메뉴 건너뛰기




Volumn 9780199533022, Issue , 2011, Pages 1-544

Bayesian Smoothing and Regression for Longitudinal, Spatial and Event History Data

Author keywords

Bayesian perspective; Bayesx; Developmental economics; Forestry; Marketing; Markov chain monte carlo; MCMC; Medicine; Semiparametric regression; Smoothing

Indexed keywords

CHAINS; COMMERCE; FORESTRY; MARKETING; MARKOV PROCESSES; MEDICINE; REGRESSION ANALYSIS; TIMBER;

EID: 84864777167     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1093/acprof:oso/9780199533022.001.0001     Document Type: Book
Times cited : (83)

References (416)
  • 4
    • 14544300510 scopus 로고    scopus 로고
    • Analysing child mortality in Nigeria with geoadditive discrete-time survival models
    • Adebayo, S. and Fahrmeir, L. (2005). Analysing child mortality in Nigeria with geoadditive discrete-time survival models. Statistics in Medicine, 24, 709-28.
    • (2005) Statistics in Medicine , vol.24 , pp. 709-728
    • Adebayo, S.1    Fahrmeir, L.2
  • 6
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • B. N. Petrov and F. Csaki, Akademiai Kiado
    • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In 2nd International Symposium on Information Theory (ed. B. N. Petrov and F. Csaki), pp. 267-81. Akademiai Kiado.
    • (1973) 2nd International Symposium on Information Theory , pp. 267-281
    • Akaike, H.1
  • 11
    • 69249220082 scopus 로고    scopus 로고
    • A comparison of nonparametric priors in hierarchical mixture modelling for AFT regression
    • Argiento, R., Guglielmi, A., and Pievatolo, A. (2009). A comparison of nonparametric priors in hierarchical mixture modelling for AFT regression. Journal of Statistical Planning and Inference, 139, 3989-4005.
    • (2009) Journal of Statistical Planning and Inference , vol.139 , pp. 3989-4005
    • Argiento, R.1    Guglielmi, A.2    Pievatolo, A.3
  • 12
    • 0032400352 scopus 로고    scopus 로고
    • Bayesian analysis of multivariate survival data using Monte Carlo methods
    • Aslanidou, H., Dey, D. K., and Sinha, D. (1998). Bayesian analysis of multivariate survival data using Monte Carlo methods. Canadian Journal of Statistics, 26, 33-48.
    • (1998) Canadian Journal of Statistics , vol.26 , pp. 33-48
    • Aslanidou, H.1    Dey, D.K.2    Sinha, D.3
  • 13
    • 0041530204 scopus 로고    scopus 로고
    • Space varying coefficient models for small area data
    • Assunção, R. (2003). Space varying coefficient models for small area data. Environmetrics, 14, 453-73.
    • (2003) Environmetrics , vol.14 , pp. 453-473
    • Assunção, R.1
  • 14
    • 73949143762 scopus 로고    scopus 로고
    • Neighborhood dependence in Bayesian spatial models
    • Assunção, R. and Krainski, E. (2009). Neighborhood dependence in Bayesian spatial models. Biometrical Journal, 51, 851-69.
    • (2009) Biometrical Journal , vol.51 , pp. 851-869
    • Assunção, R.1    Krainski, E.2
  • 17
    • 0043130540 scopus 로고    scopus 로고
    • Semiparametric spatio-temporal frailty modeling
    • Banerjee, S. and Carlin, B. P. (2003). Semiparametric spatio-temporal frailty modeling. Environmetrics, 14, 523-35.
    • (2003) Environmetrics , vol.14 , pp. 523-535
    • Banerjee, S.1    Carlin, B.P.2
  • 18
    • 1642283404 scopus 로고    scopus 로고
    • Parametric spatial cure rate models for interval-censored time-to-relapse data
    • Banerjee, S. and Carlin, B. P. (2004). Parametric spatial cure rate models for interval-censored time-to-relapse data. Biometrics, 60, 268-75.
    • (2004) Biometrics , vol.60 , pp. 268-275
    • Banerjee, S.1    Carlin, B.P.2
  • 20
    • 0043084977 scopus 로고    scopus 로고
    • Frailty modeling for spatially correlated survival data, with application to infant mortality in Minnesota
    • Banerjee, S., Wall, M. M., and Carlin, B. P. (2003b). Frailty modeling for spatially correlated survival data, with application to infant mortality in Minnesota. Biostatistics, 4, 123-42.
    • (2003) Biostatistics , vol.4 , pp. 123-142
    • Banerjee, S.1    Wall, M.M.2    Carlin, B.P.3
  • 21
    • 84920098658 scopus 로고    scopus 로고
    • Estimating timedependent effects in brand choice models: A semiparametric approach
    • Baumgartner, B., Steiner, W. J., and Kneib, T. (2009). Estimating timedependent effects in brand choice models: A semiparametric approach. Technical report.
    • (2009) Technical report
    • Baumgartner, B.1    Steiner, W.J.2    Kneib, T.3
  • 25
    • 0042107603 scopus 로고    scopus 로고
    • Objective Bayesian methods for model selection: Introduction and comparison (with discussion)
    • P. Lahiri
    • Berger, J. O. and Pericchi, L. R. (2001). Objective Bayesian methods for model selection: Introduction and comparison (with discussion). Model Selection (P. Lahiri, ed.), 38, 135-207.
    • (2001) Model Selection , vol.38 , pp. 135-207
    • Berger, J.O.1    Pericchi, L.R.2
  • 29
    • 0000913755 scopus 로고
    • Spatial interaction and the statistical analysis of lattice systems (with discussion)
    • Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems (with discussion). Journal of the Royal Statistical Society, Series B, 36, 192-236.
    • (1974) Journal of the Royal Statistical Society, Series B , vol.36 , pp. 192-236
    • Besag, J.1
  • 31
    • 0141477361 scopus 로고
    • Bayesian computation and stochastic systems (with discussion)
    • Besag, J., Green, P., Higdon, D., and Mengersen, K. (1995). Bayesian computation and stochastic systems (with discussion). Statistical Science, 10, 3-66.
    • (1995) Statistical Science , vol.10 , pp. 3-66
    • Besag, J.1    Green, P.2    Higdon, D.3    Mengersen, K.4
  • 33
    • 34548382745 scopus 로고    scopus 로고
    • Bayesian adaptive regression splines for hierarchical data
    • Bigelow, J. L. and Dunson, D. B. (2007). Bayesian adaptive regression splines for hierarchical data. Biometrics, 63, 724-32.
    • (2007) Biometrics , vol.63 , pp. 724-732
    • Bigelow, J.L.1    Dunson, D.B.2
  • 34
    • 23044518682 scopus 로고    scopus 로고
    • Adaptive Bayesian regression splines in semiparametric generaliz ed linear models
    • Biller, C. (2000). Adaptive Bayesian regression splines in semiparametric generaliz ed linear models. Journal of Computational and Graphical Statistics, 9, 122-140.
    • (2000) Journal of Computational and Graphical Statistics , vol.9 , pp. 122-140
    • Biller, C.1
  • 35
    • 0031476166 scopus 로고    scopus 로고
    • Bayesian spline-type smoothing in generaliz ed regression models
    • Biller, C. and Fahrmeir, L. (1997). Bayesian spline-type smoothing in generaliz ed regression models. Computational Statistics, 12, 135-51.
    • (1997) Computational Statistics , vol.12 , pp. 135-151
    • Biller, C.1    Fahrmeir, L.2
  • 36
    • 84993698837 scopus 로고    scopus 로고
    • Bayesian varying-coefficient models using adaptive regression splines
    • Biller, C. and Fahrmeir, L. (2001). Bayesian varying-coefficient models using adaptive regression splines. Statistical Modelling, 1, 195-211.
    • (2001) Statistical Modelling , vol.1 , pp. 195-211
    • Biller, C.1    Fahrmeir, L.2
  • 40
    • 39849102639 scopus 로고    scopus 로고
    • Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with OSCAR
    • Bondell, H. D. and Reich, B. J. (2008). Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with OSCAR. Biometrics, 64, 115-23.
    • (2008) Biometrics , vol.64 , pp. 115-123
    • Bondell, H.D.1    Reich, B.J.2
  • 41
    • 0015980662 scopus 로고
    • Covariance analysis of censored survival data
    • Breslow, N. (1974). Covariance analysis of censored survival data. Biometrics, 30, 89-99.
    • (1974) Biometrics , vol.30 , pp. 89-99
    • Breslow, N.1
  • 43
    • 26444547624 scopus 로고    scopus 로고
    • Generaliz ed additive regression based on Bayesian P-splines
    • Brezger, A. and Lang, S. (2006). Generaliz ed additive regression based on Bayesian P-splines. Computational Statistics & Data Analysis, 50, 967-91.
    • (2006) Computational Statistics & Data Analysis , vol.50 , pp. 967-991
    • Brezger, A.1    Lang, S.2
  • 44
    • 34249054454 scopus 로고    scopus 로고
    • Adaptive Gaussian Markov random fields with applications in human brain mapping
    • Brezger, A., Fahrmeir, L., and Hennerfeind, A. (2007). Adaptive Gaussian Markov random fields with applications in human brain mapping. Applied Statistics, 56, 327-45.
    • (2007) Applied Statistics , vol.56 , pp. 327-345
    • Brezger, A.1    Fahrmeir, L.2    Hennerfeind, A.3
  • 45
    • 34547218405 scopus 로고    scopus 로고
    • Universal residuals: A multivariate transformation
    • Brockwell, A. E. (2007). Universal residuals: A multivariate transformation. Statistics & Probability Letters, 77, 1473-78.
    • (2007) Statistics & Probability Letters , vol.77 , pp. 1473-1478
    • Brockwell, A.E.1
  • 46
    • 0141688093 scopus 로고    scopus 로고
    • Efficient construction of reversible jump Markov Chain Monte Carlo proposal distributions (with discussion)
    • Brooks, S. P., Giudici, P., and Roberts, G. O. (2003). Efficient construction of reversible jump Markov Chain Monte Carlo proposal distributions (with discussion). Journal of the Royal Statistical Society, Series B, 65, 3-55.
    • (2003) Journal of the Royal Statistical Society, Series B , vol.65 , pp. 3-55
    • Brooks, S.P.1    Giudici, P.2    Roberts, G.O.3
  • 47
    • 0037869564 scopus 로고    scopus 로고
    • A Bayesian semiparametric joint hierarchical model for longitudinal and survival data
    • Brown, E. R. and Ibrahim, J. G. (2003). A Bayesian semiparametric joint hierarchical model for longitudinal and survival data. Biometrics, 59, 221-28.
    • (2003) Biometrics , vol.59 , pp. 221-228
    • Brown, E.R.1    Ibrahim, J.G.2
  • 48
    • 15044356987 scopus 로고    scopus 로고
    • A flexible B-spline model for multiple longitudinal biomarkers and survival
    • Brown, E. R., Ibrahim, J. G., and DeGruttola, V. (2005). A flexible B-spline model for multiple longitudinal biomarkers and survival. Biometrics, 61, 64-73.
    • (2005) Biometrics , vol.61 , pp. 64-73
    • Brown, E.R.1    Ibrahim, J.G.2    DeGruttola, V.3
  • 49
    • 0034394761 scopus 로고    scopus 로고
    • Implementation and performance issues in the Bayesian and likelihood fitting of multilevel models
    • Browne, W. J. and Draper, D. (2000). Implementation and performance issues in the Bayesian and likelihood fitting of multilevel models. Computational Statistics, 15, 391-420.
    • (2000) Computational Statistics , vol.15 , pp. 391-420
    • Browne, W.J.1    Draper, D.2
  • 50
    • 33847083094 scopus 로고    scopus 로고
    • A comparison of Bayesian and likelihood-based methods for fitting multilevel models
    • Browne, W. J. and Draper, D. (2006). A comparison of Bayesian and likelihood-based methods for fitting multilevel models. Bayesian Analysis, 1(3), 473-514.
    • (2006) Bayesian Analysis , vol.1 , Issue.3 , pp. 473-514
    • Browne, W.J.1    Draper, D.2
  • 51
    • 0037188238 scopus 로고    scopus 로고
    • Bayesian and likelihood methods for fitting multilevel models with complex level-1 variation
    • Browne, W. J., Draper, D., Goldstein, H., and Rasbash, J. (2002). Bayesian and likelihood methods for fitting multilevel models with complex level-1 variation. Computational Statistics & Data Analysis, 39, 203-25.
    • (2002) Computational Statistics & Data Analysis , vol.39 , pp. 203-225
    • Browne, W.J.1    Draper, D.2    Goldstein, H.3    Rasbash, J.4
  • 54
    • 33745256442 scopus 로고    scopus 로고
    • Bayesian covariance selection in generaliz ed linear mixed models
    • Cai, B. and Dunson, D. (2006). Bayesian covariance selection in generaliz ed linear mixed models. Biometrics, 62, 446-57.
    • (2006) Biometrics , vol.62 , pp. 446-457
    • Cai, B.1    Dunson, D.2
  • 55
    • 1042263216 scopus 로고    scopus 로고
    • Degrees-of-freedom tests for smoothing splines
    • Cantoni, E. and Hastie, T. (2002). Degrees-of-freedom tests for smoothing splines. Biometrika, 89, 251-63.
    • (2002) Biometrika , vol.89 , pp. 251-263
    • Cantoni, E.1    Hastie, T.2
  • 56
    • 0000506629 scopus 로고
    • Bayesian model choice via Markov Chain Monte Carlo methods
    • Carlin, B. P. and Chib, S. (1995). Bayesian model choice via Markov Chain Monte Carlo methods. Journal of the Royal Statistical Society B, 57, 473-484.
    • (1995) Journal of the Royal Statistical Society B , vol.57 , pp. 473-484
    • Carlin, B.P.1    Chib, S.2
  • 57
    • 0043024584 scopus 로고    scopus 로고
    • Hierarchical multivariate CAR models for spatio-temporally correlated data
    • J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith, and M. West, Oxford University Press
    • Carlin, B. P. and Banerjee, S. (2003). Hierarchical multivariate CAR models for spatio-temporally correlated data. In Bayesian Statistics 7 (ed. J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith, and M. West), pp. 45-63. Oxford University Press.
    • (2003) Bayesian Statistics , vol.7 , pp. 45-63
    • Carlin, B.P.1    Banerjee, S.2
  • 59
    • 3042782824 scopus 로고    scopus 로고
    • Under-nutrition as an underlying cause of child deaths associated with diarrhea, pneumonia, malaria and measles
    • Caulfield, L. E., de Onis, M., Blössner, M., and Black, R. E. (2004). Under-nutrition as an underlying cause of child deaths associated with diarrhea, pneumonia, malaria and measles. American Journal of Clinical Nutrition, 80, 193-98.
    • (2004) American Journal of Clinical Nutrition , vol.80 , pp. 193-198
    • Caulfield, L.E.1    de Onis, M.2    Blössner, M.3    Black, R.E.4
  • 60
  • 61
    • 0037507564 scopus 로고    scopus 로고
    • Bayesian analysis for correlated ordinal data models
    • D. K. Dey, S. K. Ghosh, and B. K. Mallick, Marcel Dekker
    • Chen, M. H. and Dey, D. K. (2000). Bayesian analysis for correlated ordinal data models. In Generalized Linear Models: A Bayesian Perspective (ed. D. K. Dey, S. K. Ghosh, and B. K. Mallick), pp. 133-57. Marcel Dekker.
    • (2000) Generalized Linear Models: A Bayesian Perspective , pp. 133-157
    • Chen, M.H.1    Dey, D.K.2
  • 62
    • 0347994096 scopus 로고    scopus 로고
    • Random effects selection in linear mixed models
    • Chen, Z. and Dunson, D. (2003). Random effects selection in linear mixed models. Biometrics, 59, 762-69.
    • (2003) Biometrics , vol.59 , pp. 762-769
    • Chen, Z.1    Dunson, D.2
  • 65
    • 0000926206 scopus 로고
    • On the distribution of the likelihood ratio
    • Chernoff, H. (1954). On the distribution of the likelihood ratio. Annals of Mathematical Statistics, 25, 573-78.
    • (1954) Annals of Mathematical Statistics , vol.25 , pp. 573-578
    • Chernoff, H.1
  • 68
    • 33745670224 scopus 로고    scopus 로고
    • Inference in semiparametric dynamic models for binary longitudinal data
    • Chib, S. and Jeliazkov, I. (2006). Inference in semiparametric dynamic models for binary longitudinal data. Journal of the American Statistical Association, 101, 685-700.
    • (2006) Journal of the American Statistical Association , vol.101 , pp. 685-700
    • Chib, S.1    Jeliazkov, I.2
  • 70
    • 69249171674 scopus 로고    scopus 로고
    • Asymptotic properties of penaliz ed spline estimators
    • Claeskens, G., Krivobokova, T., and Opsomer, J. D. (2009). Asymptotic properties of penaliz ed spline estimators. Biometrika, 96, 529-44.
    • (2009) Biometrika , vol.96 , pp. 529-544
    • Claeskens, G.1    Krivobokova, T.2    Opsomer, J.D.3
  • 71
    • 0025813195 scopus 로고
    • A Monte Carlo method for Bayesian inference in frailty models
    • Clayton, D. G. (1991). A Monte Carlo method for Bayesian inference in frailty models. Biometrics, 47, 467-85.
    • (1991) Biometrics , vol.47 , pp. 467-485
    • Clayton, D.G.1
  • 74
    • 0001682758 scopus 로고    scopus 로고
    • Multiple shrinkage and subset selection in wavelets
    • Clyde, M., Parmigiani, G., and Vidakovic, B. (1998). Multiple shrinkage and subset selection in wavelets. Biometrika, 85, 391-402.
    • (1998) Biometrika , vol.85 , pp. 391-402
    • Clyde, M.1    Parmigiani, G.2    Vidakovic, B.3
  • 75
    • 0033252569 scopus 로고    scopus 로고
    • Multi-state models in epidemiology
    • Commenges, D. (1999). Multi-state models in epidemiology. Lifetime Data Analysis, 5, 315-27.
    • (1999) Lifetime Data Analysis , vol.5 , pp. 315-327
    • Commenges, D.1
  • 77
    • 24944555208 scopus 로고    scopus 로고
    • Bayesian model choice based on Monte Carlo estimates of posterior model probabilities
    • Congdon, P. (2006). Bayesian model choice based on Monte Carlo estimates of posterior model probabilities. Computational Statistics & Data Analysis, 50, 346-57.
    • (2006) Computational Statistics & Data Analysis , vol.50 , pp. 346-357
    • Congdon, P.1
  • 78
    • 49549109589 scopus 로고    scopus 로고
    • Variable selection and model averaging in semiparametric overdispersed generaliz ed linear models
    • Cottet, R., Kohn, R. J., and Nott, D. J. (2008). Variable selection and model averaging in semiparametric overdispersed generaliz ed linear models. Journal of the American Statistical Association, 103, 661-71.
    • (2008) Journal of the American Statistical Association , vol.103 , pp. 661-671
    • Cottet, R.1    Kohn, R.J.2    Nott, D.J.3
  • 79
    • 0000336139 scopus 로고
    • Regression models and life tables (with discussion)
    • Cox, D. R. (1972). Regression models and life tables (with discussion). Journal of the Royal Statistical, Series B, 34, 187-220.
    • (1972) Journal of the Royal Statistical, Series B , vol.34 , pp. 187-220
    • Cox, D.R.1
  • 80
    • 3442889702 scopus 로고    scopus 로고
    • Likelihood ratio tests for goodness-of-fit of a nonlinear regression model
    • Crainiceanu, C. and Ruppert, D. (2004a). Likelihood ratio tests for goodness-of-fit of a nonlinear regression model. Journal of Multivariate Analysis, 91, 35-52.
    • (2004) Journal of Multivariate Analysis , vol.91 , pp. 35-52
    • Crainiceanu, C.1    Ruppert, D.2
  • 81
    • 1042279287 scopus 로고    scopus 로고
    • Likelihood ratio tests in linear mixed models with one variance component
    • Crainiceanu, C. M. and Ruppert, D. (2004b). Likelihood ratio tests in linear mixed models with one variance component. Journal of the Royal Statistical Society B, 66, 165-85.
    • (2004) Journal of the Royal Statistical Society B , vol.66 , pp. 165-185
    • Crainiceanu, C.M.1    Ruppert, D.2
  • 82
    • 15844423998 scopus 로고    scopus 로고
    • Exact likelihood ratio tests for penalised splines
    • Crainiceanu, C., Ruppert, D., Claeskens, G., and Wand, M. P. (2005). Exact likelihood ratio tests for penalised splines. Biometrika, 92, 91-103.
    • (2005) Biometrika , vol.92 , pp. 91-103
    • Crainiceanu, C.1    Ruppert, D.2    Claeskens, G.3    Wand, M.P.4
  • 85
    • 39149120935 scopus 로고    scopus 로고
    • Variable selection and covariance selection in multivariate regression models
    • D. Dey and C. Rao, North Holland
    • Cripps, E., Carter, C., and Kohn, R. (2005). Variable selection and covariance selection in multivariate regression models. In Handbook of Statistics 25, Bayesian Thinking: Modeling and Computation (ed. D. Dey and C. Rao), pp. 519-52. North Holland.
    • (2005) Handbook of Statistics 25, Bayesian Thinking: Modeling and Computation , pp. 519-552
    • Cripps, E.1    Carter, C.2    Kohn, R.3
  • 86
    • 0141849049 scopus 로고    scopus 로고
    • Measuring spatial effects in time to event data: a case study using months from angiography to coronary artery bypass graft (CABG)
    • Crook, A., Knorr-Held, L., and Hemingway, H. (2003). Measuring spatial effects in time to event data: a case study using months from angiography to coronary artery bypass graft (CABG). Statistics in Medicine, 22, 2943-61.
    • (2003) Statistics in Medicine , vol.22 , pp. 2943-2961
    • Crook, A.1    Knorr-held, L.2    Hemingway, H.3
  • 88
    • 70450231574 scopus 로고    scopus 로고
    • Predictive model assessment for count data
    • Czado, C., Gneiting, T., and Held, L. (2009). Predictive model assessment for count data. Biometrics, 65, 1254-61.
    • (2009) Biometrics , vol.65 , pp. 1254-1261
    • Czado, C.1    Gneiting, T.2    Held, L.3
  • 101
    • 84862025942 scopus 로고    scopus 로고
    • Random-effects models for joint analysis of repeated-measurement and time-to-event outcomes
    • G. Fitz maurice, M. Davidian, G. Verbeke, and G. Molenberghs, Chapman & Hall
    • Diggle, P., Henderson, R., and Philipson, P. (2009). Random-effects models for joint analysis of repeated-measurement and time-to-event outcomes. In Longitudinal Data Analysis: A Handbook of Modern Statistical Methods (ed. G. Fitz maurice, M. Davidian, G. Verbeke, and G. Molenberghs), pp. 349-66. Chapman & Hall.
    • (2009) Longitudinal Data Analysis: A Handbook of Modern Statistical Methods , pp. 349-366
    • Diggle, P.1    Henderson, R.2    Philipson, P.3
  • 102
    • 0004230806 scopus 로고
    • Oxford University Press
    • Diggle, P. J. (1990). Time Series. Oxford University Press.
    • (1990) Time Series
    • Diggle, P.J.1
  • 106
    • 0010045457 scopus 로고    scopus 로고
    • Bayesian curve-fitting with free-knot splines
    • Dimatteo, I., Genovese, C. R., and Kass, R. E. (2001). Bayesian curve-fitting with free-knot splines. Biometrika, 88, 1055-71.
    • (2001) Biometrika , vol.88 , pp. 1055-1071
    • Dimatteo, I.1    Genovese, C.R.2    Kass, R.E.3
  • 107
    • 0041958932 scopus 로고
    • Ideal spatial adaptation by wavelet shrinkage
    • Donoho, D. L. and Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika, 81, 425-55.
    • (1994) Biometrika , vol.81 , pp. 425-455
    • Donoho, D.L.1    Johnstone, I.M.2
  • 109
    • 0037440072 scopus 로고    scopus 로고
    • Specificity assessment from fractionation experiments (SAFE): a novel method to evaluate microarray probe specificity based on hybridisation stringencies
    • Drobyshev, A., Machka, C., Horsch, M., Seltmann, M., Liebscher, V., de Angelis, M., and Beckers, J. (2003). Specificity assessment from fractionation experiments (SAFE): a novel method to evaluate microarray probe specificity based on hybridisation stringencies. Nucleic Acids Research, 31, e1.
    • (2003) Nucleic Acids Research , vol.31 , pp. e1
    • Drobyshev, A.1    Machka, C.2    Horsch, M.3    Seltmann, M.4    Liebscher, V.5    de Angelis, M.6    Beckers, J.7
  • 110
    • 84920100641 scopus 로고    scopus 로고
    • Nonparametric Bayes applications to biostatistics
    • National Institute of Environmental Health Sciences, NIH
    • Dunson, D. (2007). Nonparametric Bayes applications to biostatistics. Technical report, National Institute of Environmental Health Sciences, NIH.
    • (2007) Technical report
    • Dunson, D.1
  • 111
    • 2942653415 scopus 로고    scopus 로고
    • Selecting factors predictive of heterogeneity in multivariate event time data
    • Dunson, D. and Chen, Z. (2004). Selecting factors predictive of heterogeneity in multivariate event time data. Biometrics, 60, 352-58.
    • (2004) Biometrics , vol.60 , pp. 352-358
    • Dunson, D.1    Chen, Z.2
  • 112
    • 84920064355 scopus 로고    scopus 로고
    • Semiparametric hierarchical models with mean and variance constraints
    • Department of Statistical Science, Duke University
    • Dunson, D., Yang, M., and Baird, D. (2007). Semiparametric hierarchical models with mean and variance constraints. Technical report, Department of Statistical Science, Duke University.
    • (2007) Technical report
    • Dunson, D.1    Yang, M.2    Baird, D.3
  • 113
    • 77955418023 scopus 로고    scopus 로고
    • Semiparametric Bayes hierarchical models with mean and variance constraints
    • Dunson, D., Yang, M., and Baird, D. (2010). Semiparametric Bayes hierarchical models with mean and variance constraints. Computational Statistics & Data Analysis, 54, 2172-86.
    • (2010) Computational Statistics & Data Analysis , vol.54 , pp. 2172-2186
    • Dunson, D.1    Yang, M.2    Baird, D.3
  • 114
    • 16844376691 scopus 로고    scopus 로고
    • Simple fitting of subject-specific curves for longitudinal data
    • Durban, M., Harezlak, J., Wand, M. P., and Carroll, R. J. (2005). Simple fitting of subject-specific curves for longitudinal data. Statistics in Medicine, 24, 1153-67.
    • (2005) Statistics in Medicine , vol.24 , pp. 1153-1167
    • Durban, M.1    Harezlak, J.2    Wand, M.P.3    Carroll, R.J.4
  • 116
    • 0038712796 scopus 로고    scopus 로고
    • Spatial modelling and prediction under stationary non-geometric range anisotropy
    • Ecker, M. D. and Gelfand, A. E. (2003). Spatial modelling and prediction under stationary non-geometric range anisotropy. Environmental and Ecological Statistics, 10, 165-78.
    • (2003) Environmental and Ecological Statistics , vol.10 , pp. 165-178
    • Ecker, M.D.1    Gelfand, A.E.2
  • 118
    • 25444532788 scopus 로고    scopus 로고
    • Flexible smoothing using B-splines and penaliz ed likelihood
    • Eilers, P. H. C. and Marx, B. D. (1996). Flexible smoothing using B-splines and penaliz ed likelihood. Statistical Science, 11, 89-121.
    • (1996) Statistical Science , vol.11 , pp. 89-121
    • Eilers, P.H.C.1    Marx, B.D.2
  • 119
    • 49749119975 scopus 로고    scopus 로고
    • A joint model for longitudinal measurements and survival data in the presence of multiple failure types
    • Elashoff, R. M., Li, G., and Li, N. (2008). A joint model for longitudinal measurements and survival data in the presence of multiple failure types. Biometrics, 64, 762-71.
    • (2008) Biometrics , vol.64 , pp. 762-771
    • Elashoff, R.M.1    Li, G.2    Li, N.3
  • 121
    • 0012890141 scopus 로고    scopus 로고
    • Computing Bayesian nonparametric hierarchical models
    • D. Dey, P. Müller, and D. Sinha, Springer
    • Escobar, M. D. and West, M. (1998). Computing Bayesian nonparametric hierarchical models. In Practical Nonparametric and Semiparametric Bayesian Statistics (ed. D. Dey, P. Müller, and D. Sinha), pp. 1-22. Springer.
    • (1998) Practical Nonparametric and Semiparametric Bayesian Statistics , pp. 1-22
    • Escobar, M.D.1    West, M.2
  • 124
    • 0002147267 scopus 로고    scopus 로고
    • A nonparametric multiplicative haz ard model for event history analysis
    • Fahrmeir, L. and Klinger, A. (1998). A nonparametric multiplicative haz ard model for event history analysis. Biometrika, 85, 581-92.
    • (1998) Biometrika , vol.85 , pp. 581-592
    • Fahrmeir, L.1    Klinger, A.2
  • 125
    • 84993813881 scopus 로고    scopus 로고
    • Bayesian models for human brain mapping
    • Fahrmeir, L. and Gössl, C. (2002). Bayesian models for human brain mapping. Statistical Modelling, 2, 235-49.
    • (2002) Statistical Modelling , vol.2 , pp. 235-249
    • Fahrmeir, L.1    Gössl, C.2
  • 126
    • 0035649015 scopus 로고    scopus 로고
    • Bayesian inference for generaliz ed additive mixed models based on Markov random field priors
    • Fahrmeir, L. and Lang, S. (2001a). Bayesian inference for generaliz ed additive mixed models based on Markov random field priors. Applied Statistics, 50, 201-20.
    • (2001) Applied Statistics , vol.50 , pp. 201-220
    • Fahrmeir, L.1    Lang, S.2
  • 127
    • 0038182874 scopus 로고    scopus 로고
    • Bayesian semiparametric regression analysis of multicategorical time-space data
    • Fahrmeir, L. and Lang, S. (2001b). Bayesian semiparametric regression analysis of multicategorical time-space data. Annals of the Institute of Statistical Mathematics, 53, 11-30.
    • (2001) Annals of the Institute of Statistical Mathematics , vol.53 , pp. 11-30
    • Fahrmeir, L.1    Lang, S.2
  • 128
    • 33748427185 scopus 로고    scopus 로고
    • Structured additive regression for overdispersed and z ero-inflated count data
    • Fahrmeir, L. and Osuna, L. (2006). Structured additive regression for overdispersed and z ero-inflated count data. Applied Stochastic Models in Business and Industry, 22, 351-69.
    • (2006) Applied Stochastic Models in Business and Industry , vol.22 , pp. 351-369
    • Fahrmeir, L.1    Osuna, L.2
  • 130
    • 77953323174 scopus 로고    scopus 로고
    • On the identification of trend and correlation in temporal and spatial regression
    • Shalab and C. Heumann, Springer
    • Fahrmeir, L. and Kneib, T. (2008). On the identification of trend and correlation in temporal and spatial regression. In Recent advances in Linear Models and Related Areas (ed. Shalab and C. Heumann), pp. 1-27. Springer.
    • (2008) Recent advances in Linear Models and Related Areas , pp. 1-27
    • Fahrmeir, L.1    Kneib, T.2
  • 131
    • 56949101082 scopus 로고    scopus 로고
    • Propriety of posteriors in structured additive regression models: theory and empirical evidence
    • Fahrmeir, L. and Kneib, T. (2009). Propriety of posteriors in structured additive regression models: theory and empirical evidence. Journal of Statistical Planning and Inference, 39, 843-59.
    • (2009) Journal of Statistical Planning and Inference , vol.39 , pp. 843-859
    • Fahrmeir, L.1    Kneib, T.2
  • 132
    • 8644257675 scopus 로고    scopus 로고
    • Penaliz ed structured additive regression for space-time data: a Bayesian perspective
    • Fahrmeir, L., Kneib, T., and Lang, S. (2004). Penaliz ed structured additive regression for space-time data: a Bayesian perspective. Statistica Sinica, 14, 731-61.
    • (2004) Statistica Sinica , vol.14 , pp. 731-761
    • Fahrmeir, L.1    Kneib, T.2    Lang, S.3
  • 133
    • 77953326052 scopus 로고    scopus 로고
    • Bayesian regularisation in structured additive regression: A unifying perspective on shrinkage, smoothing and predictor selection
    • Fahrmeir, L., Kneib, T., and Konrath, S. (2010). Bayesian regularisation in structured additive regression: A unifying perspective on shrinkage, smoothing and predictor selection. Statistics and Computing, 20, 203-19.
    • (2010) Statistics and Computing , vol.20 , pp. 203-219
    • Fahrmeir, L.1    Kneib, T.2    Konrath, S.3
  • 134
    • 8644255079 scopus 로고    scopus 로고
    • Semiparametric Bayesian time-space analysis of unemployment duration
    • Fahrmeir, L., Lang, S., Wolff, J., and Bender, S. (2003). Semiparametric Bayesian time-space analysis of unemployment duration. Allgemeines Statistisches Archiv, 87, 281-307.
    • (2003) Allgemeines Statistisches Archiv , vol.87 , pp. 281-307
    • Fahrmeir, L.1    Lang, S.2    Wolff, J.3    Bender, S.4
  • 136
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penaliz ed likelihood and its oracle properties
    • Fan, J. and Li, R. (2001). Variable selection via nonconcave penaliz ed likelihood and its oracle properties. Journal of the American Statistical Association, 96, 1348-60.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 137
    • 79960150602 scopus 로고    scopus 로고
    • Detection of risk factors for obesity in early childhood with quantile regression methods for longitudinal data
    • Department of Statistics, Ludwig-Maximilians-University Munich
    • Fenske, N., Fahrmeir, L., Rzehak, P., and Höhle, M. (2008). Detection of risk factors for obesity in early childhood with quantile regression methods for longitudinal data. Technical Report 38, Department of Statistics, Ludwig-Maximilians-University Munich.
    • (2008) Technical Report 38
    • Fenske, N.1    Fahrmeir, L.2    Rzehak, P.3    Höhle, M.4
  • 138
    • 77956909150 scopus 로고    scopus 로고
    • Identifying risk factors for severe childhood malnutrition by boosting additive quantile regression
    • Department of Statistics, Ludwig-Maximilians-University Munich
    • Fenske, N., Kneib, T., and Hothorn, T. (2009). Identifying risk factors for severe childhood malnutrition by boosting additive quantile regression. Technical Report 52, Department of Statistics, Ludwig-Maximilians-University Munich.
    • (2009) Technical Report 52
    • Fenske, N.1    Kneib, T.2    Hothorn, T.3
  • 139
    • 0001120413 scopus 로고
    • A Bayesian analysis of some nonparametric problems
    • Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. Annals of Statistics, 1, 209-230.
    • (1973) Annals of Statistics , vol.1 , pp. 209-230
    • Ferguson, T.S.1
  • 145
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of Statistics, 19, 1-141.
    • (1991) The Annals of Statistics , vol.19 , pp. 1-141
    • Friedman, J.H.1
  • 146
    • 0011151851 scopus 로고    scopus 로고
    • Recursive residuals and model diagnostics for normal and non-normal state space models
    • Frühwirth-Schnatter, S. (1996). Recursive residuals and model diagnostics for normal and non-normal state space models. Environmental and Ecological Staistics, 3, 291-309.
    • (1996) Environmental and Ecological Staistics , vol.3 , pp. 291-309
    • Frühwirth-schnatter, S.1
  • 148
    • 33845796064 scopus 로고    scopus 로고
    • Auxiliary mixture sampling for parameter-driven models of time series of small counts with applications to state space modelling
    • Frühwirth-Schnatter, S. and Wagner, H. (2006). Auxiliary mixture sampling for parameter-driven models of time series of small counts with applications to state space modelling. Biometrika, 93, 827-41.
    • (2006) Biometrika , vol.93 , pp. 827-841
    • Frühwirth-schnatter, S.1    Wagner, H.2
  • 149
    • 44349110659 scopus 로고    scopus 로고
    • Marginal likelihoods for non-gaussian models using auxiliary mixture sampling
    • Frühwirth-Schnatter, S. and Wagner, H. (2008). Marginal likelihoods for non-gaussian models using auxiliary mixture sampling. Computational Statistics & Data Analysis, 52, 4608-24.
    • (2008) Computational Statistics & Data Analysis , vol.52 , pp. 4608-4624
    • Frühwirth-schnatter, S.1    Wagner, H.2
  • 150
    • 70349838367 scopus 로고    scopus 로고
    • Stochastic model specification search for Gaussian and partially non-Gaussian state space models
    • Frühwirth-Schnatter, S. and Wagner, H. (2010). Stochastic model specification search for Gaussian and partially non-Gaussian state space models. Journal of Econometrics, 154, 85-100.
    • (2010) Journal of Econometrics , vol.154 , pp. 85-100
    • Frühwirth-schnatter, S.1    Wagner, H.2
  • 154
    • 37249017545 scopus 로고    scopus 로고
    • Bayesian parsimonious covariance estimation for hierarchical linear mixed models
    • Frühwirth-Schnatter, S. and Tüchler, R. (2008). Bayesian parsimonious covariance estimation for hierarchical linear mixed models. Statistics and Computing, 18, 1-13.
    • (2008) Statistics and Computing , vol.18 , pp. 1-13
    • Frühwirth-schnatter, S.1    Tüchler, R.2
  • 155
    • 70349816927 scopus 로고    scopus 로고
    • Improved auxiliary mixture sampling for hierarchical models of non-Gaussian data
    • Frühwirth-Schnatter, S., Frühwirth, R., Held, L., and Rue, H. (2009). Improved auxiliary mixture sampling for hierarchical models of non-Gaussian data. Statistics and Computing, 19, 479-92.
    • (2009) Statistics and Computing , vol.19 , pp. 479-492
    • Frühwirth-schnatter, S.1    Frühwirth, R.2    Held, L.3    Rue, H.4
  • 158
    • 0042042167 scopus 로고    scopus 로고
    • Sampling from the posterior distribution in generaliz ed linear mixed models
    • Gamerman, D. (1997). Sampling from the posterior distribution in generaliz ed linear mixed models. Statistics and Computing, 7, 57-68.
    • (1997) Statistics and Computing , vol.7 , pp. 57-68
    • Gamerman, D.1
  • 161
    • 0001803816 scopus 로고    scopus 로고
    • Model determination using sampling based methods
    • W. Gilks, S. Richardson, and D. Spiegelhalter, Chapman & Hall/CRC, Boca Raton
    • Gelfand, A. (1996). Model determination using sampling based methods. In Markov Chain Monte Carlo in Practice (ed. W. Gilks, S. Richardson, and D. Spiegelhalter), pp. 145-61. Chapman & Hall/CRC, Boca Raton.
    • (1996) Markov Chain Monte Carlo in Practice , pp. 145-161
    • Gelfand, A.1
  • 163
    • 0002799511 scopus 로고    scopus 로고
    • Model choice: A minimum posterior predictive loss approach
    • Gelfand, A. E. and Ghosh, S. K. (1998). Model choice: A minimum posterior predictive loss approach. Biometrika, 85, 1-11.
    • (1998) Biometrika , vol.85 , pp. 1-11
    • Gelfand, A.E.1    Ghosh, S.K.2
  • 164
    • 0141767040 scopus 로고    scopus 로고
    • Proper multivariate conditional autoregressive models for spatial data analysis
    • Gelfand, A. and Vounatsou, P. (2003). Proper multivariate conditional autoregressive models for spatial data analysis. Biostatistics, 4, 11-25.
    • (2003) Biostatistics , vol.4 , pp. 11-25
    • Gelfand, A.1    Vounatsou, P.2
  • 165
    • 0000079228 scopus 로고
    • Model determination using predictive distributions with implementation via sampling-based methods
    • J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, Oxford University Press, Oxford
    • Gelfand, A. E., Dey, D. K., and Chang, H. (1992). Model determination using predictive distributions with implementation via sampling-based methods. In Bayesian Statistics 4 (ed. J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith), pp. 147-67. Oxford University Press, Oxford.
    • (1992) Bayesian Statistics , vol.4 , pp. 147-167
    • Gelfand, A.E.1    Dey, D.K.2    Chang, H.3
  • 166
    • 84867086419 scopus 로고    scopus 로고
    • Prior distributions for variance parameters in hierarchical models
    • Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models. Bayesian Analysis, 1, 515-534.
    • (2006) Bayesian Analysis , vol.1 , pp. 515-534
    • Gelman, A.1
  • 169
    • 25444484077 scopus 로고    scopus 로고
    • Posterior predictive assessment of model fitness via realiz ed discrepancies
    • Gelman, A., Meng, X.-L., and Stern, H. S. (1996). Posterior predictive assessment of model fitness via realiz ed discrepancies. Statistica Sinica, 6, 733-60.
    • (1996) Statistica Sinica , vol.6 , pp. 733-760
    • Gelman, A.1    Meng, X.-L.2    Stern, H.S.3
  • 175
    • 0004581641 scopus 로고
    • Stochastic search variable selection
    • W. R. Gills, S. Richardson and D. J. Spiegethalter, Chapman & Hall
    • George, E. I. and McCulloch, R. E. (1995). Stochastic search variable selection. In Markov Chain Monte Carlo in Practice (ed. W. R. Gills, S. Richardson and D. J. Spiegethalter), pp. 203-14. Chapman & Hall.
    • (1995) Markov Chain Monte Carlo in Practice , pp. 203-214
    • George, E.I.1    McCulloch, R.E.2
  • 176
    • 0031526204 scopus 로고    scopus 로고
    • Approaches for Bayesian variable selection
    • George, E. I. and McCulloch, R. E. (1997). Approaches for Bayesian variable selection. Statistica Sinica, 7(2), 339-74.
    • (1997) Statistica Sinica , vol.7 , Issue.2 , pp. 339-374
    • George, E.I.1    McCulloch, R.E.2
  • 177
    • 0001878857 scopus 로고
    • Efficient simulation from the multivariate normal and student-t distributions subject to linear constraints
    • Interface Foundation of North America
    • Geweke, J. (1991). Efficient simulation from the multivariate normal and student-t distributions subject to linear constraints. In Computer Science and Statistics; Proceedings of the 23rd Symposium on the Interface, pp. 571-78. Interface Foundation of North America.
    • (1991) Computer Science and Statistics; Proceedings of the 23rd Symposium on the Interface , pp. 571-578
    • Geweke, J.1
  • 178
    • 0000647838 scopus 로고    scopus 로고
    • Variable selection and model comparison in regression
    • J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, Oxford University Press
    • Geweke, J. (1996). Variable selection and model comparison in regression. In Bayesian Statistics 5 (ed. J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith), pp. 609-20. Oxford University Press.
    • (1996) Bayesian Statistics , vol.5 , pp. 609-620
    • Geweke, J.1
  • 179
    • 34547212599 scopus 로고    scopus 로고
    • Semiparametric accelerated failure time models for censored data
    • S. K. Upadhyay, U. Singh, and D. K. Dey, Anamaya Publishers
    • Ghosh, S. K. and Ghosal, S. (2006). Semiparametric accelerated failure time models for censored data. In Bayesian Statistics and its Applications (ed. S. K. Upadhyay, U. Singh, and D. K. Dey), pp. 213-29. Anamaya Publishers.
    • (2006) Bayesian Statistics and its Applications , pp. 213-229
    • Ghosh, S.K.1    Ghosal, S.2
  • 180
    • 66549107653 scopus 로고    scopus 로고
    • Assessing sexual attitudes and behaviors of young women: A joint model with nonlinear time effects, time varying covariates, and dropouts
    • Ghosh, P. and Tu, W. (2009). Assessing sexual attitudes and behaviors of young women: A joint model with nonlinear time effects, time varying covariates, and dropouts. Journal of the American Statistical Association, 104, 474-85.
    • (2009) Journal of the American Statistical Association , vol.104 , pp. 474-485
    • Ghosh, P.1    Tu, W.2
  • 183
    • 48349105056 scopus 로고    scopus 로고
    • Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds
    • 211-35
    • Gneiting, T., Stanberry, L. I., Grimit, E. P., Held, L., and Johnson, N. A. (2008). Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds. Test 17(2), 211-35.
    • (2008) Test , vol.17 , Issue.2
    • Gneiting, T.1    Stanberry, L.I.2    Grimit, E.P.3    Held, L.4    Johnson, N.A.5
  • 186
    • 0035013277 scopus 로고    scopus 로고
    • Bayesian spatio-temporal inference in functional magnetic resonance imaging
    • Gössl, C., Auer, D. P., and Fahrmeir, L. (2001). Bayesian spatio-temporal inference in functional magnetic resonance imaging. Biometrics, 57, 554-62.
    • (2001) Biometrics , vol.57 , pp. 554-562
    • Gössl, C.1    Auer, D.P.2    Fahrmeir, L.3
  • 187
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82, 711-32.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.J.1
  • 188
    • 0346641850 scopus 로고    scopus 로고
    • Trans-dimensional Markov Chain Monte Carlo
    • P. Green, N. Hjort, and S. Richardson, Oxford University Press
    • Green, P. J. (2003). Trans-dimensional Markov Chain Monte Carlo. In Highly Structured Stochastic Systems (ed. P. Green, N. Hjort, and S. Richardson), pp. 179-96. Oxford University Press.
    • (2003) Highly Structured Stochastic Systems , pp. 179-196
    • Green, P.J.1
  • 190
    • 78651278795 scopus 로고    scopus 로고
    • On the behaviour of marginal and conditional Akaike information criteria in linear mixed models
    • Greven, S. and Kneib, T. (2010). On the behaviour of marginal and conditional Akaike information criteria in linear mixed models. Biometrika, 97, 773-89.
    • (2010) Biometrika , vol.97 , pp. 773-789
    • Greven, S.1    Kneib, T.2
  • 192
    • 67349234649 scopus 로고    scopus 로고
    • Alternative prior distributions for variable selection with very many more variables than observations
    • University of Warwick, Department of Statistics
    • Griffin, J. E. and Brown, P. J. (2005). Alternative prior distributions for variable selection with very many more variables than observations. Technical report, University of Warwick, Department of Statistics.
    • (2005) Technical report
    • Griffin, J.E.1    Brown, P.J.2
  • 193
    • 48249133172 scopus 로고    scopus 로고
    • Bayesian adaptive lassos with non-convex penaliz ation
    • University of Warwick, Department of Statistics
    • Griffin, J. E. and Brown, P. J. (2007). Bayesian adaptive lassos with non-convex penaliz ation. Technical report, University of Warwick, Department of Statistics.
    • (2007) Technical report
    • Griffin, J.E.1    Brown, P.J.2
  • 194
    • 42749094403 scopus 로고    scopus 로고
    • Does a Gibbs sampler approach to spatial Poisson regression models outperform a single site MH sampler?
    • Gschlößl, S. and Czado, C. (2008). Does a Gibbs sampler approach to spatial Poisson regression models outperform a single site MH sampler? Computational Statistics & Data Analysis, 52, 4184-202.
    • (2008) Computational Statistics & Data Analysis , vol.52 , pp. 4184-4202
    • Gschlößl, S.1    Czado, C.2
  • 195
    • 0036185675 scopus 로고    scopus 로고
    • Functional mixed effects models
    • Guo, W. (2002). Functional mixed effects models. Biometrics, 58, 121-128.
    • (2002) Biometrics , vol.58 , pp. 121-128
    • Guo, W.1
  • 197
    • 0442312140 scopus 로고    scopus 로고
    • Markov Chain Monte Carlo methods for computing bayes factors: A comparative review
    • Han, C. and Carlin, B. P. (2001). Markov Chain Monte Carlo methods for computing bayes factors: A comparative review. Journal of the American Statistical Association, 96, 1122-32.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 1122-1132
    • Han, C.1    Carlin, B.P.2
  • 198
    • 84952117554 scopus 로고
    • A Bayesian analysis of kriging
    • Handcock, M. S. and Stein, M. L. (1993). A Bayesian analysis of kriging. Technometrics, 35, 403-410.
    • (1993) Technometrics , vol.35 , pp. 403-410
    • Handcock, M.S.1    Stein, M.L.2
  • 199
    • 69249224985 scopus 로고    scopus 로고
    • Modeling censored lifetime data using a mixture of gammas baseline
    • Hanson, T. E. (2006). Modeling censored lifetime data using a mixture of gammas baseline. Bayesian Analysis, 1, 575-94.
    • (2006) Bayesian Analysis , vol.1 , pp. 575-594
    • Hanson, T.E.1
  • 201
    • 85041975654 scopus 로고
    • Bayesian inference for variance components using only error contrasts
    • Harville, D. A. (1974). Bayesian inference for variance components using only error contrasts. Biometrika, 61, 383-85.
    • (1974) Biometrika , vol.61 , pp. 383-385
    • Harville, D.A.1
  • 202
    • 0000317021 scopus 로고
    • Extensions of the Gauss-Markov theorem to include the estimation of random effects
    • Harville, D. A. (1976). Extensions of the Gauss-Markov theorem to include the estimation of random effects. The Annals of Statistics, 4, 384-95.
    • (1976) The Annals of Statistics , vol.4 , pp. 384-395
    • Harville, D.A.1
  • 203
    • 84890913931 scopus 로고
    • Maximum likelihood approaches to variance component estimation and to related problems
    • Harville, D. A. (1977). Maximum likelihood approaches to variance component estimation and to related problems. Journal of the American Statistical Association, 72, 320-38.
    • (1977) Journal of the American Statistical Association , vol.72 , pp. 320-338
    • Harville, D.A.1
  • 207
    • 84972525897 scopus 로고
    • Local regression: Automatic kernel carpentry
    • Hastie, T. J. and Loader, C. (1993). Local regression: Automatic kernel carpentry. Statistical Science, 8 (2), 120-43.
    • (1993) Statistical Science , vol.8 , Issue.2 , pp. 120-143
    • Hastie, T.J.1    Loader, C.2
  • 210
    • 84920069984 scopus 로고    scopus 로고
    • Additive mixed models with dirichlet process mixture and P-spline priors
    • Department of Statistics, Ludwig-Maximilians-University Munich
    • Heinzl, F., Kneib, T., and Fahrmeir, L. (2009). Additive mixed models with dirichlet process mixture and P-spline priors. Technical Report 68, Department of Statistics, Ludwig-Maximilians-University Munich.
    • (2009) Technical Report 68
    • Heinzl, F.1    Kneib, T.2    Fahrmeir, L.3
  • 211
    • 0000710136 scopus 로고    scopus 로고
    • Joint modelling of longitudinal measurements and event time data
    • Henderson, R., Diggle, P., and Dobson, A. (2000). Joint modelling of longitudinal measurements and event time data. Biostatistics, 1, 465-80.
    • (2000) Biostatistics , vol.1 , pp. 465-480
    • Henderson, R.1    Diggle, P.2    Dobson, A.3
  • 214
    • 0030327881 scopus 로고    scopus 로고
    • The effect of improper priors on Gibbs sampling in hierarchical linear mixed models
    • Hobert, J. P. and Casella, G. (1996). The effect of improper priors on Gibbs sampling in hierarchical linear mixed models. Journal of the Americal Statistical Association, 91, 1461-73.
    • (1996) Journal of the Americal Statistical Association , vol.91 , pp. 1461-1473
    • Hobert, J.P.1    Casella, G.2
  • 215
    • 84867151416 scopus 로고    scopus 로고
    • Bayesian auxiliary variable models for binary and multinomial regression
    • Holmes, C. C. and Held, L. (2006). Bayesian auxiliary variable models for binary and multinomial regression. Bayesian Analysis, 1, 145-68.
    • (2006) Bayesian Analysis , vol.1 , pp. 145-168
    • Holmes, C.C.1    Held, L.2
  • 220
    • 0002970891 scopus 로고
    • Smoothing noisy data with spline functions
    • Hutchinson, M. F. and de Hoog, F. R. (1985). Smoothing noisy data with spline functions. Numerische Mathematik, 47, 99-106.
    • (1985) Numerische Mathematik , vol.47 , pp. 99-106
    • Hutchinson, M.F.1    de Hoog, F.R.2
  • 221
    • 6344235873 scopus 로고    scopus 로고
    • Semiparametric Bayesian methods for random effects models
    • (ed. D. Dey, P. Müeller, and D. Sinha), of Lecture Notes in Statistics. Springer
    • Ibrahim, J. and Kleinman, K. (1998). Semiparametric Bayesian methods for random effects models. In Practical nonparametric and semiparametric Bayesian Statistics (ed. D. Dey, P. Müeller, and D. Sinha), Volume 133 of Lecture Notes in Statistics. Springer.
    • (1998) Practical nonparametric and semiparametric Bayesian Statistics , vol.133
    • Ibrahim, J.1    Kleinman, K.2
  • 224
    • 9644300955 scopus 로고    scopus 로고
    • A Bayesian analysis of the multinomial probit model using marginal data augmentation
    • Imai, K. and van Dyk, D. A. (2005). A Bayesian analysis of the multinomial probit model using marginal data augmentation. Journal of Econometrics, 124, 311-34.
    • (2005) Journal of Econometrics , vol.124 , pp. 311-334
    • Imai, K.1    van Dyk, D.A.2
  • 226
    • 0042744696 scopus 로고    scopus 로고
    • Detecting differentially expressed genes in microarrays using Bayesian model selection
    • Ishwaran, H. and Rao, J. S. (2003). Detecting differentially expressed genes in microarrays using Bayesian model selection. Journal of the American Statistical Association, 98, 438-55.
    • (2003) Journal of the American Statistical Association , vol.98 , pp. 438-455
    • Ishwaran, H.1    Rao, J.S.2
  • 227
    • 22944460748 scopus 로고    scopus 로고
    • Spike and slab variable selection: frequentist and Bayesian strategies
    • Ishwaran, H. and Rao, J. S. (2005). Spike and slab variable selection: frequentist and Bayesian strategies. The Annals of Statistics, 33, 730-73.
    • (2005) The Annals of Statistics , vol.33 , pp. 730-773
    • Ishwaran, H.1    Rao, J.S.2
  • 228
    • 55049098496 scopus 로고    scopus 로고
    • Applied Bayesian non-and semi-parametric inference using DPpackage
    • Jara, A. (2007). Applied Bayesian non-and semi-parametric inference using DPpackage. R News, 7 (3), 17-26.
    • (2007) R News , vol.7 , Issue.3 , pp. 17-26
    • Jara, A.1
  • 229
    • 33644864519 scopus 로고    scopus 로고
    • Generaliz ed hierarchical multivariate CAR models for areal data
    • Jin, X., Carlin, B. P., and Banerjee, S. (2005). Generaliz ed hierarchical multivariate CAR models for areal data. Biometrics, 61, 950-61.
    • (2005) Biometrics , vol.61 , pp. 950-961
    • Jin, X.1    Carlin, B.P.2    Banerjee, S.3
  • 230
    • 35648979950 scopus 로고    scopus 로고
    • Order-free co-regionaliz ed areal data lattice models with application to multiple-disease mapping
    • Jin, X., Carlin, B. P., and Banerjee, S. (2007). Order-free co-regionaliz ed areal data lattice models with application to multiple-disease mapping. Journal of the Royal Statistical Society, Series B, 69, 817-38.
    • (2007) Journal of the Royal Statistical Society, Series B , vol.69 , pp. 817-838
    • Jin, X.1    Carlin, B.P.2    Banerjee, S.3
  • 232
    • 4043129651 scopus 로고    scopus 로고
    • Graphical models
    • Jordan, M. I. (2004). Graphical models. Statistical Science, 19, 140-155.
    • (2004) Statistical Science , vol.19 , pp. 140-155
    • Jordan, M.I.1
  • 235
    • 84879562945 scopus 로고    scopus 로고
    • Text clustering with string kernels in R
    • R. Decker and H.-J. Lenz, Springer
    • Karatzoglou, A. and Feinerer, I. (2007). Text clustering with string kernels in R. In Advances in Data Analysis (ed. R. Decker and H.-J. Lenz), pp. 91-98. Springer.
    • (2007) Advances in Data Analysis , pp. 91-98
    • Karatzoglou, A.1    Feinerer, I.2
  • 236
    • 1842783961 scopus 로고    scopus 로고
    • Testing homogeneity in a random intercept model using asymptotic, posterior predictive and plug-in p-values
    • Kato, B. and Hoijtink, H. (2004). Testing homogeneity in a random intercept model using asymptotic, posterior predictive and plug-in p-values. Statistica Neerlandica, 58, 179-96.
    • (2004) Statistica Neerlandica , vol.58 , pp. 179-196
    • Kato, B.1    Hoijtink, H.2
  • 237
    • 38149073194 scopus 로고    scopus 로고
    • Stacked Laplace-EM algorithm for duration models with time-varying and random effects
    • Kauermann, G., Xu, R., and Vaida, F. (2008). Stacked Laplace-EM algorithm for duration models with time-varying and random effects. Computational Statistics & Data Analysis, 52, 2514-28.
    • (2008) Computational Statistics & Data Analysis , vol.52 , pp. 2514-2528
    • Kauermann, G.1    Xu, R.2    Vaida, F.3
  • 240
    • 34548381836 scopus 로고    scopus 로고
    • Fixed and random effects selection in linear and logistic models
    • Kinney, S. K. and Dunson, D. B. (2007). Fixed and random effects selection in linear and logistic models. Biometrics, 63, 690-98.
    • (2007) Biometrics , vol.63 , pp. 690-698
    • Kinney, S.K.1    Dunson, D.B.2
  • 243
    • 0032583158 scopus 로고    scopus 로고
    • A semiparametric Bayesian approach to generaliz ed linear mixed models
    • Kleinman, K. and Ibrahim, J. (1998a). A semiparametric Bayesian approach to generaliz ed linear mixed models. Statistics in Medicine, 17, 2579-96.
    • (1998) Statistics in Medicine , vol.17 , pp. 2579-2596
    • Kleinman, K.1    Ibrahim, J.2
  • 244
    • 0031662186 scopus 로고    scopus 로고
    • A semiparametric Bayesian approach to the random effects model
    • Kleinman, K. and Ibrahim, J. (1998b). A semiparametric Bayesian approach to the random effects model. Biometrics, 54, 921-38.
    • (1998) Biometrics , vol.54 , pp. 921-938
    • Kleinman, K.1    Ibrahim, J.2
  • 245
    • 33750360419 scopus 로고    scopus 로고
    • Mixed model-based inference in geoadditive haz ard regression for interval censored survival times
    • Kneib, T. (2006). Mixed model-based inference in geoadditive haz ard regression for interval censored survival times. Computational Statistics & Data Analysis, 51, 777-92.
    • (2006) Computational Statistics & Data Analysis , vol.51 , pp. 777-792
    • Kneib, T.1
  • 246
    • 33645075433 scopus 로고    scopus 로고
    • Structured additive regression for categorical space-time data: A mixed model approach
    • Kneib, T. and Fahrmeir, L. (2006). Structured additive regression for categorical space-time data: A mixed model approach. Biometrics, 62, 109-18.
    • (2006) Biometrics , vol.62 , pp. 109-118
    • Kneib, T.1    Fahrmeir, L.2
  • 247
    • 33847380991 scopus 로고    scopus 로고
    • A mixed model approach for geoadditive haz ard regression
    • Kneib, T. and Fahrmeir, L. (2007). A mixed model approach for geoadditive haz ard regression. Scandinavian Journal of Statistics, 34, 207-228.
    • (2007) Scandinavian Journal of Statistics , vol.34 , pp. 207-228
    • Kneib, T.1    Fahrmeir, L.2
  • 248
    • 55249104054 scopus 로고    scopus 로고
    • Bayesian semiparametric multi-state models
    • Kneib, T. and Hennerfeind, A. (2008). Bayesian semiparametric multi-state models. Statistical Modelling, 8, 169-98.
    • (2008) Statistical Modelling , vol.8 , pp. 169-198
    • Kneib, T.1    Hennerfeind, A.2
  • 251
    • 65949099855 scopus 로고    scopus 로고
    • Semiparametric multinomial logit models for analysing consumer choice behaviour
    • Kneib, T., Baumgartner, B., and Steiner, W. J. (2007). Semiparametric multinomial logit models for analysing consumer choice behaviour. AStA Advances in Statistical Analysis, 91, 225-44.
    • (2007) AStA Advances in Statistical Analysis , vol.91 , pp. 225-244
    • Kneib, T.1    Baumgartner, B.2    Steiner, W.J.3
  • 253
    • 84920098112 scopus 로고    scopus 로고
    • High-dimensional structured additive regression models: Bayesian regularisation, smoothing and predictive performance
    • To appear
    • Kneib, T., Konrath, S., and Fahrmeir, L. (2010b). High-dimensional structured additive regression models: Bayesian regularisation, smoothing and predictive performance. Applied Statistics. To appear.
    • (2010) Applied Statistics
    • Kneib, T.1    Konrath, S.2    Fahrmeir, L.3
  • 255
    • 79952590314 scopus 로고    scopus 로고
    • High-dimensional structured additive regression models: Bayesian regularisation, smoothing and predictive performance
    • To appear
    • Kneib, T., Konrath, S., and Fahrmeir, L. (2011b). High-dimensional structured additive regression models: Bayesian regularisation, smoothing and predictive performance. Applied Statistics. To appear.
    • (2011) Applied Statistics
    • Kneib, T.1    Konrath, S.2    Fahrmeir, L.3
  • 256
    • 0034665770 scopus 로고    scopus 로고
    • Bayesian modelling of inseparable space-time variation in disease risk
    • Knorr-Held, L. (2000). Bayesian modelling of inseparable space-time variation in disease risk. Statistics in Medicine, 19, 2555-67.
    • (2000) Statistics in Medicine , vol.19 , pp. 2555-2567
    • Knorr-held, L.1
  • 257
    • 0036900109 scopus 로고    scopus 로고
    • On block updating in Markov random field models for disease mapping
    • Knorr-Held, L. and Rue, H. (2002). On block updating in Markov random field models for disease mapping. Scandinavian Journal of Statistics, 29, 597-614.
    • (2002) Scandinavian Journal of Statistics , vol.29 , pp. 597-614
    • Knorr-held, L.1    Rue, H.2
  • 258
    • 0011667185 scopus 로고
    • Equivalence between Bayesian smoothness priors and optimal smoothing for function estimation
    • J. C. Spall
    • Kohn, R. and Ansley, C. F. (1988). Equivalence between Bayesian smoothness priors and optimal smoothing for function estimation. In Bayesian Analysis of Time Series and Dynamic Models (ed. J. C. Spall), pp. 393-430.
    • (1988) Bayesian Analysis of Time Series and Dynamic Models , pp. 393-430
    • Kohn, R.1    Ansley, C.F.2
  • 259
    • 0010081155 scopus 로고    scopus 로고
    • Nonparametric regression using linear combinations of basis functions
    • Dekker, M. Kohn, R., Smith, M., and Chan, D. (2001). Nonparametric regression using linear combinations of basis functions. Statistics and Computing, 11, 313-22.
    • (2001) Statistics and Computing , vol.11 , pp. 313-322
    • Dekker, M.1    Kohn, R.2    Smith, M.3    Chan, D.4
  • 260
    • 34547507940 scopus 로고    scopus 로고
    • Bayesian accelerated failure time model for correlated interval-censored data with a normal mixture as error distribution
    • Komárek, A. and Lesaffre, E. (2007). Bayesian accelerated failure time model for correlated interval-censored data with a normal mixture as error distribution. Statistica Sinica, 17, 549-69.
    • (2007) Statistica Sinica , vol.17 , pp. 549-569
    • Komárek, A.1    Lesaffre, E.2
  • 261
    • 40249084540 scopus 로고    scopus 로고
    • Generaliz ed linear mixed model with a penaliz ed Gaussian mixture as a random effects distribution
    • Komárek, A. and Lesaffre, E. (2008). Generaliz ed linear mixed model with a penaliz ed Gaussian mixture as a random effects distribution. Computational Statistics & Data Analysis, 52, 3441-58.
    • (2008) Computational Statistics & Data Analysis , vol.52 , pp. 3441-3458
    • Komárek, A.1    Lesaffre, E.2
  • 262
    • 26644463884 scopus 로고    scopus 로고
    • Accelerated failure time model for arbitrarily censored data with smoothed error distribution
    • Komárek, A., Lesaffre, E., and Hilton, J. F. (2005). Accelerated failure time model for arbitrarily censored data with smoothed error distribution. Journal of Computational and Graphical Statistics, 14, 726-45.
    • (2005) Journal of Computational and Graphical Statistics , vol.14 , pp. 726-745
    • Komárek, A.1    Lesaffre, E.2    Hilton, J.F.3
  • 263
    • 0031455187 scopus 로고    scopus 로고
    • Haz ard regression with interval-censored data
    • Kooperberg, C. and Clarkson, D. B. (1997). Haz ard regression with interval-censored data. Biometrics, 53, 1485-94.
    • (1997) Biometrics , vol.53 , pp. 1485-1494
    • Kooperberg, C.1    Clarkson, D.B.2
  • 267
    • 0031283649 scopus 로고    scopus 로고
    • Bayesian semiparametric inference for the accelerated failure-time model
    • Kuo, L. and Mallick, B. (1997). Bayesian semiparametric inference for the accelerated failure-time model. Canadian Journal of Statistics, 25, 457-72.
    • (1997) Canadian Journal of Statistics , vol.25 , pp. 457-472
    • Kuo, L.1    Mallick, B.2
  • 268
    • 25444528713 scopus 로고    scopus 로고
    • Assessing approximate inference for binary Gaussian process classification
    • Kuss, M. and Rasmussen, C. E. (2005). Assessing approximate inference for binary Gaussian process classification. Journal of Machine Learning Research, 6, 1679-1704.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1679-1704
    • Kuss, M.1    Rasmussen, C.E.2
  • 269
    • 0020333131 scopus 로고
    • Random-effects models for longitudinal data
    • Laird, N. M. and Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 38 (4), 963-74.
    • (1982) Biometrics , vol.38 , Issue.4 , pp. 963-974
    • Laird, N.M.1    Ware, J.H.2
  • 271
    • 0036448882 scopus 로고    scopus 로고
    • Function estimation with locally adaptive dynamic models
    • Lang, S., Fronk, E.-M., and Fahrmeir, L. (2002). Function estimation with locally adaptive dynamic models. Computational Statistics, 17, 479-99.
    • (2002) Computational Statistics , vol.17 , pp. 479-499
    • Lang, S.1    Fronk, E.-M.2    Fahrmeir, L.3
  • 274
    • 38949124690 scopus 로고    scopus 로고
    • Flexible parametric models for random-effects distributions
    • Lee, K. and Thompson, S. (2008). Flexible parametric models for random-effects distributions. Statistics in Medicine, 27, 418-34.
    • (2008) Statistics in Medicine , vol.27 , pp. 418-434
    • Lee, K.1    Thompson, S.2
  • 277
    • 0034147039 scopus 로고    scopus 로고
    • Bayesian inference for finite mixtures of generaliz ed linear models with random effects
    • Lenk, P. J. and DeSarbo, W. S. (2000). Bayesian inference for finite mixtures of generaliz ed linear models with random effects. Psychometrika, 65, 93-119.
    • (2000) Psychometrika , vol.65 , pp. 93-119
    • Lenk, P.J.1    DeSarbo, W.S.2
  • 280
    • 0031514994 scopus 로고    scopus 로고
    • Estimating Bayes factors via posterior simulation with the Lapace-Metropolis estimator
    • Lewis, S. M. and Raftery, A. E. (1997). Estimating Bayes factors via posterior simulation with the Lapace-Metropolis estimator. Journal of the American Statistical Association, 92, 648-55.
    • (1997) Journal of the American Statistical Association , vol.92 , pp. 648-655
    • Lewis, S.M.1    Raftery, A.E.2
  • 281
    • 79551657781 scopus 로고    scopus 로고
    • The Bayesian elastic net
    • Li, Q. and Lin, N. (2010). The Bayesian elastic net. Bayesian Analysis, 5, 847-66.
    • (2010) Bayesian Analysis , vol.5 , pp. 847-866
    • Li, Q.1    Lin, N.2
  • 282
    • 0035989798 scopus 로고    scopus 로고
    • Modeling spatial survival data using semiparametric frailty models
    • Li, Y. and Ryan, L. (2002). Modeling spatial survival data using semiparametric frailty models. Biometrics, 58, 287-97.
    • (2002) Biometrics , vol.58 , pp. 287-297
    • Li, Y.1    Ryan, L.2
  • 283
    • 44849098150 scopus 로고    scopus 로고
    • On the asymptotics of penaliz ed splines
    • Li, Y. and Ruppert, D. (2008). On the asymptotics of penaliz ed splines. Biometrika, 95, 415-36.
    • (2008) Biometrika , vol.95 , pp. 415-436
    • Li, Y.1    Ruppert, D.2
  • 284
    • 77949678206 scopus 로고    scopus 로고
    • Bayesian inference in semiparametric mixed models for longitudinal data
    • Li, Y., Lin, X., and Müller, P. (2010). Bayesian inference in semiparametric mixed models for longitudinal data. Biometrics, 66, 70-78.
    • (2010) Biometrics , vol.66 , pp. 70-78
    • Li, Y.1    Lin, X.2    Müller, P.3
  • 286
    • 50949086329 scopus 로고    scopus 로고
    • A note on conditional AIC for linear mixed-effects models
    • Liang, H., Wu, H., and Zou, G. (2008b). A note on conditional AIC for linear mixed-effects models. Biometrika, 95, 773-78.
    • (2008) Biometrika , vol.95 , pp. 773-778
    • Liang, H.1    Wu, H.2    Zou, G.3
  • 287
    • 0033475436 scopus 로고    scopus 로고
    • Inference in generaliz ed additive mixed models by using smoothing splines
    • Lin, X. and Zhang, D. (1999). Inference in generaliz ed additive mixed models by using smoothing splines. Journal of the Royal Statistical Society B, 61, 381-400.
    • (1999) Journal of the Royal Statistical Society B , vol.61 , pp. 381-400
    • Lin, X.1    Zhang, D.2
  • 288
    • 84930856332 scopus 로고    scopus 로고
    • Non-parametric and semi-parametric regression methods for longitudinal data
    • G. Fitz maurice, M. Davidian, G. Verbeke, and G. Molenberghs, Chapman & Hall
    • Lin, X. and Carroll, R. (2009). Non-parametric and semi-parametric regression methods for longitudinal data. In Longitudinal Data Analysis: A Handbook of Modern Statistical Methods (ed. G. Fitz maurice, M. Davidian, G. Verbeke, and G. Molenberghs). Chapman & Hall.
    • (2009) Longitudinal Data Analysis: A Handbook of Modern Statistical Methods
    • Lin, X.1    Carroll, R.2
  • 289
    • 55849090666 scopus 로고    scopus 로고
    • On the second-order random-walk model for irregular locations
    • Lindgren, F. and Rue, H. (2008). On the second-order random-walk model for irregular locations. Scandinavian Journal of Statistics, 35, 691-700.
    • (2008) Scandinavian Journal of Statistics , vol.35 , pp. 691-700
    • Lindgren, F.1    Rue, H.2
  • 290
    • 58149163015 scopus 로고    scopus 로고
    • Joint analysis of correlated repeated measures and recurrent events processes in the presence of death, with application to a study on acquired immune deficiency syndrome
    • Liu, L. and Huang, X. (2009). Joint analysis of correlated repeated measures and recurrent events processes in the presence of death, with application to a study on acquired immune deficiency syndrome. Applied Statistics, 58 (1), 65-81.
    • (2009) Applied Statistics , vol.58 , Issue.1 , pp. 65-81
    • Liu, L.1    Huang, X.2
  • 292
    • 1842539381 scopus 로고    scopus 로고
    • Bayesian model assessment in factor analysis
    • Lopes, H. F. and West, M. (2004). Bayesian model assessment in factor analysis. Statistica Sinica, 14, 41-67.
    • (2004) Statistica Sinica , vol.14 , pp. 41-67
    • Lopes, H.F.1    West, M.2
  • 294
    • 0001595570 scopus 로고
    • Multi-dimensional multivariate Gaussian Markov random fields with application to image processing
    • Mardia, K. V. (1988). Multi-dimensional multivariate Gaussian Markov random fields with application to image processing. Journal of Multivariate Analysis, 24, 265-84.
    • (1988) Journal of Multivariate Analysis , vol.24 , pp. 265-284
    • Mardia, K.V.1
  • 295
    • 0037687725 scopus 로고    scopus 로고
    • Approximate cross-validatory predictive checks in disease mapping models
    • Marshall, E. C. and Spiegelhalter, D. J. (2003). Approximate cross-validatory predictive checks in disease mapping models. Statistics in Medicine, 22, 1649-60.
    • (2003) Statistics in Medicine , vol.22 , pp. 1649-1660
    • Marshall, E.C.1    Spiegelhalter, D.J.2
  • 296
    • 60649121877 scopus 로고    scopus 로고
    • Identifying outliers in Bayesian hierarchical models: A simulation-based approach
    • Marshall, E. C. and Spiegelhalter, D. J. (2007). Identifying outliers in Bayesian hierarchical models: A simulation-based approach. Bayesian Analysis, 2, 409-44.
    • (2007) Bayesian Analysis , vol.2 , pp. 409-444
    • Marshall, E.C.1    Spiegelhalter, D.J.2
  • 301
    • 43949158952 scopus 로고
    • An exact likelihood analysis of the multinomial probit model
    • McCulloch, R. and Rossi, P. E. (1994). An exact likelihood analysis of the multinomial probit model. Journal of Econometrics, 64, 207-40.
    • (1994) Journal of Econometrics , vol.64 , pp. 207-240
    • McCulloch, R.1    Rossi, P.E.2
  • 302
    • 0002297105 scopus 로고
    • Conditional logit analysis of qualitative choice behaviour
    • P. Zarembka, Academic Press
    • McFadden, D. (1973). Conditional logit analysis of qualitative choice behaviour. In Frontiers in Econometrics (ed. P. Zarembka). Academic Press.
    • (1973) Frontiers in Econometrics
    • McFadden, D.1
  • 304
    • 21444451325 scopus 로고    scopus 로고
    • Simulating ratios of normaliz ing constants via a simple identity: A theoretical exploration
    • Meng, X.-L. and Wong, W. H. (1996). Simulating ratios of normaliz ing constants via a simple identity: A theoretical exploration. Statistica Sinica, 6, 831-60.
    • (1996) Statistica Sinica , vol.6 , pp. 831-860
    • Meng, X.-L.1    Wong, W.H.2
  • 305
    • 33748438405 scopus 로고    scopus 로고
    • A comparison of Bayesian model selection based on MCMC with an application to GARCH-type models
    • Miazhynskaia, T. and Dorffner, G. (2006). A comparison of Bayesian model selection based on MCMC with an application to GARCH-type models. Statistical Papers, 47, 525-49.
    • (2006) Statistical Papers , vol.47 , pp. 525-549
    • Miazhynskaia, T.1    Dorffner, G.2
  • 306
    • 14144250538 scopus 로고    scopus 로고
    • Highly variable Northern Hemisphere temperatures reconstructed from low-and high-resolution proxy data
    • Moberg, A., Sonechkin, D. M., Holmgren, K., Datsenko, N. M., and Karlén, W. (2005). Highly variable Northern Hemisphere temperatures reconstructed from low-and high-resolution proxy data. Nature, 433, 613-17.
    • (2005) Nature , vol.433 , pp. 613-617
    • Moberg, A.1    Sonechkin, D.M.2    Holmgren, K.3    Datsenko, N.M.4    Karlén, W.5
  • 307
    • 84993748546 scopus 로고    scopus 로고
    • A review on linear mixed models for longitudinal data, possibly subject to dropout
    • Data available from
    • Data available from Molenberghs, G. and Verbeke, G. (2001). A review on linear mixed models for longitudinal data, possibly subject to dropout. Statistical Modelling, 1, 235-69.
    • (2001) Statistical Modelling , vol.1 , pp. 235-269
    • Molenberghs, G.1    Verbeke, G.2
  • 313
    • 33846090391 scopus 로고    scopus 로고
    • Using wavelet-based functional mixed models to characteriz e population heterogeneity in accelerometer profiles: A case study
    • Morris, J. S., Arroyo, C., Coull, B. A., Ryan, M. L., Herrick, R., and Gortmaker, S. L. (2006). Using wavelet-based functional mixed models to characteriz e population heterogeneity in accelerometer profiles: A case study. Journal of the American Statistical Association, 101 (476), 1352-64.
    • (2006) Journal of the American Statistical Association , vol.101 , Issue.476 , pp. 1352-1364
    • Morris, J.S.1    Arroyo, C.2    Coull, B.A.3    Ryan, M.L.4    Herrick, R.5    Gortmaker, S.L.6
  • 315
    • 4043092820 scopus 로고    scopus 로고
    • Nonparametric Bayesian data analysis
    • Müller, P. and Quintana, F. A. (2004). Nonparametric Bayesian data analysis. Statistical Science, 19 (1), 95-110.
    • (2004) Statistical Science , vol.19 , Issue.1 , pp. 95-110
    • Müller, P.1    Quintana, F.A.2
  • 316
    • 27744535701 scopus 로고    scopus 로고
    • A semiparametric mixture model for analyz ing clustered competing risks data
    • Naskar, M., Das, K., and Ibrahim, J. G. (2005). A semiparametric mixture model for analyz ing clustered competing risks data. Biometrics, 61, 729-37.
    • (2005) Biometrics , vol.61 , pp. 729-737
    • Naskar, M.1    Das, K.2    Ibrahim, J.G.3
  • 318
    • 39849105355 scopus 로고    scopus 로고
    • Spatial multistate transitional models for longitudinal event data
    • Nathoo, F. S. and Dean, C. B. (2008). Spatial multistate transitional models for longitudinal event data. Biometrics, 64, 271-79.
    • (2008) Biometrics , vol.64 , pp. 271-279
    • Nathoo, F.S.1    Dean, C.B.2
  • 319
    • 77950032550 scopus 로고    scopus 로고
    • Markov chain sampling methods for dirichlet process mixture models
    • Neal, R. M. (2000). Markov chain sampling methods for dirichlet process mixture models. Journal of Computational and Graphical Statistics, 9, 249-65.
    • (2000) Journal of Computational and Graphical Statistics , vol.9 , pp. 249-265
    • Neal, R.M.1
  • 321
    • 0042725427 scopus 로고    scopus 로고
    • A hybrid Markov chain for the Bayesian analysis of the multinomial probit model
    • Nobile, A. (1998). A hybrid Markov chain for the Bayesian analysis of the multinomial probit model. Statistics and Computing, 8, 229-42.
    • (1998) Statistics and Computing , vol.8 , pp. 229-242
    • Nobile, A.1
  • 322
    • 0002691349 scopus 로고    scopus 로고
    • Design of air-quality monitoring networks
    • D. Nychka, W. W. Piegorsch, and L. H. Cox, Springer
    • Nychka, D. and Saltzman, N. (1998). Design of air-quality monitoring networks. In Case Studies in Environmental Statistics (ed. D. Nychka, W. W. Piegorsch, and L. H. Cox), pp. 51-76. Springer.
    • (1998) Case Studies in Environmental Statistics , pp. 51-76
    • Nychka, D.1    Saltzman, N.2
  • 323
    • 0000640749 scopus 로고    scopus 로고
    • FUNFITS, data analysis and statistical tools for estimating functions
    • D. Nychka, W. W. Piegorsch, and L. H. Cox, Springer
    • Nychka, D., Haaland, M., O'Connel, M., and Ellner, S. (1998). FUNFITS, data analysis and statistical tools for estimating functions. In Case Studies inEnvironmental Statistics (ed. D. Nychka, W. W. Piegorsch, and L. H. Cox), pp. 159-79. Springer.
    • (1998) Case Studies inEnvironmental Statistics , pp. 159-179
    • Nychka, D.1    Haaland, M.2    O'Connel, M.3    Ellner, S.4
  • 325
    • 0001857092 scopus 로고
    • Fractional Bayes factors for model comparison (with discussion)
    • O'Hagan, A. (1995). Fractional Bayes factors for model comparison (with discussion). Journal of the Royal Statistical Society, Series B, 57, 99-138.
    • (1995) Journal of the Royal Statistical Society, Series B , vol.57 , pp. 99-138
    • O'Hagan, A.1
  • 326
    • 34047215010 scopus 로고    scopus 로고
    • Flexible random-effects models using Bayesian semi-parametric models: applications to institutional comparisons
    • Ohlssen, D. I., Sharples, L. D., and Spiegelhalter, D. J. (2007). Flexible random-effects models using Bayesian semi-parametric models: applications to institutional comparisons. Statistics in Medicine, 26, 2088-112.
    • (2007) Statistics in Medicine , vol.26 , pp. 2088-2112
    • Ohlssen, D.I.1    Sharples, L.D.2    Spiegelhalter, D.J.3
  • 327
    • 0034104426 scopus 로고    scopus 로고
    • A linear mixed-effects model for multivariate censored data
    • Pan, W. and Louis, T. A. (2000). A linear mixed-effects model for multivariate censored data. Biometrics, 56, 160-166.
    • (2000) Biometrics , vol.56 , pp. 160-166
    • Pan, W.1    Louis, T.A.2
  • 328
    • 0035377078 scopus 로고    scopus 로고
    • A multiple imputation approach to linear regression with clustered censored data
    • Pan, W. and Connett, J. E. (2001). A multiple imputation approach to linear regression with clustered censored data. Lifetime Data Analysis, 7, 111-23.
    • (2001) Lifetime Data Analysis , vol.7 , pp. 111-123
    • Pan, W.1    Connett, J.E.2
  • 329
    • 39149101409 scopus 로고    scopus 로고
    • Bayesian identification, selection and estimation of semiparametric functions in high-dimensional additive models
    • Panagiotelis, A. and Smith, M. (2008). Bayesian identification, selection and estimation of semiparametric functions in high-dimensional additive models. Journal of Econometrics, 143, 291-316.
    • (2008) Journal of Econometrics , vol.143 , pp. 291-316
    • Panagiotelis, A.1    Smith, M.2
  • 331
    • 77956889208 scopus 로고
    • Recovery of inter-block information when block siz es are unequal
    • Patterson, H. D. and Thompson, R. (1971). Recovery of inter-block information when block siz es are unequal. Biometrika, 58, 545-54.
    • (1971) Biometrika , vol.58 , pp. 545-554
    • Patterson, H.D.1    Thompson, R.2
  • 333
    • 0036192069 scopus 로고    scopus 로고
    • Dynamic conditionally linear mixed models for longitudinal data
    • Pourahmadi, M. and Daniels, M. J. (2002). Dynamic conditionally linear mixed models for longitudinal data. Biometrics, 58, 225-31.
    • (2002) Biometrics , vol.58 , pp. 225-231
    • Pourahmadi, M.1    Daniels, M.J.2
  • 334
    • 0033043247 scopus 로고    scopus 로고
    • Multivariate survival analysis with positive stable frailties
    • Qiou, Z., Ravishanker, N., and Dey, D. K. (1999). Multivariate survival analysis with positive stable frailties. Biometrics, 55, 637-44.
    • (1999) Biometrics , vol.55 , pp. 637-644
    • Qiou, Z.1    Ravishanker, N.2    Dey, D.K.3
  • 335
    • 65349194393 scopus 로고    scopus 로고
    • Variable selection in Bayesian smoothing spline ANOVA models: application to deterministic computer codes
    • Reich, B. J., Storlie, C. B., and Bondell, H. D. (2009). Variable selection in Bayesian smoothing spline ANOVA models: application to deterministic computer codes. Technometrics, 51, 110-20.
    • (2009) Technometrics , vol.51 , pp. 110-120
    • Reich, B.J.1    Storlie, C.B.2    Bondell, H.D.3
  • 336
    • 34250516079 scopus 로고
    • Smoothing by spline functions
    • Reinsch, C. H. (1967). Smoothing by spline functions. Numerische Mathematik, 10, 177-83.
    • (1967) Numerische Mathematik , vol.10 , pp. 177-183
    • Reinsch, C.H.1
  • 337
    • 84920089514 scopus 로고    scopus 로고
    • A Bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event
    • Department of Biostatistics, Erasmus Medical Center, Rotterdam
    • Rizopoulos, D. and Ghosh, P. (2009). A Bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event. Technical report, Department of Biostatistics, Erasmus Medical Center, Rotterdam.
    • (2009) Technical report
    • Rizopoulos, D.1    Ghosh, P.2
  • 338
    • 77956281530 scopus 로고    scopus 로고
    • On some difficulties with a posterior probability approximation technique
    • Robert, C. and Marin, J.-M. (2008). On some difficulties with a posterior probability approximation technique. Bayesian Analysis, 3 (2), 427-42.
    • (2008) Bayesian Analysis , vol.3 , Issue.2 , pp. 427-442
    • Robert, C.1    Marin, J.-M.2
  • 339
    • 0001153986 scopus 로고
    • Simulation of truncated normal variables
    • Robert, C. P. (1995). Simulation of truncated normal variables. Statistics and Computing, 5, 121-25.
    • (1995) Statistics and Computing , vol.5 , pp. 121-125
    • Robert, C.P.1
  • 342
    • 0000439370 scopus 로고
    • Bayesian justifiable and relevant frequency calculations for the applied statistician
    • Rubin, D. B. (1984). Bayesian justifiable and relevant frequency calculations for the applied statistician. Annals of Statistics, 12, 1151-72.
    • (1984) Annals of Statistics , vol.12 , pp. 1151-1172
    • Rubin, D.B.1
  • 343
    • 0035649131 scopus 로고    scopus 로고
    • Fast sampling of Gaussian Markov random fields with applications
    • Rue, H. (2001). Fast sampling of Gaussian Markov random fields with applications. Journal of the Royal Statistical Society, Series B, 63, 325-38.
    • (2001) Journal of the Royal Statistical Society, Series B , vol.63 , pp. 325-338
    • Rue, H.1
  • 345
    • 34250219986 scopus 로고    scopus 로고
    • Approximate Bayesian inference for hierarchical Gaussian Markov random fields models
    • Rue, H. and Martino, S. (2007). Approximate Bayesian inference for hierarchical Gaussian Markov random fields models. Journal of Statistical Planning and Inference, 137, 3177-92.
    • (2007) Journal of Statistical Planning and Inference , vol.137 , pp. 3177-3192
    • Rue, H.1    Martino, S.2
  • 346
    • 62849120031 scopus 로고    scopus 로고
    • Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations
    • Rue, H., Martino, S., and Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal Statistical Society, Series B, 71, 319-92.
    • (2009) Journal of the Royal Statistical Society, Series B , vol.71 , pp. 319-392
    • Rue, H.1    Martino, S.2    Chopin, N.3
  • 347
    • 84920067115 scopus 로고    scopus 로고
    • Correction for covariate measurement error in non-parametric regression
    • available from
    • Rummel, D. (2006). Correction for covariate measurement error in non-parametric regression. PhD thesis, available from
    • (2006) PhD thesis
    • Rummel, D.1
  • 351
    • 84920096551 scopus 로고    scopus 로고
    • Predictive assessment of Bayesian hierarchical models
    • Ludwig-Maximilians-University Munich, Department of Statistics
    • Sabanés Bové, D. (2009). Predictive assessment of Bayesian hierarchical models. Master's thesis, Ludwig-Maximilians-University Munich, Department of Statistics.
    • (2009) Master's thesis
    • Sabanés Bové, D.1
  • 352
    • 0030625005 scopus 로고    scopus 로고
    • A weibull regression model with gamma frailties for multivariate survival data
    • Sahu, S. K., Dey, D. K., Aslanidou, H., and Sinha, D. (1997). A weibull regression model with gamma frailties for multivariate survival data. Lifetime Data Analysis, 3, 123-37.
    • (1997) Lifetime Data Analysis , vol.3 , pp. 123-137
    • Sahu, S.K.1    Dey, D.K.2    Aslanidou, H.3    Sinha, D.4
  • 354
    • 79251539788 scopus 로고    scopus 로고
    • amer: additive mixed models with lme4
    • Scheipl, F. (2010a). amer: additive mixed models with lme4.
    • (2010)
    • Scheipl, F.1
  • 355
    • 80052988511 scopus 로고    scopus 로고
    • Normal-mixture-of-inverse-gamma priors for Bayesian regulariz ation and model selection in generaliz ed additive models
    • Department of Statistics, LMU München
    • Scheipl, Fabian (2010b). Normal-mixture-of-inverse-gamma priors for Bayesian regulariz ation and model selection in generaliz ed additive models. Technical Report 84, Department of Statistics, LMU München.
    • (2010) Technical Report 84
    • Scheipl, F.1
  • 356
    • 79956142932 scopus 로고    scopus 로고
    • RLRsim: exact (restricted) likelihood ratio tests for mixed and additive models
    • Scheipl, F. (2010c). RLRsim: exact (restricted) likelihood ratio tests for mixed and additive models.
    • (2010)
    • Scheipl, F.1
  • 357
    • 67349131247 scopus 로고    scopus 로고
    • Locally adaptive Bayesian P-splines with a Normal-Exponential-Gamma prior
    • Scheipl, F. and Kneib, T. (2009). Locally adaptive Bayesian P-splines with a Normal-Exponential-Gamma prior. Computational Statistics & Data Analysis, 53, 3533-52.
    • (2009) Computational Statistics & Data Analysis , vol.53 , pp. 3533-3552
    • Scheipl, F.1    Kneib, T.2
  • 358
    • 40249103367 scopus 로고    scopus 로고
    • Siz e and power of tests for a z ero random effect variance or polynomial regression in additive and linear mixed models
    • Scheipl, F., Greven, S., and Küchenhoff, H. (2008). Siz e and power of tests for a z ero random effect variance or polynomial regression in additive and linear mixed models. Computational Statistics & Data Analysis, 52, 3283-99.
    • (2008) Computational Statistics & Data Analysis , vol.52 , pp. 3283-3299
    • Scheipl, F.1    Greven, S.2    Küchenhoff, H.3
  • 359
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461-64.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 360
    • 84907319426 scopus 로고
    • Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions
    • Self, S. G. and Liang, K. Y. (1987). Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. Journal of the American Statistical Association, 82, 605-10.
    • (1987) Journal of the American Statistical Association , vol.82 , pp. 605-610
    • Self, S.G.1    Liang, K.Y.2
  • 361
    • 0000720609 scopus 로고
    • A constructive definition of Dirichlet priors
    • Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statistica Sinica, 2, 639-650.
    • (1994) Statistica Sinica , vol.2 , pp. 639-650
    • Sethuraman, J.1
  • 362
    • 84935430727 scopus 로고
    • Semiparametric Bayesian analysis of multiple event time data
    • Sinha, D. (1993). Semiparametric Bayesian analysis of multiple event time data. Journal of the American Statistical Association, 88, 979-83.
    • (1993) Journal of the American Statistical Association , vol.88 , pp. 979-983
    • Sinha, D.1
  • 363
    • 3843102445 scopus 로고    scopus 로고
    • A Bayesian justification of Cox's partial likelihood
    • Sinha, D., Ibrahim, J., and Chen, M.-H. (2003). A Bayesian justification of Cox's partial likelihood. Biometrika, 90, 629-41.
    • (2003) Biometrika , vol.90 , pp. 629-641
    • Sinha, D.1    Ibrahim, J.2    Chen, M.-H.3
  • 366
    • 0000824232 scopus 로고    scopus 로고
    • Nonparametric regression using Bayesian variable selection
    • Smith, M. and Kohn, R. (1996). Nonparametric regression using Bayesian variable selection. Journal of Econometrics, 75, 317-43.
    • (1996) Journal of Econometrics , vol.75 , pp. 317-343
    • Smith, M.1    Kohn, R.2
  • 367
    • 0036970576 scopus 로고    scopus 로고
    • Parsimonious covariance matrix estimation for longitudinal data
    • Smith, M. and Kohn, R. (2002). Parsimonious covariance matrix estimation for longitudinal data. Journal of the American Statistical Association, 97, 1141-53.
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 1141-1153
    • Smith, M.1    Kohn, R.2
  • 368
    • 34249029761 scopus 로고    scopus 로고
    • Spatial Bayesian variable selection with application to functional magnetic resonance imaging
    • Smith, M. and Fahrmeir, L. (2007). Spatial Bayesian variable selection with application to functional magnetic resonance imaging. Journal of the American Statistical Association, 102, 417-31.
    • (2007) Journal of the American Statistical Association , vol.102 , pp. 417-431
    • Smith, M.1    Fahrmeir, L.2
  • 369
    • 0142011000 scopus 로고    scopus 로고
    • Assessing brain activity through spatial Bayesian variable selection
    • Smith, M., Pütz, B., Auer, D., and Fahrmeir, L. (2003). Assessing brain activity through spatial Bayesian variable selection. NeuroImage, 20, 802-15.
    • (2003) NeuroImage , vol.20 , pp. 802-815
    • Smith, M.1    Pütz, B.2    Auer, D.3    Fahrmeir, L.4
  • 372
    • 85042251801 scopus 로고
    • Marginal and conditional sufficiency
    • Sprott, D. A. (1975). Marginal and conditional sufficiency. Biometrika, 62, 599-605.
    • (1975) Biometrika , vol.62 , pp. 599-605
    • Sprott, D.A.1
  • 374
    • 0031484203 scopus 로고    scopus 로고
    • Polynomial splines and their tensor products in extended linear modeling
    • Stone, C. J., Hansen, M. H., Kooperberg, C., and Truong, Y. K. (1997). Polynomial splines and their tensor products in extended linear modeling. Annals of Statistics, 25, 1371-1470.
    • (1997) Annals of Statistics , vol.25 , pp. 1371-1470
    • Stone, C.J.1    Hansen, M.H.2    Kooperberg, C.3    Truong, Y.K.4
  • 375
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions (with discussion)
    • Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions (with discussion). Journal of the Royal Statistical Society, 36, 111-47.
    • (1974) Journal of the Royal Statistical Society , vol.36 , pp. 111-147
    • Stone, M.1
  • 376
    • 0028641810 scopus 로고
    • Variance components testing in the longitudinal mixed effects model
    • Stram, D. O. and Lee, J. W. (1994). Variance components testing in the longitudinal mixed effects model. Biometrics, 50, 1171-77.
    • (1994) Biometrics , vol.50 , pp. 1171-1177
    • Stram, D.O.1    Lee, J.W.2
  • 377
    • 84963178774 scopus 로고
    • Further analysis of the data by Akaike's information criterion and the finite corrections
    • Sugiura, N. (1978). Further analysis of the data by Akaike's information criterion and the finite corrections. Communications in Statistics, Theory and Methods, 7, 13-26.
    • (1978) Communications in Statistics, Theory and Methods , vol.7 , pp. 13-26
    • Sugiura, N.1
  • 378
    • 0034663298 scopus 로고    scopus 로고
    • Spatio-temporal interaction with disease mapping
    • Sun, D., Tsutakawa, R. K., Kim, H., and He, Z. (2000). Spatio-temporal interaction with disease mapping. Statistics in Medicine, 19, 2015-35.
    • (2000) Statistics in Medicine , vol.19 , pp. 2015-2035
    • Sun, D.1    Tsutakawa, R.K.2    Kim, H.3    He, Z.4
  • 379
    • 0035613485 scopus 로고    scopus 로고
    • Propriety of posteriors with improper priors in hierarchical linear mixed models
    • Sun, D., Tsutakawa, R., and He, Z. (2001). Propriety of posteriors with improper priors in hierarchical linear mixed models. Statistica Sinica, 11, 77-95.
    • (2001) Statistica Sinica , vol.11 , pp. 77-95
    • Sun, D.1    Tsutakawa, R.2    He, Z.3
  • 380
    • 21844493366 scopus 로고
    • Simultaneous confidence bands for linear regression and smoothing
    • Sun, J. and Loader, C. R. (1994). Simultaneous confidence bands for linear regression and smoothing. Annals of Statistics, 22, 1328-45.
    • (1994) Annals of Statistics , vol.22 , pp. 1328-1345
    • Sun, J.1    Loader, C.R.2
  • 383
    • 0031015557 scopus 로고    scopus 로고
    • The lasso method for variable selection in the Cox model
    • Tibshirani, R. (1997). The lasso method for variable selection in the Cox model. Statistics in Medicine, 16, 385-95.
    • (1997) Statistics in Medicine , vol.16 , pp. 385-395
    • Tibshirani, R.1
  • 385
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping, M. E. (2001). Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1, 211-44.
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 386
    • 4043069967 scopus 로고    scopus 로고
    • Bayesian methods for neural networks and related models
    • Titterington, D. M. (2004). Bayesian methods for neural networks and related models. Statistical Science, 19, 128-39.
    • (2004) Statistical Science , vol.19 , pp. 128-139
    • Titterington, D.M.1
  • 388
    • 24144440046 scopus 로고    scopus 로고
    • Joint modelling of accelerated failure time and longitudinal data
    • Tseng, Y., Hsieh, F., and Wang, J. (2005). Joint modelling of accelerated failure time and longitudinal data. Biometrika, 92, 587-603.
    • (2005) Biometrika , vol.92 , pp. 587-603
    • Tseng, Y.1    Hsieh, F.2    Wang, J.3
  • 389
    • 8644246036 scopus 로고    scopus 로고
    • Joint modeling of longitudinal and time-to-event data: An overview
    • Tsiatis, A. A. and Davidian, M. (2004). Joint modeling of longitudinal and time-to-event data: An overview. Statistica Sinica, 14, 809-34.
    • (2004) Statistica Sinica , vol.14 , pp. 809-834
    • Tsiatis, A.A.1    Davidian, M.2
  • 390
    • 41949117135 scopus 로고    scopus 로고
    • Bayesian variable selection for logistic models using auxiliary mixture sampling
    • Tüchler, R. (2008). Bayesian variable selection for logistic models using auxiliary mixture sampling. Journal of Computational and Graphical Statistics, 17, 76-94.
    • (2008) Journal of Computational and Graphical Statistics , vol.17 , pp. 76-94
    • Tüchler, R.1
  • 391
    • 0037869562 scopus 로고    scopus 로고
    • Generaliz ed semiparametrically structured ordinal models
    • Tutz, G. (2003). Generaliz ed semiparametrically structured ordinal models. Biometrics, 59, 263-73.
    • (2003) Biometrics , vol.59 , pp. 263-273
    • Tutz, G.1
  • 392
    • 0034736561 scopus 로고    scopus 로고
    • Proportional haz ards model with random effects
    • Vaida, F. and Xu, R. (2000). Proportional haz ards model with random effects. Statistics in Medicine, 19, 3309-24.
    • (2000) Statistics in Medicine , vol.19 , pp. 3309-3324
    • Vaida, F.1    Xu, R.2
  • 393
    • 21644476631 scopus 로고    scopus 로고
    • Conditional Akaike information for mixed-effects models
    • Vaida, F. and Blanchard, S. (2005). Conditional Akaike information for mixed-effects models. Biometrika, 92, 351-70.
    • (2005) Biometrika , vol.92 , pp. 351-370
    • Vaida, F.1    Blanchard, S.2
  • 395
    • 0000569928 scopus 로고    scopus 로고
    • A linear mixed-effects model with heterogeneity in the random-effects population
    • Verbeke, G. and Lesaffre, E. (1996). A linear mixed-effects model with heterogeneity in the random-effects population. Journal of the American Statistical Association, 91, 217-21.
    • (1996) Journal of the American Statistical Association , vol.91 , pp. 217-221
    • Verbeke, G.1    Lesaffre, E.2
  • 399
    • 0000450226 scopus 로고
    • Improper priors, spline smoothing and the problem of guarding against model errors in regression
    • Wahba, G. (1978). Improper priors, spline smoothing and the problem of guarding against model errors in regression. Journal of the Royal Statistical Society, Series B, 40, 364-72.
    • (1978) Journal of the Royal Statistical Society, Series B , vol.40 , pp. 364-372
    • Wahba, G.1
  • 401
    • 0742271656 scopus 로고    scopus 로고
    • A close look at the spatial structure imploed by the CAR and SAR models
    • Wall, M. (2004). A close look at the spatial structure imploed by the CAR and SAR models. Journal of Statistical Planning and Inference, 121, 311-24.
    • (2004) Journal of Statistical Planning and Inference , vol.121 , pp. 311-324
    • Wall, M.1
  • 402
    • 33745841556 scopus 로고    scopus 로고
    • Convergence properties of a general algorithm for calculating variational Bayesian estimates for a normal mixture model
    • Wang, B. and Titterington, D. M. (2006). Convergence properties of a general algorithm for calculating variational Bayesian estimates for a normal mixture model. Bayesian Analysis, 1, 625-50.
    • (2006) Bayesian Analysis , vol.1 , pp. 625-650
    • Wang, B.1    Titterington, D.M.2
  • 403
    • 34547509358 scopus 로고    scopus 로고
    • Adaptive Bayesian criteria in variable selection for generaliz ed linear models
    • Wang, X. and George, E. I. (2007). Adaptive Bayesian criteria in variable selection for generaliz ed linear models. Statistica Sinica, 17, 667-90.
    • (2007) Statistica Sinica , vol.17 , pp. 667-690
    • Wang, X.1    George, E.I.2
  • 404
    • 0442327792 scopus 로고    scopus 로고
    • Jointly modeling longitudinal and event time data with application to acquired immunodeficiency syndrome
    • Wang, Y. and Taylor, J. M. G. (2001). Jointly modeling longitudinal and event time data with application to acquired immunodeficiency syndrome. Journal of the American Statistical Association, 96, 895-905.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 895-905
    • Wang, Y.1    Taylor, J.M.G.2
  • 405
    • 33745236872 scopus 로고    scopus 로고
    • The analysis of longitudinal data using mixed model L-splines
    • Welham, S. J., Cullis, B. R., Kenward, M. G., and Thompson, R. (2006). The analysis of longitudinal data using mixed model L-splines. Biometrics, 62, 392-401.
    • (2006) Biometrics , vol.62 , pp. 392-401
    • Welham, S.J.1    Cullis, B.R.2    Kenward, M.G.3    Thompson, R.4
  • 410
    • 0037352633 scopus 로고    scopus 로고
    • Bayesian variable selection and model averaging in high-dimensional multinomial nonparametric regression
    • Yau, P., Kohn, R., and Wood, S. (2003). Bayesian variable selection and model averaging in high-dimensional multinomial nonparametric regression. Journal of Computational and Graphical Statistics, 12, 23-54.
    • (2003) Journal of Computational and Graphical Statistics , vol.12 , pp. 23-54
    • Yau, P.1    Kohn, R.2    Wood, S.3
  • 411
    • 15044362958 scopus 로고    scopus 로고
    • A class of Bayesian shared Gamma frailty models with multivariate failure time data
    • Yin, G. and Ibrahim, J. G. (2005). A class of Bayesian shared Gamma frailty models with multivariate failure time data. Biometrics, 61, 208-16.
    • (2005) Biometrics , vol.61 , pp. 208-216
    • Yin, G.1    Ibrahim, J.G.2
  • 413
    • 0002817906 scopus 로고
    • On assessing prior distributions and Bayesian regression analysis with g-prior distributions
    • P. Goel and A. Zellner, North-Holland
    • Zellner, A. (1986). On assessing prior distributions and Bayesian regression analysis with g-prior distributions. In Bayesian Inference and Decision Techniques (ed. P. Goel and A. Zellner), pp. 233-43. North-Holland.
    • (1986) Bayesian Inference and Decision Techniques , pp. 233-243
    • Zellner, A.1
  • 414
    • 0039026915 scopus 로고
    • Posterior odds ratios for selected regression hypotheses
    • J. M. Bernardo, M. H. DeGroot, D. V. Lindley, and A. F. M. Smith, Valencia University Press
    • Zellner, A. and Siow, A. (1980). Posterior odds ratios for selected regression hypotheses. In Bayesian Statistics (ed. J. M. Bernardo, M. H. DeGroot, D. V. Lindley, and A. F. M. Smith), pp. 585-603. Valencia University Press.
    • (1980) Bayesian Statistics , pp. 585-603
    • Zellner, A.1    Siow, A.2
  • 415
    • 33745929657 scopus 로고    scopus 로고
    • General design Bayesian generaliz ed linear mixed models
    • Zhao, Y., Staudenmayer, J., Coull, B. A., and Wand, M. P. (2006). General design Bayesian generaliz ed linear mixed models. Statistical Science, 21(1), 35-51.
    • (2006) Statistical Science , vol.21 , Issue.1 , pp. 35-51
    • Zhao, Y.1    Staudenmayer, J.2    Coull, B.A.3    Wand, M.P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.