메뉴 건너뛰기




Volumn 88, Issue 4, 2001, Pages 1055-1071

Bayesian curve-fitting with free-knot splines

Author keywords

BIC; Generalised linear model; Nonparametric regression; Reversible jump Markov chain Monte Carlo; Smoothing; Unit information prior

Indexed keywords


EID: 0010045457     PISSN: 00063444     EISSN: None     Source Type: Journal    
DOI: 10.1093/biomet/88.4.1055     Document Type: Article
Times cited : (349)

References (21)
  • 1
    • 23044518682 scopus 로고    scopus 로고
    • Adaptive Bayesian regression splines in semiparametric generalized linear models
    • BILLER, C. (2000). Adaptive Bayesian regression splines in semiparametric generalized linear models. J. Comp. Graph. Statist. 9, 122-40.
    • (2000) J. Comp. Graph. Statist. , vol.9 , pp. 122-140
    • Biller, C.1
  • 3
    • 25444532788 scopus 로고    scopus 로고
    • Flexible smoothing with B-splines and penalties
    • EILERS, P. H. C. & MARX, B. D. (1996). Flexible smoothing with B-splines and penalties (with Discussion). Statist. Sci. 11, 89-121.
    • (1996) Statist. Sci. , vol.11 , pp. 89-121
    • Eilers, P.H.C.1    Marx, B.D.2
  • 4
    • 84972543992 scopus 로고
    • Methods for approximating integrals in statistics with special emphasis on Bayesian integration problems
    • EVANS, M. & SWARTZ, T. (1995). Methods for approximating integrals in statistics with special emphasis on Bayesian integration problems. Statist. Sci. 10, 254-72.
    • (1995) Statist. Sci. , vol.10 , pp. 254-272
    • Evans, M.1    Swartz, T.2
  • 5
    • 2242458721 scopus 로고    scopus 로고
    • A Bayesian time-course model for functional Magnetic Resonance Imaging data
    • GENOVESE, C. R. (2000). A Bayesian time-course model for functional Magnetic Resonance Imaging data. J. Am. Statist. Assoc. 95, 691-719.
    • (2000) J. Am. Statist. Assoc. , vol.95 , pp. 691-719
    • Genovese, C.R.1
  • 6
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • GREEN, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82, 711-32.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.J.1
  • 7
    • 0043041603 scopus 로고
    • Bayesian spline regression when the number of knots is unknown
    • HALPERN, E. F. (1973). Bayesian spline regression when the number of knots is unknown. J. R. Statist. Soc. B 35, 347-60.
    • (1973) J. R. Statist. Soc. B , vol.35 , pp. 347-360
    • Halpern, E.F.1
  • 8
    • 85012562935 scopus 로고    scopus 로고
    • Spline adaptation in extended linear models
    • To appear
    • HANSEN, M. H. & KOOPERBERG, C. (2001). Spline adaptation in extended linear models. Statist. Sci. To appear.
    • (2001) Statist. Sci.
    • Hansen, M.H.1    Kooperberg, C.2
  • 10
    • 0035432526 scopus 로고    scopus 로고
    • A spike train probability model
    • KASS, R. E. & VENTURA, V. (2001). A spike train probability model. Neural Comp. 13, 1713-20.
    • (2001) Neural Comp. , vol.13 , pp. 1713-1720
    • Kass, R.E.1    Ventura, V.2
  • 11
    • 27944462549 scopus 로고
    • A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion
    • KASS, R. E. & WASSERMAN, L. (1995). A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion. J. Am. Statist. Assoc. 90, 928-34.
    • (1995) J. Am. Statist. Assoc. , vol.90 , pp. 928-934
    • Kass, R.E.1    Wasserman, L.2
  • 12
    • 0033432395 scopus 로고    scopus 로고
    • Penalized estimation of free-knot splines
    • LINDSTROM, M. J. (1999). Penalized estimation of free-knot splines. J. Comp. Graph. Statist. 8, 333-52.
    • (1999) J. Comp. Graph. Statist. , vol.8 , pp. 333-352
    • Lindstrom, M.J.1
  • 13
    • 0001789822 scopus 로고
    • Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes
    • LIU, J. S., WONG, W. H. & KONG, A. (1994). Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes. Biometrika 81, 27-40.
    • (1994) Biometrika , vol.81 , pp. 27-40
    • Liu, J.S.1    Wong, W.H.2    Kong, A.3
  • 15
    • 0345859100 scopus 로고    scopus 로고
    • Low-frequency oscillations in Macaque IT cortex during competitive interactions between stimuli
    • OLSON, C. R. & ROLLENHAGEN, J. E. (1999). Low-frequency oscillations in Macaque IT cortex during competitive interactions between stimuli. Soc. Neurosci. Abstr. 25, 916.
    • (1999) Soc. Neurosci. Abstr. , vol.25 , pp. 916
    • Olson, C.R.1    Rollenhagen, J.E.2
  • 16
    • 0002648792 scopus 로고    scopus 로고
    • The Schwarz criterion and related methods for normal linear models
    • PAULER, D. K. (1998). The Schwarz criterion and related methods for normal linear models. Biometrika 85, 13-27.
    • (1998) Biometrika , vol.85 , pp. 13-27
    • Pauler, D.K.1
  • 17
    • 0000824232 scopus 로고    scopus 로고
    • Nonparametric regression using Bayesian variable selection
    • SMITH, M. & KOHN, R. (1996). Nonparametric regression using Bayesian variable selection. J. Economet. 75, 317-43.
    • (1996) J. Economet. , vol.75 , pp. 317-343
    • Smith, M.1    Kohn, R.2
  • 18
    • 0000576595 scopus 로고
    • Markov chains for exploring posterior distributions
    • TIERNEY, L. (1994). Markov chains for exploring posterior distributions (with Discussion). Aim. Statist. 22, 1701-62.
    • (1994) Aim. Statist. , vol.22 , pp. 1701-1762
    • Tierney, L.1
  • 19
    • 0346490012 scopus 로고    scopus 로고
    • Statistical analysis of temporal evolution in single-neuron firing rates
    • To appear
    • VENTURA, V., CARTA, R., KASS, R. E., GETTNER, S. & OLSON, C. R. (2001). Statistical analysis of temporal evolution in single-neuron firing rates. Biostatistics 2. To appear.
    • (2001) Biostatistics , vol.2
    • Ventura, V.1    Carta, R.2    Kass, R.E.3    Gettner, S.4    Olson, C.R.5
  • 20
    • 0003466536 scopus 로고
    • Philadelphia: Society for Industrial and Applied Mathematics
    • WAHBA, G. (1990). Spline Models for Observational Data. Philadelphia: Society for Industrial and Applied Mathematics.
    • (1990) Spline Models for Observational Data
    • Wahba, G.1
  • 21
    • 1842665179 scopus 로고    scopus 로고
    • Spatially adaptive regression splines and accurate knot selection schemes
    • ZHOU, S. & SHEN, X. (2001). Spatially adaptive regression splines and accurate knot selection schemes. J. Am. Statist. Assoc. 96, 247-59.
    • (2001) J. Am. Statist. Assoc. , vol.96 , pp. 247-259
    • Zhou, S.1    Shen, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.