메뉴 건너뛰기




Volumn 13, Issue 3, 2012, Pages 523-538

Normalization, testing, and false discovery rate estimation for RNA-sequencing data

Author keywords

Differential expression; FDR; Overdispersion; Poisson log linear model; RNA Seq; Score statistic

Indexed keywords

MESSENGER RNA;

EID: 84863562292     PISSN: 14654644     EISSN: 14684357     Source Type: Journal    
DOI: 10.1093/biostatistics/kxr031     Document Type: Article
Times cited : (239)

References (38)
  • 2
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • ANDERS, S. AND HUBER, W. (2010). Differential expression analysis for sequence count data. Genome Biology 11, R106.
    • (2010) Genome Biology , vol.11
    • Anders, S.1    Huber, W.2
  • 3
    • 13244298225 scopus 로고    scopus 로고
    • Overdispersed logistic regression for sage: Modelling multiple groups and covariates
    • BAGGERLY, K. A., DENG, L., MORRIS, J. S. AND ALDAZ, C. M. (2004). Overdispersed logistic regression for sage: modelling multiple groups and covariates. BMC Bioinformatics 5, 144.
    • (2004) BMC Bioinformatics , vol.5 , pp. 144
    • Baggerly, K.A.1    Deng, L.2    Morris, J.S.3    Aldaz, C.M.4
  • 4
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • BENJAMINI, Y. AND HOCHBERG, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 85, 289-300.
    • (1995) Journal of the Royal Statistical Society Series B , vol.85 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 5
    • 66349083834 scopus 로고    scopus 로고
    • Measuring differential gene expression by short read sequencing: Quantitative comparison to 2-channel gene expression microarrays
    • BLOOM, J. S., KHAN, Z., KRUGLYAK, L., SINGH, M. AND CAUDY, A. A. (2009). Measuring differential gene expression by short read sequencing: quantitative comparison to 2-channel gene expression microarrays. BMC Genomics 10, 221.
    • (2009) BMC Genomics , vol.10 , pp. 221
    • Bloom, J.S.1    Khan, Z.2    Kruglyak, L.3    Singh, M.4    Caudy, A.A.5
  • 6
    • 84984932472 scopus 로고    scopus 로고
    • Exploring the new world of the genome with DNA microarrays
    • DOI 10.1038/4462
    • BROWN, P. O. AND BOTSTEIN, D. (1999). Exploring the new world of the genome with DNA microarrays. Nature genetics 21, 33-37. (Pubitemid 29031489)
    • (1999) Nature Genetics , vol.21 , Issue.1 SUPPL. , pp. 33-37
    • Brown, P.O.1    Botstein, D.2
  • 7
    • 77949481052 scopus 로고    scopus 로고
    • Evaluation of statistical methods for normalization and differential expression in mRNA-seq experiments
    • BULLARD, J. H., PURDOM, E., HANSEN, K. D. AND DUDOIT, S. (2010). Evaluation of statistical methods for normalization and differential expression in mRNA-seq experiments. BMC Bioinformatics 11, 94.
    • (2010) BMC Bioinformatics , vol.11 , pp. 94
    • Bullard, J.H.1    Purdom, E.2    Hansen, K.D.3    Dudoit, S.4
  • 8
    • 0030669030 scopus 로고    scopus 로고
    • Exploring the metabolic and genetic control of gene expression on a genomic scale
    • DOI 10.1126/science.278.5338.680
    • DERISI, J. L., IYER, V. R. AND BROWN, P. O. (1997). Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680-686. (Pubitemid 27464965)
    • (1997) Science , vol.278 , Issue.5338 , pp. 680-686
    • DeRisi, J.L.1    Iyer, V.R.2    Brown, P.O.3
  • 9
    • 0036376993 scopus 로고    scopus 로고
    • Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments
    • DUDOIT, S., YANG, Y. H., CALLOW, M. J. AND SPEED, T. P. (2002). Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Statistica Sinica 12, 111-139.
    • (2002) Statistica Sinica , vol.12 , pp. 111-139
    • Dudoit, S.1    Yang, Y.H.2    Callow, M.J.3    Speed, T.P.4
  • 10
    • 0033031437 scopus 로고    scopus 로고
    • DNA arrays for analysis of gene expression
    • EISEN, MICHAEL AND BROWN, PATRICK. (1999). DNA arrays for analysis of gene expression. Methods in Enzymology 303, 179-205.
    • (1999) Methods in Enzymology , vol.303 , pp. 179-205
    • Michael, E.1
  • 11
    • 77955883388 scopus 로고    scopus 로고
    • Biases in illumina transcriptome sequencing caused by random hexamer priming
    • HANSEN, K. D., BRENNER, S. E. AND DUDOIT, S. (2010). Biases in illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Research 38, e131.
    • (2010) Nucleic Acids Research , vol.38
    • Hansen, K.D.1    Brenner, S.E.2    Dudoit, S.3
  • 12
    • 77955298482 scopus 로고    scopus 로고
    • Bayseq: Empirical Bayesian methods for identifying differential expression in sequence count data
    • HARDCASTLE, T. J. AND KELLY, K. A. (2010). bayseq: Empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics 11, 422.
    • (2010) BMC Bioinformatics , vol.11 , pp. 422
    • Hardcastle, T.J.1    Kelly, K.A.2
  • 14
    • 77951940273 scopus 로고    scopus 로고
    • Modeling non-uniformity in short-read rates in RNA-seq data
    • LI, J., JIANG, H. AND WONG, W. H. (2010). Modeling non-uniformity in short-read rates in RNA-seq data. Genome Biology 11, R50.
    • (2010) Genome Biology , vol.11
    • J, L.I.1    Jiang, H.2    Wong, W.H.3
  • 15
    • 25444469952 scopus 로고    scopus 로고
    • Identifying differential expression in multiple sage libraries: An overdispersed log-linear model approach
    • LU, J., TOMFOHR, J. K. AND KEPLER, T. B. (2005). Identifying differential expression in multiple sage libraries: an overdispersed log-linear model approach. BMC Bioinformatics 6, 165.
    • (2005) BMC Bioinformatics , vol.6 , pp. 165
    • J, L.U.1    Tomfohr, J.K.2    Kepler, T.B.3
  • 16
    • 50649089207 scopus 로고    scopus 로고
    • Rna-seq: An assessment of technical reproducibility and comparison with gene expression arrays
    • MARIONI, J. C., MASON, C. E., MANE, S. M., STEPHENS, M. AND GILAD, Y. (2008). Rna-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18, 1509-1517.
    • (2008) Genome Res , vol.18 , pp. 1509-1517
    • Marioni, J.C.1    Mason, C.E.2    Mane, S.M.3    Stephens, M.4    Gilad, Y.5
  • 17
    • 46249106990 scopus 로고    scopus 로고
    • Mapping and quantifying mammalian transcriptomes by RNA-Seq
    • DOI 10.1038/nmeth.1226, PII NMETH.1226
    • MORTAZAVI, A., WILLIAMS, B. A., MCCUE, K., SCHAEFFER, L. AND WOLD, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-seq. Nature Methods 5, 621-628. (Pubitemid 351911867)
    • (2008) Nature Methods , vol.5 , Issue.7 , pp. 621-628
    • Mortazavi, A.1    Williams, B.A.2    McCue, K.3    Schaeffer, L.4    Wold, B.5
  • 18
    • 45549088326 scopus 로고    scopus 로고
    • The transcriptional landscape of the yeast genome defined by RNA sequencing
    • DOI 10.1126/science.1158441
    • NAGALAKSHMI, U., WONG, Z., WAERN, K., SHOU, C., RAHA, D., GERSTEIN, M. AND SNYDER, M. (2008). The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 302, 1344-1349. (Pubitemid 351929471)
    • (2008) Science , vol.320 , Issue.5881 , pp. 1344-1349
    • Nagalakshmi, U.1    Wang, Z.2    Waern, K.3    Shou, C.4    Raha, D.5    Gerstein, M.6    Snyder, M.7
  • 19
    • 0034923013 scopus 로고    scopus 로고
    • On differential variability of expression ratios: Improving statistical inference about gene expression changes from microarray data
    • DOI 10.1089/106652701300099074
    • NEWTON, M. A., KENDZIORSKI, C. M., RICHMOND, C. S., BLATTER, F. R. AND TSUI, K. W. (2001). On differential variability of expression ratios: improving statistical inference about gene expression changes from microarray data. Journal of Computational Biology 8, 37-52. (Pubitemid 32679478)
    • (2001) Journal of Computational Biology , vol.8 , Issue.1 , pp. 37-52
    • Newton, M.A.1    Kendziorski, C.M.2    Richmond, C.S.3    Blattner, F.R.4    Tsui, K.W.5
  • 20
    • 65649126066 scopus 로고    scopus 로고
    • Transcript length bias in RNA-seq data confounds systems biology
    • OSHLACK, A. AND WAKEFIELD, M. J. (2009). Transcript length bias in RNA-seq data confounds systems biology. Biology Direct 4, 14.
    • (2009) Biology Direct , vol.4 , pp. 14
    • Oshlack, A.1    Wakefield, M.J.2
  • 21
    • 84872205293 scopus 로고    scopus 로고
    • R: A language and environment for statistical computing
    • R DEVELOPMENT CORE TEAM. (2011). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
    • (2011) Vienna, Austria: R Foundation for Statistical Computing
  • 22
    • 75249087100 scopus 로고    scopus 로고
    • Edger: A bioconductor package for differential expression analysis of digital gene expression data
    • ROBINSON, M. D., MCCARTHY, D. J. AND SMYTH, G. K. (2010). edger: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140.
    • (2010) Bioinformatics , vol.26 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 23
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of RNA-seq data
    • ROBINSON, M. D. AND OSHLACK, A. (2010). A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology 11, R25.
    • (2010) Genome Biology , vol.11
    • Robinson, M.D.1    Oshlack, A.2
  • 24
    • 36448981743 scopus 로고    scopus 로고
    • Moderated statistical tests for assessing differences in tag abundance
    • DOI 10.1093/bioinformatics/btm453
    • ROBINSON, M. D. AND SMYTH, G. K. (2007). Moderated statistical tests for assessing differences in tag abundance. Bioinformatics 23, 2881-2887. (Pubitemid 350162894)
    • (2007) Bioinformatics , vol.23 , Issue.21 , pp. 2881-2887
    • Robinson, M.D.1    Smyth, G.K.2
  • 25
    • 41149085992 scopus 로고    scopus 로고
    • Small-sample estimation of negative binomial dispersion, with applications to SAGE data
    • DOI 10.1093/biostatistics/kxm030
    • ROBINSON, M. D. AND SMYTH, G. K. (2008). Small-sample estimation of negative binomial dispersion, with applications to sage data. Biostatistics 9, 321-332. (Pubitemid 351438556)
    • (2008) Biostatistics , vol.9 , Issue.2 , pp. 321-332
    • Robinson, M.D.1    Smyth, G.K.2
  • 26
    • 46249130709 scopus 로고    scopus 로고
    • The beginning of the end for microarrays?
    • DOI 10.1038/nmeth0708-585, PII NMETH0708-585
    • SHENDURE, J. (2008). The beginning of the end for microarrays? Nature Methods 5, 585-587. (Pubitemid 351911858)
    • (2008) Nature Methods , vol.5 , Issue.7 , pp. 585-587
    • Shendure, J.1
  • 28
    • 85052549687 scopus 로고    scopus 로고
    • A two-parameter generalized poisson model to improve the analysis of RNA-seq data
    • SRIVASTAVA, S. AND CHEN, L. (2010). A two-parameter generalized poisson model to improve the analysis of RNA-seq data. Nucleic Acids Research 38, e170.
    • (2010) Nucleic Acids Research , vol.38
    • Srivastava, S.1    Chen, L.2
  • 30
    • 0345822598 scopus 로고    scopus 로고
    • The positive false discovery rate: A Bayesian interpretation and the q-value
    • STOREY, J. (2003). The positive false discovery rate: A Bayesian interpretation and the q-value. Annals of Statistics 31, 2013-2025.
    • (2003) Annals of Statistics , vol.31 , pp. 2013-2025
    • Storey, J.1
  • 31
    • 0041423883 scopus 로고    scopus 로고
    • SAM thresholding and false discovery rates for detecting differential gene expression in DNA microarrays
    • In: Parmigiani, G., Garrett, E. S., Irizarry, R. A. and Zeger, S. L. (editors) New York: Springer
    • STOREY, J. AND TIBSHIRANI, R. (2002). SAM thresholding and false discovery rates for detecting differential gene expression in DNA microarrays. In: Parmigiani, G., Garrett, E. S., Irizarry, R. A. and Zeger, S. L. (editors), The Analysis of Gene Expression Data: Methods and Software. New York: Springer.
    • (2002) The Analysis of Gene Expression Data: Methods and Software
    • Storey, J.1    Tibshirani, R.2
  • 35
    • 75249095274 scopus 로고    scopus 로고
    • Degseq: An r package for identifying differentially expressed genes from RNA-seq data
    • WANG, L., FENG, Z., WANG, X. AND ZHANG, X. (2010). Degseq: an r package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26, 136-138.
    • (2010) Bioinformatics , vol.26 , pp. 136-138
    • Wang, L.1    Feng, Z.2    Wang, X.3    Zhang, X.4
  • 36
    • 57749195712 scopus 로고    scopus 로고
    • Rna-seq: A revolutionary tool for transcriptomics
    • WANG, Z., GERSTEIN, M. AND SNYDER, M. (2009). Rna-seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics 10, 57-63.
    • (2009) Nature Reviews Genetics , vol.10 , pp. 57-63
    • Wang, Z.1    Gerstein, M.2    Snyder, M.3
  • 37
    • 67449141880 scopus 로고    scopus 로고
    • RNA-Seq-quantitative measurement of expression through massively parallel RNA-sequencing
    • WILHELM, B. T. AND LANDRY, J. R. (2009). RNA-Seq-quantitative measurement of expression through massively parallel RNA-sequencing. Methods 48, 249-257.
    • (2009) Methods , vol.48 , pp. 249-257
    • Wilhelm, B.T.1    Landry, J.R.2
  • 38
    • 77951953494 scopus 로고    scopus 로고
    • Ultra-high throughput sequencingbased small RNA discovery and discrete statistical biomarker analysis in a collection of cervical tumours and matched controls
    • WITTEN, D., TIBSHIRANI, R., GU, S. G., FIRE, A. AND LUI, W. O. (2010). Ultra-high throughput sequencingbased small RNA discovery and discrete statistical biomarker analysis in a collection of cervical tumours and matched controls. BMC Biology 8, 58.
    • (2010) BMC Biology , vol.8 , pp. 58
    • Witten, D.1    Tibshirani, R.2    G, U.S.G.3    Fire, A.4    Lui, W.O.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.