메뉴 건너뛰기




Volumn 47, Issue 4, 2006, Pages 525-549

A comparison of Bayesian model selection based on MCMC with an application to GARCH-type models

Author keywords

Bayesian inference; Bayesian model selection; GARCH models; Markov Chain Monte Carlo (MCMC); Model likelihood

Indexed keywords


EID: 33748438405     PISSN: 09325026     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00362-006-0305-z     Document Type: Article
Times cited : (23)

References (33)
  • 1
    • 0002350223 scopus 로고    scopus 로고
    • Bayesian inference on GARCH models using Gibbs sampler
    • Bauwens, L. and Lubrano, M. (1998). Bayesian inference on GARCH models using Gibbs sampler, Econometrics Journal 1: 23-46.
    • (1998) Econometrics Journal , vol.1 , pp. 23-46
    • Bauwens, L.1    Lubrano, M.2
  • 2
    • 42449156579 scopus 로고
    • A generalized autoregressive conditional heteroskedasticity
    • Bollerslev, T. (1986). A generalized autoregressive conditional heteroskedasticity, Journal of Econometrics 31: 307-327.
    • (1986) Journal of Econometrics , vol.31 , pp. 307-327
    • Bollerslev, T.1
  • 3
    • 0001711056 scopus 로고
    • ARCH models
    • R. Eagle and D. McFadden (eds), Elsevier Science B.V., Amsterdam
    • Bollerslev, T., Engle, R. and Nelson, D. (1994). ARCH models, in R. Eagle and D. McFadden (eds), Handbook of Econometrics, Vol. 4, Elsevier Science B.V., Amsterdam.
    • (1994) Handbook of Econometrics , vol.4
    • Bollerslev, T.1    Engle, R.2    Nelson, D.3
  • 5
  • 7
    • 0000712567 scopus 로고
    • Bayesian model discrimination and Bayes factor for linear Gaussian state space models
    • Frühwirth-Schnatter, S. (1995). Bayesian model discrimination and Bayes factor for linear Gaussian state space models, Journal of the Royal Statistical Society, series B 57: 237-246.
    • (1995) Journal of the Royal Statistical Society, Series B , vol.57 , pp. 237-246
    • Frühwirth-Schnatter, S.1
  • 8
    • 33750369868 scopus 로고    scopus 로고
    • Estimating marginal likelihoods for mixture and Markov switching models using bridge sampling techniques
    • Prühwirth-Schnatter, S. (2004). Estimating marginal likelihoods for mixture and Markov switching models using bridge sampling techniques, The Econometrics Journal 7: 143-167.
    • (2004) The Econometrics Journal , vol.7 , pp. 143-167
    • Prühwirth-Schnatter, S.1
  • 11
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • Gelman, A. and Rubin, D. (1992). Inference from iterative simulation using multiple sequences (with discussion), Statistical Science 7: 457-511.
    • (1992) Statistical Science , vol.7 , pp. 457-511
    • Gelman, A.1    Rubin, D.2
  • 12
    • 0001032163 scopus 로고
    • Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments
    • J. Bernardo, J. Berger, A. Dawid and A. Smith (eds), Oxford University Press
    • Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments, in J. Bernardo, J. Berger, A. Dawid and A. Smith (eds), Bayesian Statistics, Vol. 4, Oxford University Press, pp. 169-193.
    • (1992) Bayesian Statistics , vol.4 , pp. 169-193
    • Geweke, J.1
  • 13
    • 84986088295 scopus 로고
    • Bayesian treatment of the independent Student-t linear model
    • Geweke, J. (1993). Bayesian treatment of the independent Student-t linear model, Journal of Applied Econometrics 8: 19-40.
    • (1993) Journal of Applied Econometrics , vol.8 , pp. 19-40
    • Geweke, J.1
  • 15
    • 77956889087 scopus 로고
    • Reversible jump MCMC computation and Bayesian model determination
    • Green, P. (1995). Reversible jump MCMC computation and Bayesian model determination, Biometrika 82: 711-732.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.1
  • 16
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings, W. (1970). Monte Carlo sampling methods using Markov chains and their applications, Biometrika 57: 97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.1
  • 20
    • 0001251517 scopus 로고    scopus 로고
    • Stochastic volatility: Likelihood inference and comparison with ARCH models
    • Kim, S., Shephard, N. and Chib, S. (1998). Stochastic volatility: Likelihood inference and comparison with ARCH models, Review of Economic Studies 65: 361-393.
    • (1998) Review of Economic Studies , vol.65 , pp. 361-393
    • Kim, S.1    Shephard, N.2    Chib, S.3
  • 21
  • 22
    • 0033460110 scopus 로고    scopus 로고
    • Bayes factors: What they are and what they are not
    • Lavine, M. and Scherrish, M. (1999). Bayes factors: What they are and what they are not, The American Statistician 53: 119-122.
    • (1999) The American Statistician , vol.53 , pp. 119-122
    • Lavine, M.1    Scherrish, M.2
  • 23
    • 21444451325 scopus 로고    scopus 로고
    • Simulating ratios of normalizing constants via a simple identity
    • Meng, X. and Wong, W. (1996). Simulating ratios of normalizing constants via a simple identity, Statistical Sinica 6: 831-860.
    • (1996) Statistical Sinica , vol.6 , pp. 831-860
    • Meng, X.1    Wong, W.2
  • 26
    • 0347318519 scopus 로고    scopus 로고
    • Bayesian analysis of ARMA-GARCH models: A Markov chain sampling approach
    • Nakatsuma, T. (2000), Bayesian analysis of ARMA-GARCH models: a Markov chain sampling approach, Journal of Econometrics 95: 57-69.
    • (2000) Journal of Econometrics , vol.95 , pp. 57-69
    • Nakatsuma, T.1
  • 27
    • 0003078723 scopus 로고
    • Approximate Bayesian inference by the weighted likelihood bootstrap
    • Newton, M. and Raftery, A. (1994). Approximate Bayesian inference by the weighted likelihood bootstrap, Journal of Royal Statistical Society, Ser. B 56: 1-48.
    • (1994) Journal of Royal Statistical Society, Ser. B , vol.56 , pp. 1-48
    • Newton, M.1    Raftery, A.2
  • 28
    • 0000759236 scopus 로고
    • How many iterations in the Gibbs sampler
    • J. Bernardo, J. Berger, A. Dawid and A. Smith (eds), Oxford University Press
    • Raftery, A. and Lewis, S. (1992). How many iterations in the Gibbs sampler, in J. Bernardo, J. Berger, A. Dawid and A. Smith (eds), Bayesian Statistics, Vol. 4, Oxford University Press, pp. 763-773.
    • (1992) Bayesian Statistics , vol.4 , pp. 763-773
    • Raftery, A.1    Lewis, S.2
  • 29
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978). Estimating the dimension of a model, The Annals of Statistics 6: 461-464.
    • (1978) The Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 30
    • 0001790102 scopus 로고    scopus 로고
    • Statistical aspects of ARCH and stochastic volatility
    • D. Cox, D. V. Hinkley and O. E. Barndorff-Nielsen (eds), London: Chapman & Hall
    • Shephard, N. (1996). Statistical aspects of ARCH and stochastic volatility, in D. Cox, D. V. Hinkley and O. E. Barndorff-Nielsen (eds), Time Series Models in Econometrics, Finance and Other Fields, London: Chapman & Hall, pp. 1-67.
    • (1996) Time Series Models in Econometrics, Finance and Other Fields , pp. 1-67
    • Shephard, N.1
  • 31
    • 0000576595 scopus 로고
    • Markov chains for exploring posterior distributions
    • Tierney, L. (1994). Markov chains for exploring posterior distributions, Annals of Statistics 21: 1701-1762.
    • (1994) Annals of Statistics , vol.21 , pp. 1701-1762
    • Tierney, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.