메뉴 건너뛰기




Volumn 20, Issue 2, 2010, Pages 203-219

Bayesian regularisation in structured additive regression: A unifying perspective on shrinkage, smoothing and predictor selection

Author keywords

Conditionally Gaussian priors; Lasso; MCMC; P splines; Spike and slab prior; Structured additive regression

Indexed keywords


EID: 77953326052     PISSN: 09603174     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11222-009-9158-3     Document Type: Article
Times cited : (74)

References (58)
  • 2
    • 28344449679 scopus 로고
    • Bayesian image restoration with two applications in spatial statistics
    • Besag, J., York, J., Mollié, A.: Bayesian image restoration with two applications in spatial statistics. Ann. Inst. Stat. Math. 43, 1-59 (1991).
    • (1991) Ann. Inst. Stat. Math. , vol.43 , pp. 1-59
    • Besag, J.1    York, J.2    Mollié, A.3
  • 3
    • 34548382745 scopus 로고    scopus 로고
    • Bayesian adaptive regression splines for hierarchical data
    • Bigelow, J. L., Dunson, D. B.: Bayesian adaptive regression splines for hierarchical data. Biometrics 63, 724-732 (2007).
    • (2007) Biometrics , vol.63 , pp. 724-732
    • Bigelow, J.L.1    Dunson, D.B.2
  • 4
    • 39849102639 scopus 로고    scopus 로고
    • Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with OSCAR
    • Bondell, H. D., Reich, B. J.: Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with OSCAR. Biometrics 64, 115-123 (2008).
    • (2008) Biometrics , vol.64 , pp. 115-123
    • Bondell, H.D.1    Reich, B.J.2
  • 5
    • 26444547624 scopus 로고    scopus 로고
    • Generalized additive regression based on Bayesian P-splines
    • Brezger, A., Lang, S.: Generalized additive regression based on Bayesian P-splines. Comput. Stat. Data Anal. 50, 967-991 (2006).
    • (2006) Comput. Stat. Data Anal. , vol.50 , pp. 967-991
    • Brezger, A.1    Lang, S.2
  • 6
    • 33745256442 scopus 로고    scopus 로고
    • Bayesian covariance selection in generalized linear mixed models
    • Cai, B., Dunson, D.: Bayesian covariance selection in generalized linear mixed models. Biometrics 62, 446-457 (2006).
    • (2006) Biometrics , vol.62 , pp. 446-457
    • Cai, B.1    Dunson, D.2
  • 7
    • 33645512673 scopus 로고    scopus 로고
    • Objective Bayesian variable selection
    • Casella, G., Moreno, E.: Objective Bayesian variable selection. J. Am. Stat. Assoc. 101, 157-167 (2006).
    • (2006) J. Am. Stat. Assoc. , vol.101 , pp. 157-167
    • Casella, G.1    Moreno, E.2
  • 8
    • 0347994096 scopus 로고    scopus 로고
    • Random effects selection in linear mixed models
    • Chen, Z., Dunson, D.: Random effects selection in linear mixed models. Biometrics 59, 762-769 (2003).
    • (2003) Biometrics , vol.59 , pp. 762-769
    • Chen, Z.1    Dunson, D.2
  • 9
    • 33745670224 scopus 로고    scopus 로고
    • Inference in semiparametric dynamic models for binary longitudinal data
    • Chib, S., Jeliazkov, I.: Inference in semiparametric dynamic models for binary longitudinal data. J. Am. Stat. Assoc. 101, 685-700 (2006).
    • (2006) J. Am. Stat. Assoc. , vol.101 , pp. 685-700
    • Chib, S.1    Jeliazkov, I.2
  • 10
    • 25444532788 scopus 로고    scopus 로고
    • Flexible smoothing using B-splines and penalties (with comments and rejoinder)
    • Eilers, P. H. C., Marx, B. D.: Flexible smoothing using B-splines and penalties (with comments and rejoinder). Stat. Sci. 11, 89-121 (1996).
    • (1996) Stat. Sci. , vol.11 , pp. 89-121
    • Eilers, P.H.C.1    Marx, B.D.2
  • 11
    • 77953323174 scopus 로고    scopus 로고
    • On the identification of trend and correlation in temporal and spatial regression
    • Shalab and C. Heumann (Eds.), Berlin: Springer
    • Fahrmeir, L., Kneib, T.: On the identification of trend and correlation in temporal and spatial regression. In: Shalab, Heumann, C. (eds.) Recent Advances in Linear Models and Related Areas. Springer, Berlin (2008).
    • (2008) Recent Advances in Linear Models and Related Areas
    • Fahrmeir, L.1    Kneib, T.2
  • 12
    • 56949101082 scopus 로고    scopus 로고
    • Propriety of posteriors in structured additive regression models: Theory and empirical evidence
    • Fahrmeir, L., Kneib, T.: Propriety of posteriors in structured additive regression models: Theory and empirical evidence. J. Stat. Plan. Inference 139, 843-859 (2009).
    • (2009) J. Stat. Plan. Inference , vol.139 , pp. 843-859
    • Fahrmeir, L.1    Kneib, T.2
  • 13
    • 8644257675 scopus 로고    scopus 로고
    • Penalized structured additive regression: A Bayesian perspective
    • Fahrmeir, L., Kneib, T., Lang, S.: Penalized structured additive regression: A Bayesian perspective. Stat. Sin. 14, 731-761 (2004).
    • (2004) Stat. Sin. , vol.14 , pp. 731-761
    • Fahrmeir, L.1    Kneib, T.2    Lang, S.3
  • 14
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96, 1348-1360 (2001).
    • (2001) J. Am. Stat. Assoc. , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 15
    • 18044404766 scopus 로고    scopus 로고
    • Benchmark priors for Bayesian model averaging
    • Fernandez, C., Ley, E., Steel, M.: Benchmark priors for Bayesian model averaging. J. Econom. 100, 381-427 (2001).
    • (2001) J. Econom. , vol.100 , pp. 381-427
    • Fernandez, C.1    Ley, E.2    Steel, M.3
  • 16
    • 37249017545 scopus 로고    scopus 로고
    • Bayesian parsimonious covariance estimation for hierarchical linear mixed models
    • Frühwirth-Schnatter, S., Tüchler, R.: Bayesian parsimonious covariance estimation for hierarchical linear mixed models. Stat. Comput. 139, 1-13 (2008).
    • (2008) Stat. Comput. , vol.139 , pp. 1-13
    • Frühwirth-schnatter, S.1    Tüchler, R.2
  • 17
    • 33845796064 scopus 로고    scopus 로고
    • Auxiliary mixture sampling for parameter-driven models of time series of small counts with applications to state space modelling
    • Frühwirth-Schnatter, S., Wagner, H.: Auxiliary mixture sampling for parameter-driven models of time series of small counts with applications to state space modelling. Biometrika 93, 827-841 (2006).
    • (2006) Biometrika , vol.93 , pp. 827-841
    • Frühwirth-schnatter, S.1    Wagner, H.2
  • 18
    • 70349816927 scopus 로고    scopus 로고
    • Frühwirth-Schnatter, S., Frühwirth, R., Held, L., Rue, H.: Improved auxiliary mixture sampling for hierarchical models of non-Gaussian data. Stat. Comput. (2009, to appear).
  • 19
    • 0032361278 scopus 로고    scopus 로고
    • Penalized regression: The bridge versus the LASSO
    • Fu, W. J.: Penalized regression: The bridge versus the LASSO. J. Comput. Graph. Stat. 7, 397-416 (1998).
    • (1998) J. Comput. Graph. Stat. , vol.7 , pp. 397-416
    • Fu, W.J.1
  • 20
    • 84893179575 scopus 로고
    • Variable selection via Gibbs sampling
    • George, E. I., McCulloch, R. E.: Variable selection via Gibbs sampling. J. Am. Stat. Soc. 88, 881-889 (1993).
    • (1993) J. Am. Stat. Soc. , vol.88 , pp. 881-889
    • George, E.I.1    McCulloch, R.E.2
  • 21
    • 0004581641 scopus 로고
    • Stochastic search variable selection
    • Spiegelhalter (Ed.), London: Chapman & Hall
    • George, E. I., McCulloch, R. E.: Stochastic search variable selection. In: Spiegelhalter, et al. (eds.) Markov Chain Monte Carlo in Practice. Chapman & Hall, London (1995).
    • (1995) Markov Chain Monte Carlo in Practice
    • George, E.I.1    McCulloch, R.E.2
  • 22
    • 0031526204 scopus 로고    scopus 로고
    • Approaches for Bayesian variable selection
    • George, E. I., McCulloch, R. E.: Approaches for Bayesian variable selection. Stat. Sin. 7, 339-374 (1997).
    • (1997) Stat. Sin. , vol.7 , pp. 339-374
    • George, E.I.1    McCulloch, R.E.2
  • 23
    • 0000647838 scopus 로고    scopus 로고
    • Variable selection an model comparison in regression
    • Berger (Ed.), Oxford: Oxford University Press
    • Geweke, J.: Variable selection an model comparison in regression. In: Berger, et al. (eds.) Bayesian Statistics 5, pp. 609-620. Oxford University Press, Oxford (1996).
    • (1996) Bayesian Statistics 5 , pp. 609-620
    • Geweke, J.1
  • 25
    • 77953323655 scopus 로고    scopus 로고
    • Griffin, J. E., Brown, P. J.: Alternative prior distributions for variable selection with very many more variables than observations. University of Warwick, Department of Statistics, Technical report (2005).
  • 26
    • 77953326580 scopus 로고    scopus 로고
    • Griffin, J. E., Brown, P. J.: Bayesian adaptive lassos with non-convex penalization. University of Warwick, Department of Statistics, Technical report (2007).
  • 28
    • 0042744696 scopus 로고    scopus 로고
    • Detecting differentially expressed genes in microarrays using Bayesian model selection
    • Ishwaran, H., Rao, S. J.: Detecting differentially expressed genes in microarrays using Bayesian model selection. J. Am. Stat. Assoc. 462, 438-455 (2003).
    • (2003) J. Am. Stat. Assoc. , vol.462 , pp. 438-455
    • Ishwaran, H.1    Rao, S.J.2
  • 29
    • 22944460748 scopus 로고    scopus 로고
    • Spike and slab variable selection: Frequentist and Bayesian strategies
    • Ishwaran, H., Rao, S. J.: Spike and slab variable selection: frequentist and Bayesian strategies. Ann. Stat. 33, 730-773 (2005).
    • (2005) Ann. Stat. , vol.33 , pp. 730-773
    • Ishwaran, H.1    Rao, S.J.2
  • 30
    • 33751018838 scopus 로고    scopus 로고
    • Robust specification of the roughness penalty prior distribution in spatially adaptive Bayesian P-splines models
    • Jullion, A., Lambert, P.: Robust specification of the roughness penalty prior distribution in spatially adaptive Bayesian P-splines models. Comput. Stat. Data Anal. 51, 2542-2558 (2007).
    • (2007) Comput. Stat. Data Anal. , vol.51 , pp. 2542-2558
    • Jullion, A.1    Lambert, P.2
  • 32
    • 34548381836 scopus 로고    scopus 로고
    • Fixed and random effects selection in linear and logistic models
    • Kinney, S. K., Dunson, D. B.: Fixed and random effects selection in linear and logistic models. Biometrics 63, 690-698 (2007).
    • (2007) Biometrics , vol.63 , pp. 690-698
    • Kinney, S.K.1    Dunson, D.B.2
  • 33
    • 33645075433 scopus 로고    scopus 로고
    • Structured additive regression for categorical space-time data: A mixed model approach
    • Kneib, T., Fahrmeir, L.: Structured additive regression for categorical space-time data: A mixed model approach. Biometrics 62, 109-118 (2006).
    • (2006) Biometrics , vol.62 , pp. 109-118
    • Kneib, T.1    Fahrmeir, L.2
  • 34
    • 33847380991 scopus 로고    scopus 로고
    • A mixed model approach for geoadditive hazard regression
    • Kneib, T., Fahrmeir, L.: A mixed model approach for geoadditive hazard regression. Scand. J. Stat. 34, 207-228 (2007).
    • (2007) Scand. J. Stat. , vol.34 , pp. 207-228
    • Kneib, T.1    Fahrmeir, L.2
  • 35
    • 77953325212 scopus 로고    scopus 로고
    • Kneib, T., Konrath, S., Fahrmeir, L.: High-dimensional structured additive regression models: Bayesian regularisation, smoothing and predictive performance. Technical Report No. 46, Department of Statistics, Ludwig-Maximilians-University Munich (2009).
  • 36
    • 0010081155 scopus 로고    scopus 로고
    • Nonparametric regression using linear combinations of basis functions
    • Kohn, R., Smith, M., Chan, D.: Nonparametric regression using linear combinations of basis functions. Stat. Comput. 11, 313-322 (2001).
    • (2001) Stat. Comput. , vol.11 , pp. 313-322
    • Kohn, R.1    Smith, M.2    Chan, D.3
  • 37
    • 77953325532 scopus 로고    scopus 로고
    • Konrath, S., Kneib, T., Fahrmeir, L.: Bayesian regularization and smoothing for hazard regression. Technical Report No. 35, Department of Statistics, Ludwig-Maximilians-University Munich (2008).
  • 39
    • 67651246919 scopus 로고    scopus 로고
    • On the effect of prior assumptions in Bayesian model averaging with applications to growth regression
    • Ley, E., Steel, M.: On the effect of prior assumptions in Bayesian model averaging with applications to growth regression. J. Appl. Econom. 24, 651-674 (2009).
    • (2009) J. Appl. Econom. , vol.24 , pp. 651-674
    • Ley, E.1    Steel, M.2
  • 40
    • 77953322861 scopus 로고    scopus 로고
    • Li, Y., Lin, X., Müller, P.: Bayesian inference in semiparametric mixed models for longitudinal data. Biometrics (2009, to appear).
  • 42
    • 4043092820 scopus 로고    scopus 로고
    • Nonparametric Bayesian data analysis
    • Müller, P., Quintana, F. A.: Nonparametric Bayesian data analysis. Stat. Sci. 19, 95-110 (2004).
    • (2004) Stat. Sci. , vol.19 , pp. 95-110
    • Müller, P.1    Quintana, F.A.2
  • 44
    • 39149101409 scopus 로고    scopus 로고
    • Bayesian identification, selection and estimation of semiparametric functions in high-dimensional additive models
    • Panagiotelis, A., Smith, M.: Bayesian identification, selection and estimation of semiparametric functions in high-dimensional additive models. J. Econom. 143, 291-316 (2008).
    • (2008) J. Econom. , vol.143 , pp. 291-316
    • Panagiotelis, A.1    Smith, M.2
  • 47
    • 62849120031 scopus 로고    scopus 로고
    • Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations
    • Rue, H., Martino, S., Chopin, N.: Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. B 71, 1-35 (2009).
    • (2009) J. R. Stat. Soc. B , vol.71 , pp. 1-35
    • Rue, H.1    Martino, S.2    Chopin, N.3
  • 49
    • 67349131247 scopus 로고    scopus 로고
    • Locally adaptive Bayesian P-splines with a normal-exponential-gamma prior
    • Scheipl, F., Kneib, T.: Locally adaptive Bayesian P-splines with a normal-exponential-gamma prior. Comput. Stat. Data Anal. 53, 3533-3552 (2009).
    • (2009) Comput. Stat. Data Anal. , vol.53 , pp. 3533-3552
    • Scheipl, F.1    Kneib, T.2
  • 50
    • 0000824232 scopus 로고    scopus 로고
    • Nonparametric regression using Bayesian variable selection
    • Smith, M., Kohn, R.: Nonparametric regression using Bayesian variable selection. J. Econom. 75, 317-343 (1996).
    • (1996) J. Econom. , vol.75 , pp. 317-343
    • Smith, M.1    Kohn, R.2
  • 51
    • 0036970576 scopus 로고    scopus 로고
    • Parsimonious covariance matrix estimation for longitudinal data
    • Smith, M., Kohn, R.: Parsimonious covariance matrix estimation for longitudinal data. J. Am. Stat. Assoc. 97, 1141-1153 (2002).
    • (2002) J. Am. Stat. Assoc. , vol.97 , pp. 1141-1153
    • Smith, M.1    Kohn, R.2
  • 53
    • 0031015557 scopus 로고    scopus 로고
    • The LASSO method for variable selection in the Cox model
    • Tibshirani, R.: The LASSO method for variable selection in the Cox model. Stat. Med. 16, 385-395 (1997).
    • (1997) Stat. Med. , vol.16 , pp. 385-395
    • Tibshirani, R.1
  • 54
    • 41949117135 scopus 로고    scopus 로고
    • Bayesian variable selection for logistic models using auxiliary mixture sampling
    • Tüchler, R.: Bayesian variable selection for logistic models using auxiliary mixture sampling. J. Comput. Graph. Stat. 17, 76-94 (2008).
    • (2008) J. Comput. Graph. Stat. , vol.17 , pp. 76-94
    • Tüchler, R.1
  • 55
    • 0038170349 scopus 로고    scopus 로고
    • Smoothing and mixed models
    • Wand, M. P.: Smoothing and mixed models. Comput. Stat. 18, 223-249 (2003).
    • (2003) Comput. Stat. , vol.18 , pp. 223-249
    • Wand, M.P.1
  • 56
    • 34547509358 scopus 로고    scopus 로고
    • Adaptive Bayesian criteria in variable selection for generalized linear models
    • Wang, X., George, E. I.: Adaptive Bayesian criteria in variable selection for generalized linear models. Stat. Sin. 17, 667-690 (2007).
    • (2007) Stat. Sin. , vol.17 , pp. 667-690
    • Wang, X.1    George, E.I.2
  • 57
    • 33745929657 scopus 로고    scopus 로고
    • General design Bayesian generalized linear mixed models
    • Zhao, Y., Staudenmayer, J., Coull, B. A., Wand, M. P.: General design Bayesian generalized linear mixed models. Stat. Sci. 21, 35-51 (2006).
    • (2006) Stat. Sci. , vol.21 , pp. 35-51
    • Zhao, Y.1    Staudenmayer, J.2    Coull, B.A.3    Wand, M.P.4
  • 58
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B 67, 301-320 (2005).
    • (2005) J. R. Stat. Soc. Ser. B , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.