-
19
-
-
16344388210
-
Superior feature-set ranking for small samples using bolstered error estimation
-
Sima C, Braga-Neto U, Dougherty ER. Superior feature-set ranking for small samples using bolstered error estimation. Bioinformatics. 2005; 21:1046-54.
-
(2005)
Bioinformatics
, vol.21
, pp. 1046-1054
-
-
Sima, C.1
Braga-Neto, U.2
Dougherty, E.R.3
-
20
-
-
0742299049
-
Identification of combination gene sets for glioma classification
-
Kim S, Dougherty ER, Shmulevich I, et al. Identification of combination gene sets for glioma classification. Mol Cancer Ther. 2002;1:1229-36.
-
(2002)
Mol Cancer Ther
, vol.1
, pp. 1229-1236
-
-
Kim, S.1
Dougherty, E.R.2
Shmulevich, I.3
-
21
-
-
18844403496
-
Identification of signature genes by microarray for acute myeloid leukemia without maturation and acute promyelocytic leukemia with t(15;17)(q22;q12)(PML/RARalpha)
-
Morikawa J, Li H, Kim S, et al. Identification of signature genes by microarray for acute myeloid leukemia without maturation and acute promyelocytic leukemia with t(15;17)(q22;q12)(PML/RARalpha). Int J Oncol. 2003;23:617-25.
-
(2003)
Int J Oncol
, vol.23
, pp. 617-625
-
-
Morikawa, J.1
Li, H.2
Kim, S.3
-
22
-
-
0037229674
-
+ and CD5-Diffuse Large B-cell Lymphoma and Mantle Cell Lymphoma
-
+ and CD5-Diffuse Large B-cell Lymphoma and Mantle Cell Lymphoma. Cancer Research. 2003;63:60-6.
-
(2003)
Cancer Research
, vol.63
, pp. 60-66
-
-
Kobayashi, T.1
Yamaguchi, M.2
Kim, S.3
-
23
-
-
68949183225
-
Non-invasive Detection of Candidate Molecular Biomarkers in Subjects with a History of Insulin Resistance and Colorectal Adenomas
-
Zhao C, Ivanov I, Dougherty ER, et al. Non-invasive Detection of Candidate Molecular Biomarkers in Subjects with a History of Insulin Resistance and Colorectal Adenomas. Cancer Prevention Research. 2009;2(6):590-7.
-
(2009)
Cancer Prevention Research
, vol.2
, Issue.6
, pp. 590-597
-
-
Zhao, C.1
Ivanov, I.2
Dougherty, E.R.3
-
24
-
-
1642295096
-
Assessing the probability that a positive report is false: An approach for molecular epidemiology studies
-
Wacholder S, Chanock S, Garcia-Closas M, El Ghormli L, Rothman N. Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst. 2004;96:434-42.
-
(2004)
J Natl Cancer Inst
, vol.96
, pp. 434-442
-
-
Wacholder, S.1
Chanock, S.2
Garcia-Closas, M.3
El Ghormli, L.4
Rothman, N.5
-
25
-
-
34247144499
-
Nonvalidation of reported genetic risk factors for acute coronary syndrome in a large-scale replication study
-
Morgan TM, Krumholz HM, Lifton RP, Spertus JA. Nonvalidation of reported genetic risk factors for acute coronary syndrome in a large-scale replication study. JAMA. 2007;297:1551-61.
-
(2007)
JAMA
, vol.297
, pp. 1551-1561
-
-
Morgan, T.M.1
Krumholz, H.M.2
Lifton, R.P.3
Spertus, J.A.4
|