메뉴 건너뛰기




Volumn 1, Issue 3, 2006, Pages 625-650

Convergence properties of a general algorithm for calculating variational Bayesian estimates for a normal mixture model

Author keywords

Laplace approximation; Local convergence; Mixture model; Variational bayes

Indexed keywords


EID: 33745841556     PISSN: 19360975     EISSN: 19316690     Source Type: Journal    
DOI: 10.1214/06-BA121     Document Type: Article
Times cited : (107)

References (24)
  • 1
    • 0003278032 scopus 로고    scopus 로고
    • Inferring parameters and structure of latent variable models by variational Bayes
    • Prade, H. and Laskey, K. (eds.), Stockholm, Sweden: Morgan Kaufmann Publishers. 625, 629
    • Attias, H. (1999). "Inferring parameters and structure of latent variable models by variational Bayes." In Prade, H. and Laskey, K. (eds.), Proc. 15th Conference on Uncertainty in Artificial Intelligence, 21-30. Stockholm, Sweden: Morgan Kaufmann Publishers. 625, 629
    • (1999) Proc. 15th Conference on Uncertainty in Artificial Intelligence , pp. 21-30
    • Attias, H.1
  • 2
    • 84898964031 scopus 로고    scopus 로고
    • A variational Bayesian framework for graphical models
    • Solla, S., Leen, T., and Muller, K.-R. (eds.), Cambridge, MA: MIT Press. 625, 629
    • Attias, H. (2000). "A variational Bayesian framework for graphical models." In Solla, S., Leen, T., and Muller, K.-R. (eds.), Advances in Neural Information Processing Systems 12, 209-215. Cambridge, MA: MIT Press. 625, 629
    • (2000) Advances in Neural Information Processing Systems 12 , pp. 209-215
    • Attias, H.1
  • 4
    • 0004151496 scopus 로고    scopus 로고
    • New York: Springer-Verlag, 636, 637
    • Bhatia, R. (1997). Matrix Analysis. New York: Springer-Verlag. 636, 637
    • (1997) Matrix Analysis
    • Bhatia, R.1
  • 5
    • 2242491935 scopus 로고    scopus 로고
    • Computational and inferential difficulties with mixture posterior distributions
    • 625
    • Celeux, G., Hurn, M., and Robert, C. P. (2000). "Computational and inferential dif- ficulties with mixture posterior distributions." Journal of the American Statistical Association, 95(957-979). 625
    • (2000) Journal of the American Statistical Association , vol.95 , pp. 957-979
    • Celeux, G.1    Hurn, M.2    Robert, C.P.3
  • 9
    • 84898934543 scopus 로고    scopus 로고
    • Variational inference for Bayesian mixtures of factor analysers
    • Solla, S., Leen, T., and Muller, K.-R. (eds.), Cambridge, MA: MIT Press. 625
    • Ghahramani, Z. and Beal, M. J. (2000). "Variational inference for Bayesian mixtures of factor analysers." In Solla, S., Leen, T., and Muller, K.-R. (eds.), Advances in Neural Information Processing Systems 12, 449-455. Cambridge, MA: MIT Press. 625
    • (2000) Advances in Neural Information Processing Systems 12 , pp. 449-455
    • Ghahramani, Z.1    Beal, M.J.2
  • 10
    • 84899003086 scopus 로고    scopus 로고
    • Propagation algorithms for variational Bayesian learning
    • Leen, T., Dietterich, T., and Tresp, V. (eds.), Cambridge, MA: MIT Press. 625
    • Ghahramani, Z. (2001). "Propagation algorithms for variational Bayesian learning." In Leen, T., Di- etterich, T., and Tresp, V. (eds.), Advances in Neural Information Processing Systems 13, 507-513. Cambridge, MA: MIT Press. 625
    • (2001) Advances in Neural Information Processing Systems 13 , pp. 507-513
    • Ghahramani, Z.1
  • 11
    • 0036020938 scopus 로고    scopus 로고
    • On the adequacy of variational lower bound functions for likelihood-based inference in Markovian models with missing values
    • Hall, P., Humphreys, K., and Titterington, D. M. (2002). "On the adequacy of varia- tional lower bound functions for likelihood-based inference in Markovian models with missing values." Journal of the Royal Statistical Society Series B, 64: 549-564. 626
    • (2002) Journal of the Royal Statistical Society Series B 626 , vol.64 , pp. 549-564
    • Hall, P.1    Humphreys, K.2    Titterington, D.M.3
  • 12
    • 4043152488 scopus 로고    scopus 로고
    • Approximate Bayesian inference for simple mixtures
    • Bethlehem, J. G. and van der Heijden, P. G. M. (eds.), Heidelberg: Physica-Verlag. 625, 629
    • Humphreys, K. and Titterington, D. M. (2000). "Approximate Bayesian inference for simple mixtures." In Bethlehem, J. G. and van der Heijden, P. G. M. (eds.), COMP- STAT2000, 331-336. Heidelberg: Physica-Verlag. 625, 629
    • (2000) COMPSTAT2000 , pp. 331-336
    • Humphreys, K.1    Titterington, D.M.2
  • 13
    • 4043129651 scopus 로고    scopus 로고
    • Graphical Models
    • 625
    • Jordan, M. I. (2004). "Graphical Models." Statistical Science, 19(1): 140-155. 625
    • (2004) Statistical Science , vol.19 , Issue.1 , pp. 140-155
    • Jordan, M.I.1
  • 14
  • 17
    • 0006704011 scopus 로고
    • An iterative procedure for obtaining maximumlikelihood estimates of the parameters for a mixture of normal distributions
    • 627, 632, 635, 641, 647
    • Peters, B. C. and Walker, H. F. (1978). "An iterative procedure for obtaining maximum- likelihood estimates of the parameters for a mixture of normal distributions." SIAM J. Appl. Math., 35: 362-378. 627, 632, 635, 641, 647
    • (1978) SIAM J. Appl. Math , vol.35 , pp. 362-378
    • Peters, B.C.1    Walker, H.F.2
  • 18
    • 0021404166 scopus 로고
    • Mixture densities, Maximum likelihood and the EM Algorithm
    • 633
    • Redner, R. A. and Walker, H. F. (1984). "Mixture densities, Maximum likelihood and the EM Algorithm." SIAM Review, 26: 195-239. 633
    • (1984) SIAM Review , vol.26 , pp. 195-239
    • Redner, R.A.1    Walker, H.F.2
  • 20
    • 4043069967 scopus 로고    scopus 로고
    • Bayesian methods for neural networks and related models
    • 625
    • Titterington, D. M. (2004). "Bayesian methods for neural networks and related models." Statistical Science, 19(1): 128-139. 625
    • (2004) Statistical Science , vol.19 , Issue.1 , pp. 128-139
    • Titterington, D.M.1
  • 21
    • 0036887504 scopus 로고    scopus 로고
    • Bayesian model search for mixture models based on optimizing variational bounds
    • 625, 629
    • Ueda, N. and Ghahramani, Z. (2003). "Bayesian model search for mixture models based on optimizing variational bounds." Neural Networks, 15: 1223-1241. 625, 629
    • (2003) Neural Networks , vol.15 , pp. 1223-1241
    • Ueda, N.1    Ghahramani, Z.2
  • 23
    • 10844237153 scopus 로고    scopus 로고
    • Lack of consistency of mean field and variational Bayes approximations for state space models
    • 626, 635
    • Wang, B. (2004). "Lack of consistency of mean field and variational Bayes approximations for state space models." Neural Processing Letters, 20: 151-170. 626, 635
    • (2004) Neural Processing Letters , vol.20 , pp. 151-170
    • Wang, B.1
  • 24
    • 62149086004 scopus 로고    scopus 로고
    • Inadequacy of interval estimates corresponding to variational Bayesian approximations
    • Cowell, R. G. and Ghahramani, Z. (eds.), Jan 6-8, 2005, Savannah Hotel, Barbados. Society for Artificial Intelligence and Statistics 635
    • Wang, B. (2005). "Inadequacy of interval estimates corresponding to variational Bayesian approximations." In Cowell, R. G. and Ghahramani, Z. (eds.), Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics, Jan 6-8, 2005, Savannah Hotel, Barbados, 373-380. Society for Artificial Intelligence and Statistics. (Available electronically at http://www.gatsby.ucl.ac.uk/aistats/). 635
    • (2005) Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics , pp. 373-380
    • Wang, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.