메뉴 건너뛰기




Volumn 28, Issue 1, 2001, Pages 205-223

Mode jumping proposals in MCMC

Author keywords

Markov chain Monte Carlo; Metropolis hastings; Multi model distributions; Optimization

Indexed keywords


EID: 0035529549     PISSN: 03036898     EISSN: None     Source Type: Journal    
DOI: 10.1111/1467-9469.00232     Document Type: Article
Times cited : (63)

References (29)
  • 1
    • 0029043932 scopus 로고
    • The analysis of repeated-measures data on schizophrenic reaction times using mixture models
    • Belin, T. R. & Rubin, D. B. (1995). The analysis of repeated-measures data on schizophrenic reaction times using mixture models. Statist. Med. 14, 747-768.
    • (1995) Statist. Med. , vol.14 , pp. 747-768
    • Belin, T.R.1    Rubin, D.B.2
  • 2
    • 0000103562 scopus 로고
    • Spatial statistics and Bayesian computation
    • Besag, J. & Green, P. J. (1993). Spatial statistics and Bayesian computation. J. Roy. Statist. Soc. Ser. B 55, 3-23.
    • (1993) J. Roy. Statist. Soc. Ser. B , vol.55 , pp. 3-23
    • Besag, J.1    Green, P.J.2
  • 3
    • 0141477361 scopus 로고
    • Bayesian computation and stochastic systems (with discussion)
    • Besag, J., Green, P., Higdon, D. & Mengersen, K. (1995). Bayesian computation and stochastic systems (with discussion). Statist. Sci. 10, 3-66.
    • (1995) Statist. Sci. , vol.10 , pp. 3-66
    • Besag, J.1    Green, P.2    Higdon, D.3    Mengersen, K.4
  • 5
    • 0001149688 scopus 로고
    • Bayes inference in regression models with ARMA (p, q) errors
    • Chib, S. & Greenberg, E. (1994). Bayes inference in regression models with ARMA (p, q) errors. J. Econometrics 64, 183-206.
    • (1994) J. Econometrics , vol.64 , pp. 183-206
    • Chib, S.1    Greenberg, E.2
  • 6
    • 0000911137 scopus 로고    scopus 로고
    • Analysis of multivariate probit models
    • Chib, S. & Greenberg, E. (1998). Analysis of multivariate probit models. Biometrika 85, 347-361.
    • (1998) Biometrika , vol.85 , pp. 347-361
    • Chib, S.1    Greenberg, E.2
  • 7
    • 0002609888 scopus 로고    scopus 로고
    • Posterior simulation and Bayes factors in panel count data models
    • Chib, S., Greenberg, E. & Winkelmann, R. (1998). Posterior simulation and Bayes factors in panel count data models. J. Econometrics 86, 33-54.
    • (1998) J. Econometrics , vol.86 , pp. 33-54
    • Chib, S.1    Greenberg, E.2    Winkelmann, R.3
  • 8
    • 0000736067 scopus 로고    scopus 로고
    • Simulating normalizing constants: From importance sampling to bridge sampling to path sampling
    • Gelman, A. and Meng, X. L. (1998). Simulating normalizing constants: from importance sampling to bridge sampling to path sampling. Statist. Sci. 13, 163-185.
    • (1998) Statist. Sci. , vol.13 , pp. 163-185
    • Gelman, A.1    Meng, X.L.2
  • 9
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences (with discussion)
    • Gelman, A. & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences (with discussion). Statist. Sci. 7, 457-511.
    • (1992) Statist. Sci. , vol.7 , pp. 457-511
    • Gelman, A.1    Rubin, D.B.2
  • 12
    • 84972511893 scopus 로고
    • Practical Markov chain Monte Carlo (with discussion)
    • Geyer, C. J. (1992). Practical Markov chain Monte Carlo (with discussion). Statist. Sci. 7, 473-511.
    • (1992) Statist. Sci. , vol.7 , pp. 473-511
    • Geyer, C.J.1
  • 13
    • 84950437936 scopus 로고
    • Annealing Markov chain Monte Carlo with applications to ancestral inference
    • Geyer, C. J. & Thompson, E. A. (1995). Annealing Markov chain Monte Carlo with applications to ancestral inference. J. Amer. Statist. Assoc. 90, 909-920.
    • (1995) J. Amer. Statist. Assoc. , vol.90 , pp. 909-920
    • Geyer, C.J.1    Thompson, E.A.2
  • 14
    • 3843097430 scopus 로고
    • Multigrid Monte Carlo method. Conceptual foundations
    • Goodman, J. & Sokal, A. D. (1989). Multigrid Monte Carlo method. Conceptual foundations, Phys. Rev. D 40, 2035-2071.
    • (1989) Phys. Rev. D , vol.40 , pp. 2035-2071
    • Goodman, J.1    Sokal, A.D.2
  • 15
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • Green, P. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82, 711-732.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.1
  • 16
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 20
    • 33644899039 scopus 로고
    • Simulated tempering: A new Monte Carlo scheme
    • Marinari, E. & Parisi, G. (1992). Simulated tempering: a new Monte Carlo scheme. Europhys. Lett. 19, 451-458.
    • (1992) Europhys. Lett. , vol.19 , pp. 451-458
    • Marinari, E.1    Parisi, G.2
  • 21
    • 0032363044 scopus 로고    scopus 로고
    • Exact sampling from a continuous state space
    • Murdoch, D. J. & Green, P. J. (1998). Exact sampling from a continuous state space. Scand. J. Statist. 25, 483-502.
    • (1998) Scand. J. Statist. , vol.25 , pp. 483-502
    • Murdoch, D.J.1    Green, P.J.2
  • 22
    • 0039911241 scopus 로고    scopus 로고
    • Technical Report No. R-99-2011, Department of Mathematical Sciences, Aalborg University, Aalborg, Denmark
    • Møller, J. & Nicholls, G. K. (1999). Perfect simulation for sample-based inference. Technical Report No. R-99-2011, Department of Mathematical Sciences, Aalborg University, Aalborg, Denmark.
    • (1999) Perfect Simulation for Sample-based Inference
    • Møller, J.1    Nicholls, G.K.2
  • 23
    • 21444452127 scopus 로고    scopus 로고
    • Sampling from multimodal distributions using tempered transitions
    • Neal, R. M. (1996). Sampling from multimodal distributions using tempered transitions. Statist. Comput. 6, 353-366.
    • (1996) Statist. Comput. , vol.6 , pp. 353-366
    • Neal, R.M.1
  • 24
    • 0015730787 scopus 로고
    • Optimum Monte-Carlo sampling using Markov chains
    • Peskun, P. H. (1973). Optimum Monte-Carlo sampling using Markov chains. Biometrika 60, 607-612.
    • (1973) Biometrika , vol.60 , pp. 607-612
    • Peskun, P.H.1
  • 25
    • 0005193926 scopus 로고    scopus 로고
    • Exact sampling with coupled Markov chains and applications to statistical mechanics
    • Propp, J. G. & Wilson, D. B. (1996). Exact sampling with coupled Markov chains and applications to statistical mechanics. Random Structures Algorithms 9, 223-252.
    • (1996) Random Structures Algorithms , vol.9 , pp. 223-252
    • Propp, J.G.1    Wilson, D.B.2
  • 26
    • 0000162904 scopus 로고    scopus 로고
    • How to get a perfectly random sample from a generic Markov chain and generate a random spanning tree of a directed graph
    • Propp, J. G. & Wilson, D. B. (1998). How to get a perfectly random sample from a generic Markov chain and generate a random spanning tree of a directed graph. J. Algorithms 27, 170-217.
    • (1998) J. Algorithms , vol.27 , pp. 170-217
    • Propp, J.G.1    Wilson, D.B.2
  • 29
    • 0007223349 scopus 로고    scopus 로고
    • An MCMC algorithm for sampling from the posterior conditioned to production history
    • April 2000, Cape Town, South Africa
    • Tjelmeland, H. (2000). An MCMC algorithm for sampling from the posterior conditioned to production history, to appear in proceedings from the 6th International Geostatistical Congress, April 2000, Cape Town, South Africa.
    • (2000) Proceedings from the 6th International Geostatistical Congress
    • Tjelmeland, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.